
Sammy Omari, Michael Blösch

MATLAB
Control Systems Toolbox
Compendium

October 26, 2007

ETH Zürich





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 plot() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 logspace() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 System Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 System Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 ss() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 tf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 zpk() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 frd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Example: Inverted Pendulum on a Cart . . . . . . . . . . . . . . 8
2.1.6 Example: Deriving a nominal model using frd() . . . . . . . 11

2.2 System Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 series() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 parallel() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 feedback() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Example: Connecting SISO systems . . . . . . . . . . . . . . . . . . 18

3 System Analysis and Control Design . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Controllability and Observability . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 obsv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 ctrb() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 rank() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Example: Inverted Pendulum on a Cart . . . . . . . . . . . . . . 23

3.2 System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



4 Contents

3.2.1 eig() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 svd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 sigma() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 pole() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.5 zero() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.6 pzmap() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.7 evalfr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.8 Example: Levitating Sphere . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.9 Example: Geostationary Satellite . . . . . . . . . . . . . . . . . . . . 29

3.3 System Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 step() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 impulse() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 initial() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 bode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.5 margin() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.6 dcgain() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.7 nyquist() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.8 Example: Air-Dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.9 Example: Geostationary Satellite . . . . . . . . . . . . . . . . . . . . 41

3.4 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 rlocus() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 fminsearch() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 lqr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.4 Example: Air-Dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.5 Example: Levitating Sphere . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Working with Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Defining a New Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Adding and Connecting Blocks . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Input-Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 sim() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.3 Sine Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.4 Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.1 Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.2 Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.3 State-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.4 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.5 Transport Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Contents 5

4.6.6 Zero-Pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7.1 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8 Math Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8.1 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8.2 Math Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8.3 Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8.4 Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Ports and Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.9.1 Inport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.9.2 Outport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.9.3 Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Signal Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.10.1 Demux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.10.2 Mux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.11.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.11.2 Terminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.11.3 To Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.12 Example: Inverted Pendulum on a Cart . . . . . . . . . . . . . . . . . . . . 69





1

Introduction

1.1 Preface

1.1.1 Objective

This text serves as a compendium for students working with the MATLAB
Control Systems Toolbox and Simulink. Its primary objective is to familiar-
ize the students with the toolboxes. Obviously, this can only be achieved by
working with MATLAB. That’s why this document is complemented with
exercises which will be held throughout the semester.

1.1.2 Prerequisites

Students are supposed to have a basic knowledge of MATLAB. This includes
vector manipulation, basic programming skills and visualization of data. This
text is based on the MATLAB Engineering Toolcourse offered by the IMRT
in the third semester for D-MAVT students. The course can be found at
www.imrt.ethz.ch/education/matlab.

1.1.3 Structure

The sections are divided in two parts. The function references are followed
by examples which discuss the previously introduced functions. The reference
is based on the MATLAB help function. Unnecessary details which are not
relevant for the students are omitted.

The reference may seem cryptic at first glance, so in order to get a full
understanding, consult the examples. In the examples, the implementation
of control system concepts and algorithms in MATLAB are discussed. This
should provide you with enough information to successfully solve the exercises
on your own.

http://www.oldimrt.ethz.ch/education/tutorials/matlab/


2 1 Introduction

1.2 Tips and Tricks

• When you get stuck writing code, use help functionname. If you don’t
know the exact name, you can use lookfor or the graphical help found in
the pulldown-menu help.

• Instead of entering the code in the command window, use M-files.
• The first thing to add to an M-file are the commands clear all, clc,

close all. This will erase all previously defined variables, clears the com-
mand window and closes all plot windows.

• Try to use variables instead of numerical values so you can manipulate
them more easily later on in the design process.

• Executing an M-file is done by pressing F5. You can abort the computation
prematurely using Ctrl-C.

• Comment your source code. It will be a blessing for other people which
are reading your code (e.g. your assistants :P).

• All variables can be found in the workspace (the subwindow on the left
side of MATLAB). They can be edited easily in an Excel-like application
by double-clicking.

• Multiplying two vectors or matrices element-wise is done by the opera-
tor .* .The point operator can also be used in conjunction with other
arithmetic operators, more precisely: + - * / \ ^

• You can save variables in your current directory using save var. Loading
is done load var. Make sure you are in the correct directory.

1.3 Plotting

Although the functions logspace() and plot() are already introduced in the
tools course, they are included here as well, so that the compendium is self-
contained. The basic tools for data visualization are reintroduced to refresh
the student’s skills.

1.3.1 plot()

Purpose

2-D line plot

Syntax

plot(Y)
plot(X1,Y1,X2,Y2,...)
plot(X1,Y1,LineSpec,X2,Y2,...)



1.3 Plotting 3

Description

plot(Y) plots the columns of Y versus their index if Y is a real number. If
Y is complex, plot(Y) is equivalent to plot(real(Y),imag(Y)). In all other
uses of plot, the imaginary component is ignored.

plot(X1,Y1,X2,Y2,...) plots all lines defined by Xn versus Yn pairs.
plot(X1,Y1,LineSpec,X2,Y2,...) plots all lines defined before the LineSpec

argument using the specifications defined in LineSpec. This argument gives
you control over various graphic characteristics, such as the line style/width,
color and marker type/size.

For example, plot(X1,Y1,’--b’) plots X1 versus Y1 using a dashed(--),
blue (b) line. For a complete documentation of LineSpec, consult the graph-
ical MATLAB help.

1.3.2 logspace()

Purpose

Generate logarithmically spaced vectors.

Syntax

y = logspace(a,b)
y = logspace(a,b,n)

Description

The logspace function generates logarithmically spaced vectors. It is especially
useful for creating frequency vectors.

y = logspace(a,b) generates a row vector y of 50 logarithmically spaced
points between decades 10a and 10b.

y = logspace(a,b,n) generates n points between the decades 10a and
10b.





2

System Definition

2.1 System Representation

The functions ss()1, tf()2, zpk()3, and frd()4 create transfer function mod-
els, zero-pole-gain models, state-space models, and frequency response data
models, respectively. These functions take the model data as input and pro-
duce TF, ZPK, SS, or FRD objects that store this data in a single MATLAB
variable. This section shows how to create continuous SISO or MIMO LTI
models using ss(), tf(), zpk(), and frd().

2.1.1 ss()

Purpose

Specifies state-space models or converts LTI model to state space.

Syntax

sys ss = ss(A,B,C,D)
sys ss = ss(sys tf)
sys ss = ss(sys zpk)

1 see 2.1.1 ss()
2 see 2.1.2 tf()
3 see 2.1.3 zpk()
4 see 2.1.4 frd()



6 2 System Definition

Description

Returns a real- or complex-valued state-space model (SS object) or converts
a transfer function or a zero-pole-gain model to state space.

Creates a continuous-time state-space model

ẋ = Ax + Bu

y = Cx + Du

For a model with n states, p outputs, and m inputs, the input matrices
A,B,C,D have to be:

• A = IRn×n

• B = IRn×m

• C = IRp×n

• D = IRp×m

The input can also be a transfer function (TF object) or a zero-pole-gain
model (ZPK object). In this case the system matrices A,B,C,D are derived from
the transfer function.

2.1.2 tf()

Purpose

Creates or converts to transfer function model.

Syntax

sys tf = tf(num,den)
sys tf = tf(sys ss)
sys tf = tf(sys zpk)
s = tf(’s’)

Description

Returns a real- or complex-valued transfer function model (TF object) or
converts a state-space or a zero-pole-gain model to transfer function form.

Creates a continuous-time transfer function with numerator and denomi-
nator specified by num and den.

In the SISO case, num and den are the real- or complex-valued row vectors
of numerator and denominator coefficients ordered in descending powers of s.



2.1 System Representation 7

h(s) =
bmsm + bm−1s

m−1 + . . . + b2s
2 + b1s + b0

ansn + an−1sn−1 + . . . + a2s2 + a1s + b0

num = [bm, bm−1, . . . , b2, b1, b0]
den = [an, an−1, . . . , a2, a1, a0]

In a MIMO system num and den are cell arrays of row vectors with as many
rows as outputs and as many columns as inputs. Each num(i,j)/den(i,j)
pair specifies the transfer function from input j to output i.

You can also use real- or complex-valued rational expressions to create a
transfer function model. Type s = tf(’s’), before specifing a transfer func-
tion model using a rational function in the Laplace variable, s.

The input can also be a state-space model (SS object) or a zero-pole-gain
model (ZPK object).

2.1.3 zpk()

Purpose

Creates or converts to zero-pole-gain model.

Syntax

sys zpk = zpk(z,p,k)
sys zpk = zpk(sys ss)
sys zpk = zpk(sys tf)
s = zpk(’s’)

Description

Returns a real- or complex-valued zero-pole-gain model (ZPK object) or con-
verts a state-space or a transfer function model to zero-pole-gain form.

Creates a continuous-time zero-pole-gain model with zeros z, poles p, and
gain k.

In the SISO case, z and p are the vectors of real- or complex-valued zeros
and poles, and k is the real- or complex-valued scalar gain.

h(s) = k
(s− z1)(s− z2) . . . (s− zm−1)(s− zm)
(s− p1)(s− p2) . . . (s− pn−1)(s− pn)

z = [z1, z2, . . . , zm−1, zm]
p = [p1, p2, . . . , pn−1, pn]

In a MIMO system z and p are cell arrays of vectors with as many rows as
outputs and as many columns as inputs, and k is a matrix with as many rows
as outputs and as many columns as inputs. The vectors z(i,j) and p(i,j)



8 2 System Definition

specify the zeros and poles of the transfer function from input j to output i.
The command k(i,j) specifies the (scalar) gain of the transfer function from
input j to output i.

You can also use real- or complex-valued rational expressions to create a
zero-pole-gain model. Type s = zpk(’s’), before specifing a zero-pole-gain
model using a rational function in the Laplace variable, s.

The input can also be a state-space model (SS object) or a transfer function
(TF object).

2.1.4 frd()

Purpose

Creates or converts to frequency-response data model.

Syntax

sys frd = frd(response,frequency)
sys frd = frd(sys ss,frequency)
sys frd = frd(sys tf,frequency)
sys frd = frd(sys zpk,frequency)

Description

The command sys = frd(response,frequency) creates an frequency-response
data model from the frequency response data stored in the multidimensional
array
response. The vector frequency represents the underlying frequencies for
the frequency response data.

In a SISO model, response is a vector of length l for which response(i)
is the frequency response at the frequency frequency(i).

In MIMO, response is a p-by-m-by-l multidimensional array (remember:
D = IRp×m) for which response(i,j,k) specifies the frequency response
from input j to output i at frequency frequency(k).

The command sysfrd = frd(sys,frequency) converts a transfer func-
tion, state-space, or zero-pole-gain model to a frequency-response data model.
The frequency response is computed at the frequencies provided by the vector
frequency.

2.1.5 Example: Inverted Pendulum on a Cart 5

The inverted pendulum on a cart is a typical SISO problem for a control
systems engineer. It can easily be shown that the problem is highly unstable.



2.1 System Representation 9

Fig. 2.1. Pendulum on a Cart

This exercise can be seen as a simplification of a lot of real world applications
as for example the Segway or a starting rocket.

Both the system matrices A,B,C, D and the derived transfer function
P (s) are given:

A =


0 1 0 0
0 0 − gm

M 0
0 0 0 1
0 0 g(M+m)

lM 0

 , B =


0

− 1
M
0

− 1
lM

 , C =
(
0 0 1 0

)
, D = 0

P (s) =
−1

Mls2 − g(m + M)
= − 1

Ml

1

(s +
√

g(M+m)
Ml )(s−

√
g(M+m)

Ml )

Assume the pendulum’s length is l = 0.5m, the mass at the end is m = 2kg
and the cart weighs M = 4kg. Therefore, we write an M-File to save the
matrices in a MATLAB object for further manipulation.

In a second step, we assume that we don’t know anything about the
state variables. Only the input-output behaviour represented either by its
zeros/poles or its polynomial coefficients is known.

M-file

clear all, clc

% Parameters:

5 see chapter 4.4.3, Analysis and Synthesis of SISO Control Systems



10 2 System Definition

M=4; % Weight of the cart [kg]
m=2; % Weight of the upper mass [kg]
l= 0.5; % Length of the pendulum [m]
g=10; % Gravitational constant [m/s^2]

% State-space matrices:
A=[0 1 0 0;0 0 g*m/M 0;0 0 0 1;0 0 -g*(m+M)/(l*M) 0];
B=[0;1/M;0;1/l*M];
C=[0 0 1 0];
D=0;

% Build state-space object:
sys ss = ss(A,B,C,D);

% Transform to tf model:
sys tf ss=tf(sys ss)

% Transform to zpk model:
sys zpk ss=zpk(sys ss);

% Create tf model:
s=tf(’s’);
sys tf= -1/((M*l*s^2 -g*(m+M)));

% Create zpk model:
z = []; % Zeros
p = [sqrt(g*(M+m)/(M*l)) -sqrt(g*(M+m)/(M*l))]; % Poles
k= -1/(l*M); % Gain
sys zpk= zpk(z,p,k)

% Compute controller canonical form:
sys ss tf ss = ss(sys tf ss);
A ss tf ss = sys ss tf ss.A

Output:

Transfer function:

-0.5

--------

s^2 - 30

Zero/pole/gain:

-0.5

-------------------

(s-5.477) (s+5.477)

A ss tf ss =
0 7.5000

4.0000 0

Explanation

In the M-File, we define all parameters, such as the weight and the length of
the pendulum. As engineers, we often have to change those parameters, so it
would be unwise to just enter the numerical matrices.



2.1 System Representation 11

With the given state-space matrices, we produce an SS model using the
function ss()6. The resulting SS object is further transformed into TF and
ZPK models using the command tf()7 or zpk()8, respectively.

The LTI model can also be computed using the polynomial coefficients of
the transfer function or its zeros, poles and gain. The command s=tf(’s’)
simplifies building new TF models. Afterwards, we can simply enter the trans-
fer function as a rational fraction.

Having the zeros, poles and the gain of the transfer function, we can easily
obtain a ZPK model using the command zpk(z,p,k), where z, p and k are
vectors where the zeros, poles and gain are stored.

The different LTI models can all be transformed into each other (except
the FRD LTI model). But we have to be careful when transforming a TF or
ZPK model into an SS model. The transformation of an SS model to a TF
model and back in an SS model again (ss(sys tf ss)) can result in a pole-
zero cancellation and therefore a loss of information about the internal states
of the system. As we can see, the realized dynamic matrix (ss(sys tf ss).A)
has only dimension 2, whereas the original matrix had dimension 4.

2.1.6 Example: Deriving a nominal model using frd()

Instead of modeling a system, we now measure the steady-state response at a
given frequency range.

We are using a sinusoidal input u with a frequency ω and measure the
amplitude and the phase of the outptut y h times for each ω. For further
manipulation in MATLAB, we store the measured data in the file data.mat
where we can access the matrix mag, phase and w. The resulting matrices mag
and phase have the dimension IRl×h where l is the number of frequencies and
h is the number of the series of measurements. The vector w has therefore
dimension IRl. With the resulting data, we try to derive a transfer function
of the nominal model.

6 see 2.1.1 ss()
7 see 2.1.2 tf()
8 see 2.1.3 zpk()



12 2 System Definition

M-file

clear all, clc, close all

% Import matrices mag,phase,w:
load data

% Transform measured data into FRD model:
z=mag.*exp(i*phase); % Vector with complex form of the response
sys frd = frd(z,w);

% Plot measured data:
figure(1)
bode(sys frd,’.r’),hold on

% Derive nominal model that fits data:
s=tf(’s’);
sys nom=20/(s^2+2*s+20);

% Plot nominal model:
bode(sys nom,’k’), hold on

Output:

−60

−40

−20

0

20

M
ag

ni
tu

de
 (d

B
)

10
−2

10
−1

10
0

10
1

10
2

−225

−180

−135

−90

−45

0

45

P
ha

se
 (d

eg
)

Bode Diagram

Frequency  (rad/sec)

Fig. 2.2. Bode plot of data (dots) and nominal system (solid line)



2.2 System Interconnections 13

Explanation:

The commands clear all, clc, close all remove all stored variables in
MATLAB, remove the text in the command window and close all open figures.
It should be included in every M-file to minimize any complications with
previously executed M-files.

After importing the data from the file data.mat using load data, we
transform it in an FRD model sys frd. We therefore compute the complex
form of the response using the amplitude and phase information. Mathemat-
ically spoken:

z = r∠ϕ = reiϕ, r = magnitude, ϕ = phase

The way it is done in MATLAB is to compute every complex response us-
ing the corresponding phase and magnitude elements, stored in the matrices
phase or mag, respectively. We use the MATLAB operator .* for element-wise
multiplication. We can now create the FRD object sys frd using the func-
tion frd(z,w)9 where z is the complex response matrix and w the frequency
vector.

With bode(sys frd,’.r’)10, we plot the Bode diagram of sys frd using
red dots. The output is depicted in FIg. 2.2. As you can see, the model resem-
bles a second-order system. After a few iterations, a nominal system sys nom
is found that fits the measured data. With the command hold on, we can
display both Bode plots in the same figure.

2.2 System Interconnections

The Matlab control system toolbox offers various functions to connect LTI
models. In the following section we introduce the three functions series()11,
parallel()12 and feedback()13.These can be very useful for creating larger
systems based on smaller subsystems, for example a plant with its controller.

2.2.1 series()

Purpose

Connects two LTI models in series.
9 see 2.1.4 frd()

10 see 3.3.4 bode()
11 see 2.2.1 series()
12 see 2.2.2 parallel()
13 see 2.2.3 feedback()



14 2 System Definition

Syntax

sys = series(sys1,sys2)
sys = series(sys1,sys2,out1,inp2)

Description

series connects two LTI models in series. This function accepts any type of
LTI model.

sys = series(sys1,sys2) forms the basic series connection. This com-
mand is equivalent to the direct multiplication sys = sys2 * sys1.

y

sys_2sys_1

u yu

Fig. 2.3. Two LTI models in series

sys = series(sys1,sys2,out1,inp2) forms the more general series con-
nection. The index vectors out1 and inp2 indicate which outputs y 1 of sys1
and which inputs u 2 of sys2 should be connected. The resulting model sys
has [u ; v 2] as input and [z 1 ; y] as output.

2.2.2 parallel()

Purpose

Connects two LTI models in parallel.

Syntax

sys = parallel(sys1,sys2)
sys = parallel(sys1,sys2,inp1,inp2,out1,out2)



2.2 System Interconnections 15

y_1      u_2

z_1

y

sys_2
sys_1

v_2

u
y

u

v_2

z_1

Fig. 2.4. General form of two LTI models in series

Description

parallel connects two LTI models in parallel. This function accepts any type
of LTI model.

sys = parallel(sys1,sys2) forms the basic parallel connection. This
command is equivalent to the direct addition sys = sys1 + sys2.

y

sys_2

sys_1
u u y

Fig. 2.5. Two LTI models in parallel

sys = parallel(sys1,sys2,inp1,inp2,out1,out2) forms the more gen-
eral parallel connection. The index vectors inp1 and inp2 specify which inputs
u 1 of sys1 and which inputs u 2 of sys2 are connected. Similarly, the index
vectors out1 and out2 specify which outputs y 1 of sys1 and which outputs
y 2 of sys2 are summed. The resulting model sys has [v 1 ; u ; v 2] as
inputs and [z 1 ; y ; z 2] as outputs.



16 2 System Definition

u_1

u_2

z_2

z_1

y

sys_2

sys_1

v_2

v_1

u yu

y_1

y_2

v_1

v_2 z_2

z_1

Fig. 2.6. General form of two LTI models in parallel

2.2.3 feedback()

Purpose

Applies a feedback interconnection on two LTI models.

Syntax

sys = feedback(sys1,sys2)
sys = feedback(sys1,sys2,feedin,feedout)

Description

sys = feedback(sys1,sys2) returns an LTI model sys for the negative feed-
back interconnection. The closed-loop model sys has u as input vector and y
as output vector.

y

sys_2

sys_1

u u y

Fig. 2.7. Feedback connection of two LTI models



2.2 System Interconnections 17

sys = feedback(sys1,sys2,feedin,feedout) computes a closed-loop
model sys for the more general feedback loop. The vector feedin contains
indices into the input vector of sys1 and specifies which inputs u are involved
in the feedback loop. Similarly, feedout specifies which outputs y of sys1
are used for feedback. The resulting LTI model sys has the same inputs and
outputs as sys1 (with their order preserved).

z
y

sys_2

sys_1

v
u u y

v z

Fig. 2.8. General form of feedback connection between two LTI models



18 2 System Definition

2.2.4 Example: Connecting SISO systems

We define three arbitrary systems sys 1, sys 2 and sys 3 which we will con-
nect in the order as shown in Fig. 2.9. In a last step we compute the closed-loop
behaviour using feedback()14.

y

sys_3

1
s−1

sys_2

3
s   +22

sys_1

2
s+1

u yu

Fig. 2.9. Connecting three SISO systems

M-file

clear all, clc

% Define systems:
s=tf(’s’);
sys 1=2/(s+1);
sys 2=3/(s^2+2);
sys 3=1/(s-1);
sys 12=series(sys 1,sys 2) % Series connection of sys 1 and sys 2
sys 123=parallel(sys 12,sys 3) % Parallel connection of sys 12 and sys 3
sys fb=feedback(sys 123,1) % Feedback of sys 123

Output:

Transfer function:

6

-------------------

s^3 + s^2 + 2 s + 2

Transfer function:

s^3 + s^2 + 8 s - 4

-------------------

s^4 + s^2 - 2

14 see 2.2.3 feedback()



2.2 System Interconnections 19

Transfer function:

s^3 + s^2 + 8 s - 4

---------------------------

s^4 + s^3 + 2 s^2 + 8 s - 6

Explanation:

As usual, we define s as a transfer function to simplify building the sys-
tems. Next, we compute the transfer function of the upper branch using
sys 12 = series(sys 1,sys 2)15 which connects the systems sys 1 and
sys 2 in series. The resulting system is used in the subsequent command
parallel(sys 12,sys 3)16 to get the open-loop input-output behaviour of
the complete system sys 123. To get the closed-loop transfer function sys fb,
we use the function feedback(sys 123,1)17which feeds the output signal
back to its input. Please note that the output is substracted from the input,
which is already done by the function feedback() (hence the 1 as argument).

15 see 2.2.1 series()
16 see 2.2.2 parallel()
17 see 2.2.3 feedback()





3

System Analysis and Control Design

3.1 Controllability and Observability

The MATLAB Control System Toolbox provides the functions obsv()1 and
ctrb()2 to relieve the user from the painstaking task of manually computing
the observability and controllability matrices.

3.1.1 obsv()

Purpose

Computes the observability matrix.

Syntax

ob = obsv(A,C)
ob = obsv(sys)

Description

Returns the observability matrix ob for a state space system. For an n-by-n
matrix A and a p-by-n matrix C, obsv(A,C) returns the observability matrix

O =


C

CA
CA2

...
CAn−1


1 see 3.1.1 obsv()
2 see 3.1.2 ctrb()



22 3 System Analysis and Control Design

The resulting observability matrix ob has n columns and n · p rows and can
therefore also be used for MIMO systems (which obviously have p > 1).

The model is observable if the matrix ob has full rank n.
obsv(A,C) is equivalent to obsv(sys) where sys = ss(A,B,C,D)3.

3.1.2 ctrb()

Purpose

Computes the Controllability matrix.

Syntax

co = ctrb(A,B)
co = ctrb(sys)

Description

Returns the controllability matrix co for a state space system. For an n-by-n
matrix A and a n-by-m matrix B, ctrb(A,B) returns the controllability matrix

R =
[
B AB A2B · · · An−1B

]
The resulting controllability matrix co has n rows and n ·m columns and can
therefore also be used for MIMO systems (which obviously have m > 1).

The model is controllable if the matrix co has full rank n.
ctrb(A,B) is equivalent to ctrb(sys) where sys = ss(A,B,C,D)4.

3.1.3 rank()

Purpose

Computes the rank of the matrix.

Syntax

k = rank(A)

Description

Returns the number of linearly independent rows or columns k of a full matrix
A.
3 see 2.1.1 ss()
4 see 2.1.1 ss()



3.1 Controllability and Observability 23

3.1.4 SISO Example: Inverted Pendulum on a Cart 5

We use the example of the inverted pendulum to show that it is highly impor-
tant to check whether a system is observable and controllable. If an unstable
state is not controllable, there is no possibility to stabilize a system. Therefore,
we write an M-File to check if the observability and controllability matrices
have full rank.

M-file

clear all, clc

% Parameters:
M=4; % Weight of the cart [kg]
m=2; % Weight of the upper mass [kg]
l= 0.5; % Length of the pendulum [m]
g=10; % Gravitational constant [m/s^2]

% State-space matrices:
A=[0 1 0 0;0 0 g*m/M 0;0 0 0 1;0 0 -g*(m+M)/(l*M) 0];
B=[0;1/M;0;1/l*M];
C=[0 0 1 0];
D=0;

% Observability:
ob = obsv(A,C);
r ob=rank(ob)

% Controllability:
co = ctrb(A,B);
r co = rank(co)

Output:

r ob = 2

r co = 4

Explanation

With the given state-space matrices, the observability and controllability ma-
trices are computed. To check if the system can both be controlled and ob-
served, we use the MATLAB functions obsv()6 and ctrb()7. Using the func-
tion rank()8 we realize that the observability matrix doesn’t have full rank
(dimension of ob is 4, the rank only 2!).

5 see chapter 4.4.3, Analysis and Synthesis of SISO Control Systems
6 see 3.1.1 obsv()
7 see 3.1.2 ctrb()
8 see 3.1.3 rank()



24 3 System Analysis and Control Design

Instead of measuring the angle of the pendulum, we use another sensor to
measure the position of the cart. Therefore, we have a new matrix C new.

ynew = x1, Cnew =
(
1 0 0 0

)
Another computation with C new shows that now the observability matrix has
full rank.

3.2 System Properties

To design a controller for a dynamic system, its properties have to be known.
The toolbox offers various functions to support the control systems engineer.
The commands eig()9 and svd()10 can be used to analyze the dynamic
system matrix A, whereas the functions sigma()11, pole()12, zero()13,
pzmap()14 and evalfr()15 analyse the frequency domain properties of the
transfer functions.

3.2.1 eig()

Purpose

Finds eigenvalues and eigenvectors.

Syntax

d = eig(A)
[V,D] = eig(A)

Description

d = eig(A) returns a vector of the eigenvalues of matrix A.
[V,D] = eig(A) produces matrices of eigenvalues D and eigenvectors V of

matrix A, so that A · V = V · D. Matrix D is the canonical form of A — a
diagonal matrix with A’s eigenvalues on the main diagonal. Matrix V is the
modal matrix — its columns are the eigenvectors of A.
9 see 3.2.1 eig()

10 see 3.2.2 svd()
11 see 3.2.3 sigma()
12 see 3.2.4 pole()
13 see 3.2.5 zero()
14 see 3.2.6 pzmap()
15 see 3.2.7 evalfr()



3.2 System Properties 25

3.2.2 svd()

Purpose

Computes the matrix singular value decomposition.

Syntax

s = svd(X)
[U,S,V] = svd(X)

Description

s = svd(X) returns a vector of singular values of X.
[U,S,V] = svd(X) produces a diagonal matrix S of the same dimension

as X, with nonnegative diagonal elements in decreasing order, and unitary
matrices U and V so that X = U · S · V T .

3.2.3 sigma()

Purpose

Plot singular values of LTI models.

Syntax

sigma(sys)
sigma(sys,w)

Description

sigma calculates the singular values of the frequency response of an LTI model.
For an FRD model sys, sigma computes the singular values of the response of
sys. For continuous-time TF, SS, or ZPK models with transfer function H(s),
sigma computes the singular values of H(jw) as a function of the frequency
w.

sigma(sys) plots the singular values of the frequency response of an ar-
bitrary LTI model sys.

sigma(sys,w) explicitly specifies the frequency range or frequency points
to be used for the plot. To focus on a particular frequency interval [wmin,wmax],
set w = {wmin,wmax}. To use particular frequency points, set w to the corre-
sponding vector of frequencies. Use logspace16 to generate logarithmically
spaced frequency vectors. The frequencies must be specified in rad/s.

16 see 1.3.2 logspace()



26 3 System Analysis and Control Design

3.2.4 pole()

Purpose

Computes poles of LTI system.

Syntax

p = pole(sys)

Description

pole computes the poles p of the SISO or MIMO LTI model sys.
For state-space models, the poles are the eigenvalues of the A matrix, or

the generalized eigenvalues of A− λE in the descriptor case.
For SISO transfer functions or zero-pole-gain models, the poles are simply

the denominator roots.
For MIMO transfer functions (or zero-pole-gain models), the poles are

computed as the union of the poles for each SISO entry. If some columns or
rows have a common denominator, the roots of this denominator are counted
only once.

3.2.5 zero()

Purpose

Computes zeros of LTI system.

Syntax

z = zero(sys)

Description

zero computes the zeros of SISO systems and the transmission zeros of MIMO
systems. For a MIMO system with matrices (A,B,C,D), the transmission zeros
are the complex values λ for which the normal rank of[

A− λE B
C D

]
drops.

z = zero(sys) returns the (transmission) zeros of the LTI model sys as
a column vector.



3.2 System Properties 27

3.2.6 pzmap()

Purpose

Compute pole-zero map of LTI models.

Syntax

pzmap(sys)
[p,z] = pzmap(sys)

Description

pzmap(sys) plots the pole-zero map of the continuous- or discrete-time LTI
model sys. For SISO systems, pzmap plots the transfer function poles and
zeros. For MIMO systems, it plots the system poles and transmission zeros.
The poles are plotted as x’s and the zeros are plotted as o’s.

[p,z] = pzmap(sys) returns the system poles and (transmission) zeros
in the column vectors p and z.

3.2.7 evalfr()

Purpose

Evaluates the frequency response at any given frequency.

Syntax

frsp = evalfr(sys,z)

Description

frsp = evalfr(sys,z) evaluates the transfer function of the TF, SS, or ZPK
model sys at the frequency z. Please note that the frequency is always a
complex number.

3.2.8 Example: Levitating Sphere 17

In this example, we want to study the system properties of a levitating sphere.
Such a sphere basically consists of a ferromagnetic material and floats below
a strong electromagnet. The gravitational and the magnetic force are acting
on the sphere. To control the sphere, we apply a voltage to the electromagnet.
17 see chapter 3.10, Analysis and Synthesis of MIMO Control Systems



28 3 System Analysis and Control Design

This results in a force on the sphere. We therefore choose the voltage as input
u(t) and the deviation of the sphere from its nominal position as output y(t).

After modeling the system, we get the following system matrices:

A =

 0 1 0
700 0 700
0 0 −0.2

 , B =

0
0
1

 , C =
(
1 0 0

)
, D = 0

The internal states are the position (x1) and the velocity (x2) of the sphere
and the current (x3) in the electromagnet.

M-File

clear all, clc

% State-space matrices:
A=[0 1 0;700 0 700;0 0 -0.2];
B=[0 0 1]’;
C=[1 0 0];

% Eigenvalues:
[V,D]=eig(A);
d=diag(D) % Get the eigenvalues from the diagonal matrix D and store them in d

% Save as a state-space object:
sys ss = ss(A,B,C,0);

% Poles
p=pole(sys ss)

% Zeros
z=zero(sys ss)

% Mapping the Poles and Zeros
pzmap(sys ss)

Output:

d =
26.4575

-26.4575
-0.2000

p =

26.4575
-26.4575
-0.2000

z =

Empty matrix: 0-by-1

Explanation

After entering the system matrices, we compute the eigenvectors and their
corresponding eigenvalues. The eigenvalues are stored on the diagonal of the
matrix D. We extract them in a vector using the function diag(). Next, we



3.2 System Properties 29

Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

−30 −20 −10 0 10 20 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.1. Pole-Zero map of the levitating sphere

directly compute poles of the transfer function. Please note that the poles of
the transfer function equal the eigenvalues of the dynamic matrix. This is only
the case when no pole-zero cancellation occurs.

As a next step, we compute the zeros of sys ss. The somehow cryptic
result tells us that the transfer function has no zeros. This is also confirmed by
the pole-zero map which was generated using the function pzmap(sys ss)18.
Fig. 3.1 us nicely that all poles lie on the real axis.

3.2.9 Example: Geostationary Satellite 19

If we want to watch satellite TV, we have to install a satellite dish which points
directly to the satellite. The reason why we never have to change the alignment
of our dish lies in the fact that the satellites are placed in a geostationary
orbit. Meaning: The satellite never changes its relative position to the earth.
The satellites are all placed on a circular orbit at r0 ≈ 4.22 · 107 m distance
from the center of the earth and rotate with the sidereal angular velocity
ω0 ≈ 7.29 ·10−5rad/s around the earth. Because we have to regulate both the
radial and the angular velocity using two thrusters, it is a MIMO system.
18 see 3.2.6 pzmap()
19 see chapter 3.11, Analysis and Synthesis of MIMO Control Systems



30 3 System Analysis and Control Design

The system dynamics are defined by:

A =


0 1 0 0

3ω2
0 0 0 2r0 · ω0

0 0 0 1
0 −2ω0/ro 0 0

 , B =


0 0
1 0
0 0
0 1/r0

 , C =
(

1/r0 0 0 0
0 0 1 0

)
, D =

(
0 0
0 0

)

M-File

clear all, clc

% Parameters:
r0=4.22*10^7; % Set value for the orbit radius [m]
w0=7.29*10^-5; % Set value for the angular velocity radius [rad/s]

% System Matrices
A=[0 1 0 0;3*w0^2 0 0 2*r0*w0;0 0 0 1;0 -2*w0/r0 0 0];
B=[0 0;1 0;0 0;0 1/r0];
C=[1/r0 0 0 0;0 0 1 0];
D=zeros(2);

% System Representation:
sys ss=ss(A,B,C,D);

% Eigenvalues:
d=eig(A)

% Singular values:
M=evalfr(sys ss,10); % MIMO transfer function at 10 rad/s
s1=svd(M)
s2=sigma(sys ss,10)
sigma(sys ss) % Plot the singular values of the system

Output:

d =

1.0e-004 *

0

0 + 0.7290i

0 - 0.7290i

0

s1 =

1.0e-009 *

0.2370

0.2370

s2 =

1.0e-009 *

0.2370

0.2370



3.2 System Properties 31

10
−5

10
−4

10
−3

−50

0

50

100

150

200

Singular Values

Frequency (rad/sec)

S
in

gu
la

r V
al

ue
s 

(d
B

)

Fig. 3.2. Singular values of the satellite

Explanation

After entering the system matrices and their parameters, we calculate the
eigenvalues using eig(A)20. Because two of the eigenvalues are zero, the sys-
tem is unstable. 21

Next, we want to calculate the maximal and minimal singular values at
the (arbitrary) frequency w = 10 rad/s. This is done using the function
evalfr(sys ss,10)22 to evaluate the transfer function sys ss at the fre-
quency 10 rad/s. In our (MIMO) case, the resulting matrix M has dimension
2. In the next step, we compute the singular values using svd(M)23 to check
in which interval the amplitude of the output will be for w = 10 rad/s. As
you can see, the singular values are the same, which points to the conclusion
that the system has a SISO system behaviour at that frequency.

To simplify the computation of singular values, we use the function
sigma(sys ss,10)24, which returns the same output. We use the same func-
20 see 3.2.1 eig()
21 see section 3.3.9 for a controller design
22 see 3.2.7 evalfr()
23 see 3.2.2 svd()
24 see 3.2.3 sigma()



32 3 System Analysis and Control Design

tion in the next step to plot the singular values over a frequency interval (Fig.
3.2).

3.3 System Response

The response of a system can be analysed in the time- and frequency-domains
to study the reaction to a previously defined input. The function for a time-
domain analysis are step()25, impulse()26 and initial()27. The frequency-
domain responses can be interpreted using bode()28, margin()29, dcgain()30

and nyquist()31.

3.3.1 step()

Purpose

Plots the step response of LTI systems.

Syntax

step(sys)
step(sys,t)
step(sys1,sys2,...,sysN)
[y,t] = step(sys)

Description

step(sys) plots the step response of an arbitrary LTI model sys. This model
can be SISO or MIMO. The step response of multi-input systems is the collec-
tion of step responses for each input channel. The duration of the simulation
is determined automatically based on the system poles and zeros.

step(sys,t) sets the simulation horizon explicitly. You can specify ei-
ther a final time t = Tfinal (in seconds), or a vector of evenly spaced time
samples of the form t = 0:dt:Tfinal.

To plot the step responses of several LTI models sys1,..., sysN on a
single figure, use

step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,t)

25 see 3.3.1 step()
26 see 3.3.2 impulse()
27 see 3.3.3 initial()
28 see 3.3.4 bode()
29 see 3.3.5 margin()
30 see 3.3.6 dcgain()
31 see 3.3.7 nyquist()



3.3 System Response 33

When invoked with output arguments, the functions

[y,t] = step(sys)
[y,t,x] = step(sys)
y = step(sys,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x. No plot is drawn on the screen. For single-input systems,
y has as many rows as time samples (length(t)) and as many columns as
outputs. In the multi-input case, the step responses of each input channel are
stacked up along the third dimension of y. The dimensions of y are then

(length of t)× p×m

and y(:,:,j) gives the response to a unit step command injected in the jth
input channel. Similarly, the dimensions of x are

(length of t)× n×m

where n is the number of states, m the number of inputs and p the number
of outputs.

3.3.2 impulse()

Purpose

Plots the impulse response of LTI systems.

Syntax

impulse(sys)
impulse(sys,t) impulse(sys1,sys2,...,sysN)
[y,t] = impulse(sys)

Description

impulse(sys) plots the impulse response of an arbitrary LTI model sys. This
model can be SISO or MIMO. The impulse response of multi-input systems
is the collection of impulse responses for each input channel. The duration of
simulation is determined automatically to display the transient behavior of
the response.

impulse(sys,t) sets the simulation horizon explicitly. You can specify
either a final time t = Tfinal (in seconds), or a vector of evenly spaced time
samples of the form t = 0:dt:Tfinal

To plot the impulse responses of several LTI models on a single figure, use

impulse(sys1,sys2,...,sysN,x0)
impulse(sys1,sys2,...,sysN,x0,t)



34 3 System Analysis and Control Design

When invoked with left-side arguments, the functions

[y,t] = impulse(sys)
[y,t,x] = impulse(sys)
y = impulse(sys,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x. No plot is drawn on the screen. For single-input systems,
y has as many rows as time samples (length(t)) and as many columns as
outputs. In the multi-input case, the step responses of each input channel are
stacked up along the third dimension of y. The dimensions of y are then

(length of t)× p×m

and y(:,:,j) gives the response to a unit step command injected in the jth
input channel. Similarly, the dimensions of x are

(length of t)× n×m

where n is the number of states, m the number of inputs and p the number
of outputs.

3.3.3 initial()

Purpose

Plots the response of a state-space model to an initial condition.

Syntax

initial(sys,x0)
initial(sys,x0,t)
initial(sys1,sys2,...,sysN,x0)
[y,t,x] = initial(sys,x0)

Description

initial(sys,x0) plots the response of sys to an initial condition x0 on the
states. sys can be any state-space model (SISO or MIMO, with or without
inputs). The duration of simulation is determined automatically to reflect
adequately the response transients.

initial(sys,x0,t) explicitly sets the simulation horizon. You can specify
either a final time t = Tfinal (in seconds) or a vector of evenly spaced time
samples of the form t = 0:dt:Tfinal.



3.3 System Response 35

To plot the initial condition responses of several LTI models on a single
figure, use

initial(sys1,sys2,...,sysN,x0)
initial(sys1,sys2,...,sysN,x0,t)

When invoked with left-side arguments, the functions

[y,t,x] = initial(sys,x0)
[y,t,x] = initial(sys,x0,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x. No plot is drawn on the screen. The array y has as many
rows as time samples (length(t)) and as many columns as outputs. Similarly,
x has length(t) rows and as many columns as states.

3.3.4 bode()

Purpose

Plots Bode diagram of frequency response.

Syntax

bode(sys)
bode(sys,w)
bode(sys1,sys2,...,sysN)
[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)

Description

bode(sys) plots the Bode response of an arbitrary LTI model sys, when
invoked without left-side arguments. This model can be SISO or MIMO. In
the MIMO case, bode produces an array of Bode plots, each plot showing the
Bode response of one particular input-output channel. The frequency range
is determined automatically based on the system poles and zeros.

bode(sys,w) explicitly specifies the frequency range or frequency points
to be used for the plot. To focus on a particular frequency interval, set w to
the vector of desired frequencies. Use logspace(wmin,wmax)32 to generate
logarithmically spaced frequency vectors. All frequencies should be specified
in rad/s.

bode(sys1,sys2,...,sysN) plots the Bode responses of several LTI mod-
els on a single figure. All systems must have the same number of inputs and
outputs. This syntax is useful to compare the Bode responses of multiple
systems.
32 see 1.3.2 logspace()



36 3 System Analysis and Control Design

When invoked with left-side arguments, the functions

[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)

return the magnitude and phase (in degrees) of the frequency response at the
frequencies w (in rad/s). The outputs mag and phase are 3-D arrays with the
frequency as the last dimension.

3.3.5 margin()

Purpose

Computes gain and phase margins and associated crossover frequencies

Syntax

[Gm,Pm,Wg,Wp] = margin(sys)
[Gm,Pm,Wg,Wp] = margin(mag,phase,w)
margin(sys)

Description

[Gm,Pm,Wc,Wp] = margin(sys) computes the gain margin Gm, the phase mar-
gin Pm, and the corresponding crossover frequencies Wc and Wp, given the SISO
open-loop model sys. Wc is the frequency where the gain is 0 dB, and Wp is
the frequency where the phase is −180◦.

[Gm,Pm,Wg,Wp] = margin(mag,phase,w) derives the gain and phase mar-
gins from the Bode frequency response data (magnitude, phase, and frequency
vector). Interpolation is performed between the frequency points to estimate
the margin values. This approach is generally less accurate.

When invoked without left-hand argument, margin(sys) plots the open-
loop Bode response with the gain and phase margins marked by vertical lines.
By default, gain margins are expressed in dB.

3.3.6 dcgain()

Purpose

Computes the low-frequency (DC) gain of an LTI system.

Syntax

k = dcgain(sys)



3.3 System Response 37

Description

k = dcgain(sys) computes the DC gain k of the LTI model sys.

3.3.7 nyquist()

Purpose

Produces Nyquist plot of LTI models.

Syntax

nyquist(sys)
nyquist(sys,w)
nyquist(sys1,sys2,...,sysN)
[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

Description

nyquist(sys) plots the Nyquist response of an arbitrary LTI model sys. This
model can be SISO or MIMO. In the MIMO case, bode produces an array of
Nyquist plots, each plot showing the response of one particular input-output
channel. The frequency range is determined automatically based on the system
poles and zeros.

nyquist(sys,w) explicitly specifies the frequency range or frequency
points to be used for the plot. To focus on a particular frequency interval, set
w to the vector of desired frequencies. Use logspace(wmin,wmax) to generate
logarithmically spaced frequency vectors. All frequencies should be specified
in rad/s.

nyquist(sys1,sys2,...,sysN) superimposes the Nyquist plots of several
LTI models on a single figure. All systems must have the same number of
inputs and outputs.

When invoked with left-side arguments, the functions

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

return the real and imaginary parts of the frequency response at the frequen-
cies w (in rad/sec). The return values re and im are 3-D arrays.



38 3 System Analysis and Control Design

3.3.8 Example: Air-Dryer33

The air-dryer we consider here can be used to desiccate food. The air is blown
through a tube and is heated at its entrance by an electric heater to a desired
temperature. The heating power is proportional to the input signal u(t). The
heat sensor providing the output signal y(t) is situated at the other end of the
tube. Since the air needs a certain time until it reaches the exit, a time delay
occurs in the transfer function. The nominal transfer function is given by:

P (s) =
knom

τnom · s + 1
e−δnom·s

The weighting function W1(s) and the uncertainty bound W2(s) are also
given:

W1(s) = 100
(1.6 · s + 1)2

(15 · 1.6 · s + 1)2
,W2(s) = 0.25

0.6 · s + 1
0.18 · 0.6 · s + 1

· (0.06 · s + 1)2

In this example we will try to derive a controller with the Aström-Hägglund
approach. After some loop-shaping, we will check if the controlled system
satisfies the robust performance condition. To conclude, the step response of
the closed-loop system will be displayed.

M-File

clear all, clc, close all

% Parameters:
k nom=2.99;
delta nom=0.27;
tau nom=0.63;

% Transfer Function:
s=tf(’s’);
P=k nom/(tau nom*s+1)*exp(-delta nom*s);

% Astroem-Haegglund:
P0 = dcgain(P) % DC gain
[Gm,Pm,Wg,Wp] = margin(P)
kp krit = Gm; % Critical gain
T krit = 2*pi/Wg; % Critical time constant
kappa = inv(P0*kp krit);

% Astroem-Haegglund Parameters (mu=0.50):
alpha0 kp = 0.13; alpha1 kp = 1.9; alpha2 kp = -1.3;
alpha0 Ti = 0.9; alpha1 Ti = -4.4; alpha2 Ti = 2.7;

% Astroem-Haegglund Controller:
kp = kp krit*(alpha0 kp*exp(alpha1 kp*kappa+alpha2 kp*kappa^2));
Ti = T krit*(alpha0 Ti*exp(alpha1 Ti*kappa+alpha2 Ti*kappa^2));

% Controller:
Ta=2; aa=6.2; % Lag element parameters
Tb=0.01; % Low pass parameter

33 see chapter 15, Analysis and Synthesis of SISO Control Systems



3.3 System Response 39

Tc=1.8; ac=0.3; % Lead element parameters
k=1.5; % Additional gain
C=kp*(1+1/(Ti*s))*(Ta*s+1)/(aa*Ta*s+1)*1/(Tb*s+1)*k*(Tc*s+1)/(ac*Tc*s+1);

% Discrete loop gain
L=C*P;
figure(1)
margin(L) % Plot the Bode plot and check phase margin
w = logspace(-3,3,1e4); % Frequency vector [rad/s]
[re,im]=nyquist(L,w);

% Robust Performance Condition:
S=1./(1+re+i*im); % Discrete sensitivity
T=(re+i*im)./(1+re+i*im); % Discrete complementary sensitivity
s=tf(’s’);
W1=100*(1.6*s+1)^2/(15*1.6*s+1)^2; % Weighting function
W2=0.26*(0.65*s+1)/(0.24*0.65*s+1)*(0.06*s+1)^2; % Uncertainty bound

magS=abs(S);
magT=abs(T);
[magW1,phW1]=bode(W1,w);
[magW2,phW2]=bode(W2,w);
Wsmag = magW1.*magS+magW2.*magT; % Robust performance value
figure(2)
semilogx(w,squeeze(Wsmag),’r’,w,ones(size(w)),’:k’) % Robust performance condition
xlabel(’Frequency [rad/s]’)
ylabel(’Magnitude [dB]’)
axis([10^-3,10^3,0,1.5])

Output:

P0 =

2.9900

Gm =

1.4470

Pm =

40.3465

Wg =

6.6816

Wp =

4.4727

Explanation

We begin by defining the system parameters and the transfer function. In order
to apply the Aström-Hägglund control design, some parameters of the system
plant have to be computed. The DC gain P0 can be obtained using the function
dcgain()34. The function margin()35 returns the minimum gain margin Gm,
the phase margin Pm and the associated crossover frequencies Wg and Wp of the
34 see 3.3.6 dcgain()
35 see 3.3.5 margin()



40 3 System Analysis and Control Design

10!3 10!2 10!1 100 101 102 103
0

0.5

1

1.5

Frequency [rad/s]

M
ag

ni
tu

de
 [d

B]

Fig. 3.3. Robust performance condition for the air-dryer with controller

open-loop system. Subsequently, the system values kp krit,T krit and kappa
can be computed. After defining the Aström-Hägglund parameters (µ = 0.50)
we evaluate kp and Ti. Additionally to the Aström-Hägglund PI-controller we
add a lag, a lead and a low-pass element to improve the system properties.

First we check whether the Bode plot suits our conceptions. Therefore,
we use the function margin(), which additionally computes the phase margin
and displays it in the Bode plot. The plot is depicted in Fig. 3.4

With the command w=logspace(-3,3)36, we generate a logarithmically
spaced vector w from 10−3 to 103. Because Matlab can’t directly operate with
systems with time delay, we discretise the loop gain transfer function with
the command [re,im]=nyquist(L,w) using the frequency vector w. With the
real part vector re and the imaginary part vector im, we can compute the
discrete sensitivity S and the discrete complementary sensitivity T.

To check if the robust performance conditions are satisfied, we also need
the weighting function W1 and the uncertainty bound W2. The following abs()
and bode()37 functions compute the magnitude and the phase of S,L,W1 and
W2 at the frequencies stored in the vector w. The robust performance condition
is met if the equation ‖|W1(s) · S(s)|+ |W2(s) · T (s)|‖∞ < 1 is satisfied. The

36 see 1.3.2 logspace()
37 see 3.3.4 bode()



3.3 System Response 41

−150

−100

−50

0

50

100

M
ag

ni
tu

de
 (d

B
)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−18.432

−13.824

−9.216

−4.608

0
x 10

4

P
ha

se
 (d

eg
)

Bode Diagram
Gm = 14.1 dB (at 5.45 rad/sec) ,  Pm = 71.8 deg (at 1.01 rad/sec)

Frequency  (rad/sec)

Fig. 3.4. Bode plot of the controlled air-dryer with phase margin

evaluation of the left-hand side of the equation at the frequencies w is saved in
the vector Wsmag. The command semilogx plots Wsmag versus w in red and a
horizontal line at y = 1 in black, dotted style. Note that we use the function
squeeze to extract the data from the three-dimensional array Wsmag to a
vector. The instructions xlabel and ylabel label the x and the y axis, while
axis sets the frame border. Fig. 3.3 shows that robust performance conditions
are met.

In the three last command lines we plot the step and the impulse responses
in the same figure. For both functions step()38 and impulse()39, we add the
time-delay to the closed-loop transfer function. With the second argument we
define the time span and the sample time.

3.3.9 Example: Geostationary Satellite 40

Due to the fact that the satellite is unstable, we have to design a controller.
During the design process we have to check how the controlled satellite reacts
to various external influences such as a hit by a small meteorite.
38 see 3.3.1 step()
39 see 3.3.2 impulse()
40 see chapter 3.11, Analysis and Synthesis of MIMO Control Systems



42 3 System Analysis and Control Design

M-File

clear all, clc,close all

% Parameters:
r0=4.22*10^7; % Set value for the orbit radius [m]
w0=7.29*10^-5; % Set value for the angular velocity radius [rad/s]

% System Matrices
A=[0 1 0 0;3*w0^2 0 0 2*r0*w0;0 0 0 1;0 -2*w0/r0 0 0];
B=[0 0;1 0;0 0;0 1/r0];
C=[1/r0 0 0 0;0 0 1 0];
D=zeros(2);

% LQR:
Q = C’*C;
R = 4*10^-5*eye(2);
K = lqr(A,B,Q,R); % Optimal gain matrix

% Open-Loop transfer Function:
sys ol=ss(A,B,K,D);
figure(1)
sigma(sys ol) % Plot the singular values
line([10^-5,10^-1],[0,0],’LineStyle’,’:’,’Color’,’black’) % Draw a dotted line at 0 dB
axis([10^-5,10^-1,-40,60]) % Set frame

% Closed Loop:
sys cl=ss(A-B*K,B,C,D);
figure(2)
initial(sys cl,[0 -r0 0 0]’) % Plot the initial condition response

Output:

Explanation

After the definition of the system matrices, we design a controller using
lqr()41. With the new controller, we derive the open-loop transfer function
sys ol using ss(A,B,K,D)42. Please note that we use K instead of C to include
the new LQR controller in our loop.

The singular value plot of the open-loop transfer function seen in Fig.
3.5 was generated using the function sigma(sys ol)43. The plot shows us
that the maximal and minimal singular values are very close to each other
at the crossover frequency. That tells us that we chose good parameters for
our LQR controller because the controlled system shows an ’almost SISO’
behaviour at the crossover frequency. We use the command figure() to
tell MATLAB in which window the plot should be drawn. The parameter
line([10^-5,10^-1],[0,0],’LineStyle’,’:’,’Color’,’black’) draws a
horizontal line in the plot. [10^-5,10^-1] defines the starting and ending
x-coordinate, [0,0] the corresponding y-coordinates. The additional param-
eters define the dotted line style and the black colour. Please note that for
additional drawings, we use the values as they are on the y-axis (in dB).
The command axis([10^-5,10^-1,-40,60]) sets the border of the plot.
41 see 3.4.3 lqr()
42 see 2.1.1 ss()
43 see 3.2.3 sigma()



3.3 System Response 43

10
−5

10
−4

10
−3

10
−2

10
−1

−40

−30

−20

−10

0

10

20

30

40

50

60

Singular Values

Frequency (rad/sec)

S
in

gu
la

r V
al

ue
s 

(d
B

)

Fig. 3.5. Singular values of the satellite with LQR controller

−250

−200

−150

−100

−50

0

50

To
: O

ut
(1

)

0 1000 2000 3000 4000 5000 6000 7000 8000
−5

0

5

10

15

To
: O

ut
(2

)

Response to Initial Conditions

Time (sec)

A
m

pl
itu

de

Fig. 3.6. Response to – 1 m/s initial radial velocity



44 3 System Analysis and Control Design

To investigate the closed loop system behaviour, we build the transfer
function sys cl using ss(A-B*K,B,C,D)44 . We now simulate a hit from a
small meteorite using initial(sys cl,[0 -r0 0 0]’)45. Therefore, we set
the initial radial velocity to -r0, which corresponds to −1m/s (due to nor-
malization). As one can derive from Fig. 3.6, the time required until the initial
deviation is corrected is about 3000 seconds. The benefits, on the other hand,
are the small fuel consumption of the thrusters, which leads to a longer lifes-
pan of the satellite. Therefore, the controller design is acceptable.

3.4 Control Design

With the exponential growth of computing power, several new tools for con-
troller design have been developed. Suddenly, large systems of equations can
be solved in a snatch. Iterative optimization methods, such as fminsearch()46

have become popular. The command lqr()47 solves a linear system of equa-
tion to derive the optimal gain matrix.

When the root-locus method was first introduced, there was not enough
computing power to get the exact path of the poles and zeros. Therefore,
a large set of rules were derived to draw approximate root-locus diagrams.
Nowadays, most of these rules are obsolete and have been replaced by numer-
ical algorithms such as rlocus()48.

3.4.1 rlocus()

Purpose

Plots the root locus of LTI models

Syntax

rlocus(sys)
rlocus(sys1,sys2,...)
[r,k] = rlocus(sys)
r = rlocus(sys,k)

44 see 2.1.1 ss()
45 see 3.3.3 initial()
46 see 3.4.2 fminsearch()
47 see 3.4.3 lqr()
48 see 3.4.1 rlocus()



3.4 Control Design 45

Description

rlocus(sys) computes the root locus of the SISO model sys. The root locus
gives the closed-loop pole trajectories as a function of the feedback gain k
(assuming negative feedback). Root loci are used to study the effects of varying
feedback gains on closed-loop pole locations. In turn, these locations provide
indirect information on the time and frequency responses.

When invoked with output arguments,

[r,k] = rlocus(sys)
r = rlocus(sys,k)

return the vector k of selected gains and the complex root locations r for
these gains. The matrix r has length(k) columns, and its jth column lists
the closed-loop roots for the gain k(j).

y

sys

Kr r y

Fig. 3.7. Root Locus System Setup

3.4.2 fminsearch()

Purpose

Find minimum of unconstrained multivariable function

Syntax

x = fminsearch(@fun,x0)

Description

x = fminsearch(@fun,x0) starts at the point x0 and finds a local minimum
x of the function described in @fun. The input value x0 can be a scalar, vector,
or matrix whereas @fun is a function handle.



46 3 System Analysis and Control Design

3.4.3 lqr()

Purpose

Calculates a linear-quadratic (LQ) state-feedback regulator for state-space
system

Syntax

K=lqr(A,B,Q,R)
K=lqr(sys,Q,R)
L=(lqr(A’,C’,B*B’,q))’

Description

The function K=lqr(A,B,Q,R) calculates the optimal gain matrix K such that,
for a continuous time system, the state-feedback law u = −Kx minimizes the
quadratic cost function

J(u) =
∫ ∞

0

[xT (u(t)) ·Q · x(u(t)) + uT (t) ·R · u(t)]dt

subject to the system dynamics ẋ = Ax + Bu. The resulting block diagram
can be found in Fig. 3.8.

The variables Q and R can be seen as ”tuning knobs”. Setting R = r ·
Im×m, r > 0 often yields good results.

The matrices must satisfy the conditions:

Q = QT ∈ Rn×n, Q ≥ 0,

and
R = RT ∈ Rm×m, Q > 0,

where n is the dimension of A and m the number of columns of B (obviously
for SISO systems, m = 1)

y(t)

K

A

CB 1
sr(t) r(t) x(t) y(t)

Fig. 3.8. LQR Block Diagram

The command L=(lqr(A’,C’,B*B’,q))’ computes the observer gain L for
an LQG controller. Varying q changes the behaviour of the LQG controller.



3.4 Control Design 47

3.4.4 Example: Air-Dryer 49

To show how to use fminsearch()50, we will consider the air-dryer51again. We
will try to optimize the previously derived controller. Therefore we introduce
the objective function J which includes various parameters describing the
performance of our controlled system. It incorporates the square of the error
signal, the maximum overshoot and the robust performance condition.

Two M-Files are built. The ’master’ M-File AHmaster.m defines the prob-
lem and the initial parameters, calls the optimization function fminsearch()
and displays the result. The command fminsearch() repeatedly calls the
function
AHSys fmin(par) defined in the second M-file, which basically returns the
value of the objective function J. To compute the performance parameters,
we use a Simulink model of the system AHSys.mdl. The system setup is de-
picted in Fig. 3.9.

e

Je2

t

r

y

Strecke

P

Step Regler

C

u2

Integrator

1
s

Clock

Fig. 3.9. Block Diagram of AHSys

M-File (AHmaster.m)

clc, clear all, close all

% Define global variables:
global C s tsim mu1 mu2 mu3 P w kp Ti magW1 magW2

49 see chapter 15, Analysis and Synthesis of SISO Control Systems
50 see 3.4.2 fminsearch()
51 see 3.3.8 Example: Air-Dryer



48 3 System Analysis and Control Design

% Parameters:
k nom=2.99;
delta nom=0.27;
tau nom=0.63;

% Transfer functions:
s=tf(’s’);
P=k nom/(tau nom*s+1)*exp(-delta nom*s); % Nominal plant transfer dunction
W1=100*(1.6*s+1)^2/(15*1.6*s+1)^2; % Weighting function
W2=0.26*(0.65*s+1)/(0.24*0.65*s+1)*(0.06*s+1)^2; % Uncertainty bound
w = logspace(-3,3,1e3); % Frequency vector [rad/s]
[magW1,phW1]=bode(W1,w);
[magW2,phW2]=bode(W2,w);

% Astroem-Haegglund PI-parameter:
kp = 0.2723;
Ti = 0.3536;

% Initial parameters for function to be optimized:
mu1 = 1; % Weight of the error signal
mu2 = 1; % Weight of the maximum overshoot
mu3 = 100; % Weight for the robust performance condition
var10 =0.01; % Low pass parameter
var20= 2; var30= 6.2; % Lag element parameters
var40= 1.8; var50= 0.3; % Lead element parameters
k0=kp*1.5; % Gain
tsim = 20; % Simulation time [s]

% Optimization:
par0=[var10;var20;var30;var40;var50;k0];
par opt=fminsearch(@AHSys fmin,par0); % Optimized parameters

% Get optimal parameters:
var1=par opt(1)
var2=par opt(2)
var3=par opt(3)
var4=par opt(4)
var5=par opt(5)
k=par opt(6)

% Simulation with optimized controller:
C opt = k*(1+1/(Ti*s))*(1/(var1*s+1))*(var2*s+1)/(var2*var3*s+1)*(var4*s+1)/(var4*var5*s+1);
C=C opt;
sim(’AHSys’,tsim)
y opt = y;

% Simulation with Astroem-Haegglund controller:
C AH = k0*(1+1/(Ti*s))*(1/(var10*s+1))*(var20*s+1)/(var20*var30*s+1)*(var40*s+1)/(var40*var50*s+1);
C=C AH;
sim(’AHSys’,tsim)
y AH = y;

% Plot step responses:
figure
plot(t,y opt,’k’,t,y AH,’--k’,t,r,’--r’)
xlabel(’Time [s]’)
ylabel(’r,y’)
legend(’Optimal’,’Astroem-Haegglund’,’Location’,’SouthEast’)

% Plot Nyquist diagram:
figure
nyquist(P*C opt,’k’,P*C AH,’--k’)
axis([-1,1,-2,2])
axis equal
legend(’Optimal’,’Astroem/Haegglund’,’Location’,’East’)

% Check robustness of optimized controller:



3.4 Control Design 49

L opt=C opt*P; % Loop gain with optimized controller
[re,im]=nyquist(L opt,w);
S=1./(1+re+i*im); % Discrete sensitivity with optimized controller
T=(re+i*im)./(1+re+i*im); % Discrete complementary sensitivity with optimized controller
magS=abs(S);
magT=abs(T);
Wsmag = magW1.*magS+magW2.*magT; % Robust performance value with optimized controller
figure
semilogx(w,squeeze(Wsmag(:,:,:)),’k’),hold on

% Check robustness of AH controller:
L AH=C AH*P; % Loop gain with AH controller
[re,im]=nyquist(L AH,w);
S=1./(1+re+i*im); % Discrete sensitivity with AH controller
T=(re+i*im)./(1+re+i*im); % Discrete complementary sensitivity with AH controller
magS=abs(S);
magT=abs(T);
Wsmag = magW1.*magS+magW2.*magT; % Robust performance value with AH controller
semilogx(w,squeeze(Wsmag(:,:,:)),’--k’,w,ones(size(w)),’--r’)
xlabel(’Frequency [rad/s]’)
ylabel(’Magnitude’)
axis([10^-3,10^3,0,1.5])
legend(’Optimal’,’Astroem/Haegglund’,’Location’,’NorthEast’)

M-File (AHSys fmin.m)

function J = AHSys fmin(par)

%Global variables:
global C s tsim mu1 mu2 mu3 P w Ti magW1 magW2

%Parameters:
var1 = par(1); % Low pass parameter
var2 = par(2); var3 = par(3); % Lag element parameters
var4 = par(4); var5 = par(5); % Lead element parameters
k = par(6); % Gain

%Simulation:
C = k*(1+1/(Ti*s))*(1/(var1*s+1))*(var2*s+1)/(var2*var3*s+1)*(var4*s+1)/(var4*var5*s+1);
sim(’AHSys’,tsim) % Simulation
L = C*P; % Loop gain
[re,im]=nyquist(L,w);
S=1./(1+re+i*im); % Discrete sensitivity
T=(re+i*im)./(1+re+i*im); % Discrete complementary sensitivity
magS=abs(S);
magT=abs(T);
Wsmag = magW1.*magS+magW2.*magT; % Robust performance value

%Objective function:
J = mu1*Je2(end)+mu2*(max(y)-1)+mu3*(max(Wsmag)>0.99);

Output:

kp = 0.2692

Ti = 0.3640

var1 = 0.0996

var2 = 100.4017

var3 = 0.7615



50 3 System Analysis and Control Design

0 5 10 15 20
0

2

4

6

8

10

12

Time [s]

r,y

 

 

Optimal
Astroem−Haegglund

Fig. 3.10. Step response of the closed loop systems

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

Optimal
Astroem/Haegglund

Fig. 3.11. Nyquist diagram of the open-loop systems



3.4 Control Design 51

10−3 10−2 10−1 100 101 102 103
0

0.5

1

1.5

Frequency [rad/s]

M
ag

ni
tu

de

 

 
Optimal
Astroem/Haegglund

Fig. 3.12. Robust performance condition for both systems

Explanation

In the first M-File we begin by defining the variables C, s, tsim, mu1, mu2,
mu3, P, w, Ti, magW1 and magW2 as global variables, so we can access their
values from everywhere in the Matlab environment. We also determine the
system parameters and the transfer functions of P, W1 and W2. With the func-
tion bode()52 we compute the magnitudes magW1 and magW2. As initial guess
(var10,var20,var30,var40,var50,k0) for fminsearch()53, we use the con-
troller which was designed in 3.3.8 Example: Air-Dryer. The variables mu1,
mu2 and mu3 describe the weights of the square of the error signal, the maxi-
mum overshoot and the robust performance condition, respectively. The com-
mand tsim is the time span of the simulation. Having set all these parameters,
we can call the function fminsearch(). The optimisation takes a while; it de-
termines iteratively the local minimum of the objective function J.

With the returned optimized values we build the controller C opt. The
variable C AH represents the controller we found in 3.3.8 Example: Air-Dryer.
Next, the step responses of both controlled system are simulated with the
model AHSys. The vectors y opt and y AH contain the returned values. These
are plotted with the command plot(t,y opt,’k’,t,y AH,’:k’,t,r,’--r’).
52 see 3.3.4 bode()
53 see 3.4.2 fminsearch()



52 3 System Analysis and Control Design

Also the Nyquist diagrams are displayed, using nyquist()54. The plot and
the Nyuist diagram are depicted in Fig. 3.10 and Fig. 3.11, respectively.

Just as in 3.3.8 Example: Air-Dryer, the robust performance condition is
checked with both the controllers C opt and C AH. Fig. 3.12 shows that it is
still satisfied.

The first command line of the second M-File defines AHSys fmin() as a
new function, where par is the only argument of the function and J is the
returned value. After defining the global variables, we can build the controller
C using the 6 values in the array par. The command sim(’AHSys’,tsim)55

simulates the controlled system with the model AHSys. Because Matlab can’t
properly manipulate systems with time delay, we have to discretize the open-
loop transfer function L. Therefore we first use the nyquist()56 function to
get the real part vector re and the imaginary part vector im. The discrete sen-
sitivity S and the discrete complementary sensitivity T can then be computed.
Mathematically, this can be formulated as

S(jω) =
1

1 + L(jω)
=

1
1 + rejϕ

, r = |L(jω)| , ϕ = ∠L(jω)

T (jω) =
L(jω)

1 + L(jω)
=

rejϕ

1 + rejϕ
, r = |L(jω)| , ϕ = ∠L(jω)

The output value magS is the magnitude of the sensitivity S and magT is the
magnitude of the complementary sensitivity T.

Finally, the objective function J can be computed by multiplying each
weighting factor with its performance parameter. The square of the error
signal is evaluated during the simulation of the model AHSys and stored in
the variable Je2. The maximum overshoot is the maximal value of the step
response y minus 1. The robust performance condition can be obtained using
the different magnitude vectors. The command max(Wsmag)>0.99 returns the
value 1 if Wsmag is larger than 0.99. Using a large weighting mu3, we can
assure that the condition is met. In the case where the condition is not satisfied
(Wsmag is larger than 0.99) the objective function increases significantly.

The command fminsearch()57 computes the value of J several times in
an attempt to find a local minimum.
54 see 3.3.7 nyquist()
55 see 4.4 sim()
56 see 3.3.7 nyquist()
57 see 3.4.2 fminsearch()



3.4 Control Design 53

3.4.5 Example: Levitating Sphere 58

In order to demonstrate the functionality of the function lqr()59, we will pick
up 3.2.8 Example: Levitating Sphere. An LQG controller is to be designed.

M-File

clear all, clc, close all

%State-space matrices:
A=[0 1 0;700 0 700;0 0 -0.2];
B=[0 0 1]’;
C=[1 0 0];
D=0;

%Save as a state-space object:
sys ss = ss(A,B,C,D);

%LQR:
Q = C’*C;
R = 1; % Tuning for LQR
K = lqr(A,B,Q,R); % Optimal gain matrix

%Open-Loop LQR transfer Function:
sys LQR=ss(A,B,K,D);

%Open-Loop LQG transfer Function using LTR for q=10^-7,10^-10,10^-13:
for i=7:3:13

q=10^(-i); % Tuning for LQG
L=lqr(A’,C’,B*B’,q)’; % Optimal observer matrix
sys LQG=ss(A-B*K-L*C,-L,-K,D)*ss(A,B,C,D); % Open-Loop state-space model
axis([-2,0.2,-1.2,1.2])
axis equal;
nyquist(sys LQG),hold on % Nyquist plot of the 3 LQG systems

end
nyquist(sys LQR,’--’),hold on % Nyquist plot of the LQR system
legend(’LQG q=1E-7’,’LQG q=1E-10’,’LQG q=1E-13’,’LQR’,’location’,’SouthEast’)

58 see chapter 3.10, Analysis and Synthesis of MIMO Control Systems
59 see 3.4.3 lqr()



54 3 System Analysis and Control Design

Output:

−2.5 −2 −1.5 −1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

LQG q=1E−7
LQG q=1E−10
LQG q=1E−13
LQR

Fig. 3.13. Nyquist plots of LQR and LQG

Explanation

The first few command lines define the parameters and the system. The vari-
able Q can be defined as C’*C, and for R we choose 1. The optimal gain
matrix K is the return value of lqr(A,B,Q,R)60. Using ss()61 we obtain
the corresponding open-loop LTI model. In a for-loop, we calculate the ob-
server gain matrix L for three different values of the tuning parameter q
(10−7, 10−10, 10−13). In each loop, we compute L, build the open-loop model
and display the Nyquist diagram. In conclusion we display the Nyquist plots
of the LQR model in Fig. 3.13 . We can observe that the LQG Nyquist plots
approach the LQR Nyquist plot for decreasing values of q.

60 see 3.4.3 lqr()
61 see 2.1.1 ss()



4

Simulink

4.1 Introduction

Simulink is a MATLAB toolbox for modeling, simulating, and analysing dy-
namic systems. It supports linear and nonlinear systems, modeled in contin-
uous time and sampled time.

Simulink enables you to pose a question about a system, model it, and see
what happens. With Simulink, you can easily build models from scratch.

For modeling, Simulink provides a graphical user interface (GUI) for
building models as block diagrams, using click-and-drag mouse operations.
Simulink includes a comprehensive block library of sinks, sources, linear and
nonlinear components, and connectors.

After you define a model, you can simulate it, using a choice of mathe-
matical integration methods, either from the Simulink menus or by entering
commands in the Command Window. Using scopes and other display blocks,
you can see the simulation results while the simulation is running. The simu-
lation results can be put in the MATLAB workspace for post-processing and
visualization.

4.2 Working with Simulink

4.2.1 Defining a New Model

To open a new model in MATLAB, click on the pulldown menu File → New
→ Model. A new window opens. You should now save the empty model in
the same directory as the M-File. That simplifies manipulating the model
from the M-File. MATLAB sets all settings for the simulation to a reasonable
value; we can leave them as they are. One exception must be made: We have
to set the ’Automatic solver parameter selection’ from warning to none. You
find this option in the model window in the pulldown menu Simulation →
Configurations Parameters → Diagnostics. Without this setting, a warning
will be displayed every time you simulate the model.



56 4 Simulink

4.2.2 Adding and Connecting Blocks

We can now drag new models into the blank space. The models are stored
in the Library Explorer which can be found in the pulldown menu View →
Library Browser1. We chose a Sine Wave2 input from the Library Browser
submenu Sources and drag it to the empty workspace. As a next step, we
drag an Integrator3 from the submenu Continuous to the workspace. The last
element we add is a gain element from Math Operations. By double-clicking
it, we open a window where we can define its gain. We set it to mult. Later
on, when running the simulation, the model will look up the variable mult in
the corresponding M-file.

To get the simulated data back into the MATLAB workspace we add two
To Workspace4 blocks from the submenu Sinks. By double-clicking it, we de-
fine the variable name of the output. Additionally, we change the Save format
to Array for easier manipulation of the output variables in the MATLAB
workspace after simulation.

Fig. 4.1. Block diagram in Simulink window

Now we connect the blocks in the order as shown in Fig. 4.1. You can
either drag an arrow from the source block to the target block or click on
1 The Library looks significantly different on Macs, the functional range however

stays the same
2 see 4.5.3 Sine Wave
3 see 4.6.2 Integrator
4 see 4.11.3 To Workspace



4.2 Working with Simulink 57

the source block and then ctrl-click on the target block. To get a branching,
ctrl-click the arrow at the desired point.

4.2.3 Input-Output

To get the simulation running, we write an M-file which will be saved in the
same directory as the MDL-file.

M-file

clear all,clc, close all
% Set gain factor
mult=0.5;
% Set simulation timespan
tsim=10;
% Simulating example.mdl
sim(’example’,tsim);
plot(tout,sinus,tout,sinus int,’--’);
xlabel(’Time [s]’);
ylabel(’Magnitude’);
legend(’sinus’,’sinus int’,’Location’,’SouthEast’)

Output:

0 1 2 3 4 5 6 7 8 9 10
!1

!0.5

0

0.5

1

1.5

2

Time [s]

M
ag

ni
tu

de

 

 

sinus
sinus_int

Fig. 4.2. Simulation Output



58 4 Simulink

Explanation

After the setting of the the gain factor mult and the time span tsim, we run the
simulation of example.mdl using sim(’example’,tsim)5. The vector tout
contains all time steps for which the simulation is being evaluated. This vector
is returned by default after every simulation. Its name can be changed in the
submenu Simulation → Configuration Parameters → Data Import/Export.

The returned vectors sinus and sinus int contain the simulated data.
More specifically; sinus int(i) holds the value of the signal at the corre-
sponding time stored in tout(i).

The plot of sinus and sinus int versus tout is depicted in Fig. 4.2

4.3 Tips and Tricks

• You can rotate blocks by pressing ctrl-R.
• Connecting blocks can be facilitated by clicking on the source block and

then ctrl-clicking the target block.
• You can get a branch by ctrl-clicking the arrow.
• Encapsulate big systems into smaller subsystems: The controller and the

plant belong in a Subsystem6 block for the sake of abstraction.
• Always make sure that you chose the right properties using the Gain7

block. The output differs significantly depending on element-wise or matrix
multiplication!

• Every arrow must end in a block. Unnecessary outputs must be connected
to the Terminator8 block.

• Don’t forget to change the Save Format of a To Workspace9 block to
Array.

• The initial value of an internal state can be set in the Integrator10 for
non-linear models and in the State-Space11 box for linearized systems.

• By double-clicking the signal arrow, you can define its name.
• If the length of the output vectors differs from tout, uncheck the box Limit

data points to last found in Simulation → Configurations Parameters →
Data Import/Export.

5 see 4.4 sim()
6 see 4.9.3 Subsystem
7 see 4.8.1 Gain
8 see 4.11.2 Terminator
9 see 4.11.3 To Workspace

10 see 4.6.2 Integrator
11 see 4.6.3 State-Space



4.5 Sources 59

4.4 sim()

Purpose

Simulates a dynamic system.

Syntax

sim(model,timespan)

Description

The sim() command executes a Simulink model, using all Configuration Pa-
rameters dialog box settings, including the options specified in the Data Im-
port/Export pane.

In the Configuration Parameters dialog box, there are various settings con-
cerning the values of a model’s parameters, such as solver type and simulation
start or stop time. In the Data Import/Export pane you can specify which
data is imported and exported to the MATLAB workspace.

4.5 Sources

4.5.1 Clock

Description

The Clock block outputs the current simulation time at each simulation step.
This block is useful for other blocks that need the simulation time.

1

4.5.2 Constant

Description

The Constant block generates a constant scalar, vector or matrix output.

Parameters

• Constant value: Specifies the ouput of the block. You can enter any MAT-
LAB expression in this field.



60 4 Simulink

4.5.3 Sine Wave

Description

The Sine Wave block provides a sinusoid. The output is determined by:

y = Amplitude · sin(frequency · time + phase) + bias

Parameters

• Amplitude: The amplitude of the signal. The default is 1.
• Bias: Constant value added to the sine to produce the output of this block.
• Frequency : The frequency, in radians/second. The default is 1 rad/s.
• Phase: The phase shift, in radians. The default is 0 radians.

4.5.4 Step

Description

The Step block provides a step between two definable levels at a specified
time.

Parameters

• Step time: The time, in seconds, when the output jumps from the Initial
value parameter to the Final value parameter. The default is 1 second.

• Initial value: The block output until the simulation time reaches the Step
time parameter. The default is 0.

• Final value: The block output when the simulation time reaches and ex-
ceeds the Step time parameter. The default is 1.

4.6 Continuous

4.6.1 Derivative

Description

The Derivative block approximates the derivative of its input. The initial
output for the block is zero.

du/dt



4.6 Continuous 61

1
s

4.6.2 Integrator

Description

The Integrator block outputs the integral of its input. The initial output
of the block can be defined as a parameter on the block dialog box or can
be imported them from an external signal. In the second case an additional
input port appears under the block input.

Parameters

• Initial condition source: If set to internal, gets the states’ initial condi-
tions from the Initial condition parameter. If set to external, it gets them
from an external block.

• Initial condition: The states’ initial conditions.

x’ = Ax+Bu
 y = Cx+Du

4.6.3 State-Space

Description

The State-Space block implements a system whose behaviour is defined by:

ẋ = Ax + Bu

y = Cx + Du

where x is the state vector, u is the input vector, and y is the output vector.

Parameters

• A,B,C,D : The matrix coefficients.
• Initial condition: The initial state vector.

1
s+1

4.6.4 Transfer Function

Description

The Transfer Function block models a linear system by a transfer function of
the Laplace-domain variable s. This block assumes that the transfer function
has the following form:

h(s) =
y(s)
u(s)

=
bmsm + bm−1s

m−1 + . . . + b2s
2 + b1s + b0

ansn + an−1sn−1 + . . . + a2s2 + a1s + b0

where u is the input vector and y is the output vector. Initial conditions are
preset to zero.



62 4 Simulink

Parameters

• Numerator coefficient : The row vector of numerator coefficients.
• Denominator coefficient : The row vector of denominator coefficients.

4.6.5 Transport Delay

Description

The Transport Delay block delays the input by a specified amount of time. It
can be used to simulate a time delay. At the start of the simulation, the block
outputs the Initial output parameter until the simulation time exceeds the
Time delay parameter. Then the block begins generating the delayed input.

Parameters

• Time delay : The amount of simulation time that the input signal is delayed
before being propagated to the output. The value must be nonnegative.

• Initial output : Specifies the output of the block until the simulation time
exceeds the Time delay parameter.

(s−1)
s(s+1)

4.6.6 Zero-Pole

Description

The Zero-Pole block models a system specified by the zeros, poles, and gain
of a Laplace-domain transfer function that defines the relationship between
the system’s input and its outputs. This block assumes the following form for
the transfer function:

h(s) = k
(s− z1)(s− z2) . . . (s− zm−1)(s− zm)
(s− p1)(s− p2) . . . (s− pn−1)(s− pn)

where zi represents the zeros, pi the poles, and k the gain of the transfer
function. The number of poles must be greater than or equal to the number
of zeros. If the poles and zeros are complex, they must be complex conjugate
pairs.

Parameters

• Zeros: The row vector of the zeros of the transfer function.
• Poles: The row vector of the poles of the transfer function.
• Poles: The gain of the transfer function.



4.8 Math Operations 63

4.7 Discontinuities

4.7.1 Saturation

Description

The Saturation block imposes upper and lower bounds on a signal. When
the input signal is within the range specified by the Lower limit and Upper
limit parameters, the input signal passes through unchanged. When the input
signal is outside of these bounds, the signal is clipped to the upper or lower
bound.

Parameters

• Upper limit : Specify the upper bound on the input signal. When the input
signal to the Saturation block is above this value, the output of the block
is clipped to this value.

• Lower limit : Specify the lower bound on the input signal. When the input
signal to the Saturation block is below this value, the output of the block
is clipped to this value.

1

4.8 Math Operations

4.8.1 Gain

Description

The Gain block multiplies the input by a constant value.

Parameters

• Gain: Specify the value by which to multiply the input. The gain may be
a scalar, vector, or matrix.

• Multiplication: Specify the multiplication mode:
Element-wise(K*u) – Each element of the input is multiplied by each
element of the gain. The block performs expansions, if necessary, so that
the input and gain have the same dimensions.
Matrix(K*u) – The input and gain are matrix multiplied with the input
as the second operand.
Matrix(u*K) – The input and gain are matrix multiplied with the input



64 4 Simulink

as the first operand.
Matrix(K*u)(u vector) – The input and gain are matrix multiplied with
the input as the second operand. The input and the output are required
to be vectors and their lengths are determined by the dimensions of the
gain.

eu

4.8.2 Math Function

Description

The Math Function block performs numerous common mathematical func-
tions. The block output is the result of the operation of the function, specified
by the Function parameter.

Parameters

• Function: Specify the mathematical function.

4.8.3 Product

Description

This block produces outputs using either element-wise or matrix multiplica-
tion, depending on the value of the Multiplication parameter. You specify the
operations with the Number of inputs parameter. Multiply(*) and divide(/)
characters indicate the operations to be performed on the inputs:

• If there are two or more inputs, then the number of characters must equal
the number of inputs. For example, ”*/*” requires three inputs. For this
example, if the Multiplication parameter is set to Element-wise, the block
divides the elements of the first input by the elements of the second input,
and then multiplies the result by the elements of the third input. In this
case, all nonscalar inputs to this block must have the same dimensions.
If, however, the Multiplication parameter is set to Matrix, the block output
is the matrix product of the inputs marked ”*” and the inverse of inputs
marked ”/”, with the order of operations following the entry in the Number
of inputs parameter. The dimensions of the inputs must be such that the
matrix product is defined.

• If only multiplication of inputs is required, then a numeric parameter value
equal to the number of inputs can be supplied instead of ”*” characters.



4.9 Ports and Subsystems 65

Parameters

• Number of inputs: Enter the number of inputs or a combination of ”*”
and ”/” symbols.

• Multiplication: Specify element-wise or matrix multiplication.

4.8.4 Sum

Description

The Sum block performs addition or subtraction on its inputs. You specify
the operations of the block with the List of signs parameter. Plus (+), minus
(–), and spacer (—) characters indicate the operations to be performed on the
inputs:

• If there are two or more inputs, then the number of ”+” and ”–” characters
must equal the number of inputs. For example, ”+ – +” requires three
inputs and configures the block to subtract the second (middle) input from
the first (top) input, and then add the third (bottom) input.

• A spacer character creates extra space between ports on the block’s icon.
• If only addition of all inputs is required, then a numeric parameter value

equal to the number of inputs can be supplied instead of ”+” characters.

Parameters

• Icon shape: Designate the icon shape of the block.
• List of signs: Enter as many plus (+) and minus (–) characters as there

are inputs. Addition is the default operation, so if you only want to add
the inputs, enter the number of input ports.

1

4.9 Ports and Subsystems

4.9.1 Inport

Description

Inport blocks are the links from outside a system into the system. Simulink
automatically assigns port numbers to Inport blocks.

Inport blocks in a subsystem represent inputs to the subsystem. A signal
arriving at an input port on a Subsystem block flows out of the associated
Inport block in that subsystem. The Inport block associated with an input



66 4 Simulink

port on a Subsystem block is the block whose Port number parameter matches
the relative position of the input port on the Subsystem block. For example,
the Inport block whose Port number parameter is 1 gets its signal from the
block connected to the topmost port on the Subsystem block. The Inport block
name appears in the Subsystem icon as a port label. To suppress display of
the label, select the Inport block and choose Hide Name from the Format
menu.

Inport blocks in a top-level system can be used to supply external inputs
from the workspace.

Parameters

• Port number : Specify the port number of the Inport block.

1

4.9.2 Outport

Description

Outport blocks are the links from a system to a destination outside the
system. Simulink automatically assigns port numbers to Outport blocks.

Outport blocks in a subsystem represent outputs from the subsystem. A
signal arriving at an Outport block in a subsystem flows out of the associated
output port on that Subsystem block. The Outport block associated with an
output port on a Subsystem block is the block whose Port number parameter
matches the relative position of the output port on the Subsystem block. For
example, the Outport block whose Port number parameter is 1 sends its signal
to the block connected to the topmost output port on the Subsystem block.
The Outport block name appears in the Subsystem icon as a port label. To
suppress display of the label, select the Outport block and choose Hide Name
from the Format menu.

Outport blocks in a top-level system can be used to supply outputs to the
workspace.

Parameters

• Port number : Specify the port number of the Inport block.



4.10 Signal Routing 67

In1 Out1
4.9.3 Subsystem

Description

A Subsystem block represents a subsystem of the system that contains it.
You can add blocks to the subsystem by opening the Subsystem block and
copying blocks into its window.

The number of input ports drawn on the Subsystem block’s icon corre-
sponds to the number of Inport blocks in the subsystem. Similarly, the num-
ber of output ports drawn on the block corresponds to the number of Outport
blocks in the subsystem.

4.10 Signal Routing

4.10.1 Demux

Description

The Demux block extracts the components of an input signal and outputs
the components as separate signals. The output signals are ordered from top
to bottom output port. The block accepts either vector signals or bus signals.
The Number of outputs parameter allows you to specify the number and,
optionally, the dimensionality of each output port. If you do not specify the
dimensionality of the outputs, the block determines the dimensionality of the
outputs for you.

The Demux block operates in either vector or bus selection mode, de-
pending on whether you selected the Bus selection mode parameter. The two
modes differ in the types of signals they accept. Vector mode accepts only
a vector-like signal, that is, either a scalar or a column or row vector. Bus
selection mode accepts only the output of a Mux block or another Demux
block.

Parameters

• Number of outputs: The number and dimensions of outputs.



68 4 Simulink

4.10.2 Mux

Description

The Mux block combines its inputs into a single vector output. An input
can be a scalar or vector signal. The elements of the vector output signal take
their order from the top to bottom, or left to right, input port signals. The
Mux block’s Number of Inputs parameter allows you to specify the number of
inputs.

Parameters

• Number of outputs: The number and dimensions of inputs.

4.11 Sinks

4.11.1 Scope

Description

The Scope block displays its input with respect to simulation time. All axes
have a common time range with independent y-axes. It easily lets you access
any kind of signal during the simulation by double-clicking the block.

4.11.2 Terminator

Description

The Terminator block can be used to cap blocks whose output ports are
not connected to other blocks. If you run a simulation with blocks having un-
connected output ports, Simulink issues warning messages. Using Terminator
blocks to cap those blocks avoids warning messages.



4.12 Example: Inverted Pendulum on a Cart 69

simout

4.11.3 To Workspace

Description

The To Workspace block writes its input to the workspace. The block writes
its output to an array or structure that has the name specified by the block’s
Variable name parameter. The Save format parameter determines the output
format. It is recommended to use the format array. Selecting this option
causes the To Workspace block to save the input as an N-dimensional array
where N is one more than the number of dimensions of the input signal.

The way samples are stored in the array depends on whether the input
signal is a scalar or vector or a matrix. If the input is a scalar or a vector,
each input sample is output as a row of the array. For example, suppose that
the name of the output array is simout. Then, simout(1,:) corresponds to
the first sample, simout(2,:) corresponds to the second sample, etc.

Parameters

• Variable name: The name of the array that holds the data.

4.12 Example: Inverted Pendulum on a Cart 12

The inverted pendulum described by its non-linear differential equations is
simulated in series with an LQG controller. The observer gain matrix L and the
optimal gain matrix K are built using the linearized state-space matrices. To
investigate the influence of plant inaccuracy on the robustness of the system,
the parameters of the linear state-space matrices, such as the length or the
weight, differ slightly from those of the nonlinear plant.

The differential equations are given by:

ẍ =
F + ml(θ̇2 sin θ − θ̈ cos θ)

M + m

θ̈ =
g sin θ − ẍ cos θ

l

The differential equations will be directly implemented in Simulink.
12 for a sketch of the plant, see page 9



70 4 Simulink

M-file

clc, clear all, close all

% Parameters:
M=1; % Weight of the cart [kg]
m=2; % Weight of the upper mass [kg]
l= 0.5; % Length of the pendulum [m]
g=9.81; % Gravitational constant [m/s^2]
tsim=10; % Simulation time [s]

% State-Space model:
A=[0 1 0 0; 58.86 0 0 0; 0 0 0 1; -19.62 0 0 0];
B=[0 -2 0 1]’;
C=[1 0 0 0; 0 0 1 0];
D=[0 0]’;

% LQG:
K=lqr(A,B,C’*C,1E-4); % Optimal gain matrix
L=lqr(A’,C’,B*B’,1E-5*eye(2))’; % Optimal observer matrix

% Set initial value of pendulum angle theta
theta 0=0.2;

% Simulate for different uncertainties
for i=1:0.1:1.3

unc=i;
M real=M*unc;
m real=m*unc;
l real=l*unc;
% Simulation of LQG pend.mdl
sim(’LQG pend’,5)
% Linear color interpolation (grayscales)
figure(1)
plot(tout,theta out,’Color’,[(i-1)/0.35,(i-1)/0.35,(i-1)/0.35]),hold on;
figure(2)
plot(tout,xout,’Color’,[(i-1)/0.35,(i-1)/0.35,(i-1)/0.35]),hold on;

end
figure(1)
xlabel(’time [s]’);
ylabel(’theta [rad]’);
legend(’U=0%’,’U=10%’,’U=20%’,’U=30%’)
figure(2)
xlabel(’time [s]’);
ylabel(’x cart [m]’);
legend(’U=0%’,’U=10%’,’U=20%’,’U=30%’)



4.12 Example: Inverted Pendulum on a Cart 71

MDL-files

u
y

r!y

To Workspace3

xout

To Workspace

theta_out

Plant

F_in
theta_out

x_cart_out

Controller

error u_cont

Constant

0

Fig. 4.3. Plant and Controller in Series

u_cont
1

x_obsv

1
s

A!BK!LC

K*u

!L

K*u

!K

K*u
error
1

Fig. 4.4. LQG Controller



72 4 Simulink

x_cart_out
2

theta_out
1

x_dot_dot*cos theta

x_cart_dot

1
s

x_cart

1
s

theta_dot_dot* cos theta

theta_dot

1
s

theta

1
s

sin theta * (theta_dot)^2

sin theta

sin

m*l

!K!

g* sin theta

g

cos theta

cos

Subtract1 Subtract

u2

1/l

!K!

1/(m+M)

!K!

F_in
1

Fig. 4.5. Nonlinear Inverted Pendulum

Output

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

time [s]

th
et

a 
[ra

d]

 

 
U=0%
U=10%
U=20%
U=30%

Fig. 4.6. Plot of theta versus time



4.12 Example: Inverted Pendulum on a Cart 73

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

time [s]

x  ca
rt 

[m
]

 

 
U=0%
U=10%
U=20%
U=30%

Fig. 4.7. Plot of the position of the cart versus time

Explanation

After creating the new model LQG pend.mdl, we add two Subsystem13 blocks.
Later on, we will implement the controller and the plant inside them. Because
we know that our plant has two outputs, we open the second subsystem and
add another Outport14 block.

The Top-Down approach simplifies the building of complex systems such
that we can attend to each subsystem one at a time. In the main mdl-file, we
add two To Workspace15 blocks the export of the output variables theta out
and xout. We change the variable name by double-clicking the blocks. Using
a Mux 16 block, we combine the output for feedback.

After opening the controller subsystem, we add the Gain17, Sum18 and
Integrator19 blocks. By double-clicking the Integrator, we can set an initial
value. We leave it at zero. The parameters for the Gain blocks, however,
13 see 4.9.3 Subsystem
14 see 4.9.2 Outport
15 see 4.11.3 To Workspace
16 see 4.10.2 Mux
17 see 4.8.1 Gain
18 see 4.8.4 Sum
19 see 4.6.2 Integrator



74 4 Simulink

must be changed to Matrix-multiplication. Additionally, we set the gain to the
corresponding variables in the M-file. The feedback arrow will be connected
to the Sum block. For convenience, we change the names of all blocks. Always
keep in mind that without proper documentation, you won’t understand what
you built after a few days.

Now, we are getting to the most difficult task in modeling a system in
Simulink, the nonlinear model. A good start is to add all four states by adding
Integrator blocks. To keep overview over the model, we change the names
of the Integrators to the name of their respective output variables. The best
thing to do now is to work at one differential equation at a time. Each equation
should be formed in such a way that the highest derivative is on the left-hand
side of the equation. Now, we can work our way inside-out the right-hand
side of the equation: We start in the brackets, then add the blocks to build
the fraction and so on. In the end, we connect the construct (containing the
right hand side of the equation) to the input of the integrator of the highest
derivative of the equation. After connecting all blocks, no empty output should
occur.

The resulting block diagram of the overall system is depicted in Fig 4.3,
the controller in Fig. 4.4 and the nonlinear system in Fig. 4.5.

For now, we are done working on the nonlinear subsystem, so we can start
working on the M-file. We define all the variables we used while building our
mdl-file. During the simulation, Simulink can access the MATLAB workspace
to get the required variables. In the mdl-file, we utilize variables with the
appendix real to simulate the differences between the ’real’ nonlinear model
with the linearized controller. We also set the initial value of the pendulum’s
angle theta by defining the variable theta 0. We have to go back to our
model, more specifically, to the Integrator theta in the nonlinear subsystem,
and set the initial value to theta 0. We leave the initial state in the controller
at zero. In reality, the initial states of the plant are never equal to those in
the controller.

Finally, we come to the point of simulating the mdl-file. We call the func-
tion sim(LQG pend,5)20 to simulate the file LQG pend.mdl for 5 seconds. We
use a for-loop to investigate the effect of increasing model imprecisions (unc)
on the performance of the system. As the resulting depicted in Fig. 4.7 shows,
a higher overshoot results from these increased imprecisions.

20 see 4.4 sim()


	1 Introduction
	1.1 Preface
	1.1.1 Objective
	1.1.2 Prerequisites
	1.1.3 Structure

	1.2 Tips and Tricks
	1.3 Plotting
	1.3.1 plot()
	1.3.2 logspace()


	2 System Definition
	2.1 System Representation
	2.1.1 ss()
	2.1.2 tf()
	2.1.3 zpk()
	2.1.4 frd()
	2.1.5 Example: Inverted Pendulum on a Cart
	2.1.6 Example: Deriving a nominal model using frd()

	2.2 System Interconnections
	2.2.1 series()
	2.2.2 parallel()
	2.2.3 feedback()
	2.2.4 Example: Connecting SISO systems


	3 System Analysis and Control Design
	3.1 Controllability and Observability
	3.1.1 obsv()
	3.1.2 ctrb()
	3.1.3 rank()
	3.1.4 Example: Inverted Pendulum on a Cart

	3.2 System Properties
	3.2.1 eig()
	3.2.2 svd()
	3.2.3 sigma()
	3.2.4 pole()
	3.2.5 zero()
	3.2.6 pzmap()
	3.2.7 evalfr()
	3.2.8 Example: Levitating Sphere
	3.2.9 Example: Geostationary Satellite

	3.3 System Response
	3.3.1 step()
	3.3.2 impulse()
	3.3.3 initial()
	3.3.4 bode()
	3.3.5 margin()
	3.3.6 dcgain()
	3.3.7 nyquist()
	3.3.8 Example: Air-Dryer
	3.3.9 Example: Geostationary Satellite

	3.4 Control Design
	3.4.1 rlocus()
	3.4.2 fminsearch()
	3.4.3 lqr()
	3.4.4 Example: Air-Dryer
	3.4.5 Example: Levitating Sphere


	4 Simulink
	4.1 Introduction
	4.2 Working with Simulink
	4.2.1 Defining a New Model
	4.2.2 Adding and Connecting Blocks
	4.2.3 Input-Output

	4.3 Tips and Tricks
	4.4 sim()
	4.5 Sources
	4.5.1 Clock
	4.5.2 Constant
	4.5.3 Sine Wave
	4.5.4 Step

	4.6 Continuous
	4.6.1 Derivative
	4.6.2 Integrator
	4.6.3 State-Space
	4.6.4 Transfer Function
	4.6.5 Transport Delay
	4.6.6 Zero-Pole

	4.7 Discontinuities
	4.7.1 Saturation

	4.8 Math Operations
	4.8.1 Gain
	4.8.2 Math Function
	4.8.3 Product
	4.8.4 Sum

	4.9 Ports and Subsystems
	4.9.1 Inport
	4.9.2 Outport
	4.9.3 Subsystem

	4.10 Signal Routing
	4.10.1 Demux
	4.10.2 Mux

	4.11 Sinks
	4.11.1 Scope
	4.11.2 Terminator
	4.11.3 To Workspace

	4.12 Example: Inverted Pendulum on a Cart


