

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

151-0593-00L

Schedule Embedded Control Systems (Fall 2023)

Dr. M. Schmid Daners Prof. J. Freudenberg

Le	ctures Week	1 (8 to 10 a.m.) ML H 41.1	Lab	in Room ML J 44.0 - 44.1	1	0 a.m.	11	12 a	m.	1 p.m.	2	3		4 5	p.m.
No.	Date	Торіс	No.	Торіс											
1	2023-09-11	Course introduction. Start on A/D conversion, sampling and aliasing; simple anti- aliasing filter design	1	Familiarization and Digital I/O. Reading in S32K144 Reference Manual, introduction to hardware (oscilloscope, signal generator, etc.)		Introduction In-Lab Pre-Lab Pre-Lab			id 2 p.m.	Pre-Lab			In-Lab		
2	2023-09-12	Finish A/D conversion, sampling and aliasing; simple anti-aliasing filter design; introduction to Matlab and Simulink; demonstrate Simulink by doing "Problem se 1" filter design.	t 1	Continue with Lab 1					ap 12 a.m. and	ชั 			Post-Lab		
3	2023-09-13	Introduction to Stateflow, in particular, demonstrate problem set 2, building a Stateflow quadrature decode model. Introduction to DC motors; derive steady- state motor equations. Present lecture material on optical encoders, quadrature decoding, over/underflow and typecasting.	2	Quadrature Decoding using the FlexTimer Module					al between	In-Lab				Post-Lab	
4	2023-09-14	Discuss motor control (speed control, torque control, power amplifiers); Pulse width modulation; virtual worlds, wall "chatter" and the virtual wall.	3	Analog-To-Digital Conversion					eak individual		In-Lab			Post-Lab	
5	2023-09-15	Dynamic systems and transient specifications (review); develop dynamic motor model block diagram and implement in Simulink (domonstrate problem set 3). Develop motor frequency response and demonstrate input PWM attenuation.	4	Pulse Width Modulation and Simple Virtual Worlds			Pre-L	ab	Lunch Br		In	I-Lab		Post-Lab	

Le	ctures Week	2 (8 to 10 a.m.) HG E 23	Lab	in Room ML J 44.0 - 44.1	1	10 a.m.	11	12 a.m.		1 p.m.	2	3	4	5	p.m
No.	Date	Торіс	No.	Торіс											
6	2023-09-18	Develop Stateflow model of the virtual wall (demonstrate problem set 5). Develop virtual spring-mass system dynamics (harmonic oscillator). Introduce Euler Integration and pseudo-code for the spring-mass system.	5	Interrupts, Timing, and Frequency Analysis of PWM Signals			Pr	e-Lab	d 2 p.m.		In-Lab)		Post-Lab	
7	2023-09-19	Introduction to z-transforms and numerical instability. Develop the virtual spring- mass-damper (calculate how much damping is required to create a discrete harmonic oscillator using Forward Euler). Introduce state-space notation. Discuss other numerical integration methods; discuss how Matlab does numerical integration.	6	Virtual Worlds with Dynamics			Pr	e-Lab	12 a.m. an		In-Lab)		Post-Lab	
8	2023-09-20	Software architecture, real-time operating systems and scheduling algorithms. Rapid prototyping and automatic code generation.	7	Introduction to Autocode Generation			Pre-, Ir	n- & Post-Lab	al between				Mathwork	(ML F 39)	
9		Software architecture; presentation of MathWorks on Autocode generation with SIMULINK	7	Continue with Lab 7					eak individu	Pre-, In- 8	Post-Lab				
10	2023-09-22	Introduction to CAN networks.	8	Controller Area Network			Pr	e-Lab	Lunch Br		In-Lab)		Post-Lab	

IMPORTANT: You must attend 8 lab sessions and hand in all 8 assignments (pre-, in- and post-lab) to receive credit for the course. Pre-labs are due at the start of the In-labs, Post-labs are due at 5 p.m.