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Final Exam – Recursive Estimation

Problem 1 20 Points

Consider the joint probability density function (PDF)

f(x, y) = x + 2y + 2xy

for the continuous random variables x and y, where

x ∈ X = [0, 1], and y ∈ Y = [0, a].

a) Determine a > 0 such that f(x, y) is a valid PDF.

b) Compute the probability that y ≤ 1/3 given x = 1/2, i.e. calculate Pr(y ≤ 1/3|x = 1/2).

c) Are x and y independent? Provide reasons for your answer.

d) Compute the minimum mean squared error estimate of x, defined by

x̂MMSE := arg min
x̂∈X

E
x
[(x − x̂)2].
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Example Solution 1

a) In order for f(x, y) to be a valid PDF, we require that
∫

X

∫

Y

f(x, y) dy dx = 1.

We find

∫

Y

f(x, y) dy =

a∫

0

x + 2y + 2xy dy =
[
xy + y2 + xy2

]a
0

= ax + a2 + a2x

and
1∫

0

ax + a2 + a2x dx =

[
ax2

2
+ a2x +

a2x2

2

]1

0

=
3
2
a2 +

1
2
a.

Solving
3
2
a2 +

1
2
a = 1

for a, we find the two solutions

a+ = −
1
6

+
5
6

and a− = −
1
6
−

5
6
.

Since a > 0, we find a = a+ = 2/3. Note that another requirement for a valid PDF is
f(x, y) ≥ 0 for all x ∈ X , y ∈ Y . This holds for the given PDF and the sets X and Y .

b) We compute the probability Pr(y ≤ 1/3|x = 1/2) with

Pr(y ≤ 1/3|x = 1/2) =

1
3∫

−∞

f(y|x = 1/2) dy.

The conditional PDF is

f(y|x = 1/2) =
f(x = 1/2, y)
f(x = 1/2)

.

The marginal PDF of x is

f(x) =

2
3∫

0

f(x, y) dy =
[
xy + y2 + xy2

] 2
3

0
=

1
9
(10x + 4).

For the given value of x, f(x = 1/2) = 1. Therefore,

1
3∫

−∞

f(y|x = 1/2) dy =

1
3∫

0

1
2 + 2y + y

1
dy =

[
1
2
y +

3
2
y2

] 1
3

0

=
1
3

= Pr(y ≤ 1/3|x = 1/2).

c) The random variables are not independent since f(x, y) = f(x)f(y) does not hold for all
x ∈ X , y ∈ Y . We show this by finding a counter-example. First, we find

f(y) =

1∫

0

f(x, y) dx =

[
1
2
x2 + 2xy + yx2

]1

0

= 3y +
1
2
.



Final Exam – Recursive Estimation

Then, for x = 0 and y = 1/2 we find

f(x = 0) ∙ f(y = 1/2) =
4
9
∙ 2 6= f(x = 0, y = 1/2) = 1.

d) In the following, we show that the MMSE estimate is equal to the expected value:
x̂MMSE = E[x]. First, we expand the function to be minimized:

E[(x − x̂)2] = E[x2 − 2xx̂ + x̂2] = E[x2] − 2x̂E[x] + x̂2.

The derivative with respect to the scalar estimate x̂ is then

d

dx̂

(
E[x2] − 2x̂E[x] + x̂2

)
= −2E[x] + 2x̂.

Solving for the x̂ where the derivative is zero

0 = −2E[x] + 2x̂

yields the result
x̂ = E[x].

The second derivative
d2

dx̂2

(
E[x2] − 2x̂E[x] + x̂2

)
= 2

is positive, which shows that E[x] is a minimum.

Therefore, we find the solution:

x̂MMSE = E[x] =

1∫

0

xf(x) dx =
1
9

1∫

0

10x2+4x dx =
1
9

[
10
3

x3 + 2x2

]1

0

=
1
9

(
10
3

+ 2

)

=
16
27

.
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Problem 2 20 Points

A state machine consists of four discrete states x(k) ∈ {1, 2, 3, 4}, where k is the discrete-time
index. The discrete-time state dynamics of the state machine are given by the following diagram:

x = 1 x = 3x = 2

v = 1 v = 1 v = 1 v = 1

v = 0v = 0v = 0v = 0

x = 4

The diagram describes how the state x(k) evolves depending on the previous state x(k−1) and
the noise signal v(k−1), where v(k−1) can take the values 0 and 1. For clarity, the time indices
are omitted in the diagram. The arrows indicate the transitions from x(k−1) to x(k) depending
on the noise signal: For example, if x(k−1) = 2 and v(k−1) = 1, then x(k) = 3, and if x(k−1) = 1
and v(k−1) = 0, then x(k) = 1. The noise v(k−1) takes the value 1 with probability 0.3 for all k,
i.e. fv(k−1)(1) = 0.3 for all k.

At each time step, the measurement z(k) provides information about whether the state is in
the left half of the state machine (x(k) = 1 or x(k) = 2) or the right half of the state machine
(x(k) = 3 or x(k) = 4). The measurement can take the values 0 and 1, and the probability of
measuring 1 given the state x(k) is given by

fz(k)|x(k)(1|x(k)) =

{
0.9 if x(k) = 3 or x(k) = 4,

0.2 otherwise.

a) Prior update: Assume that all values of x(0) are equally likely. Compute the probability
density function (PDF) f(x(1)).

b) Posterior update: The conditional PDF f(x(5)|z(1 :4)) is given as follows:

i 1 2 3 4
fx(5)|z(1:4)(i|z(1 :4)) 0.1 0.3 0.4 0.2

You now obtain the measurement z(5) = 0. Compute the conditional PDF f(x(5)|z(1 :5)).
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Example Solution 2

a) The problem states that at k = 0, all states are equally likely, i.e. f(x(0)) = 1/4 for all
x(0). The conditional PDF f(x(1)|x(0)) can be derived from the diagram and f(v(k−1))
to be the following:

x(1) 1 2 3 4
x(0)

1 0.7 0.3 0 0
2 0.7 0 0.3 0
3 0 0.7 0 0.3
4 0 0 0.7 0.3

By the total probability theorem, we can then compute the PDF

f(x(1)) =
4∑

i=1

f(x(1)|x(0) = i)f(x(0) = i)

f(x(1)) =
1
4

4∑

i=1

f(x(1)|x(0) = i)

which results in the following values:

i 1 2 3 4

f(x(1) = i) 7
20

1
4

1
4

3
20

b) By Bayes’ rule,

f(x(5)|z(1 :5)) =
f(z(5)|x(5), z(1 :4))f(x(5)|z(1 :4))

f(z(5)|z(1 :4))
. (1)

Note that f(z(5)|x(5), z(1 : 4)) = f(z(5)|x(5)) because the current observation depends
only on the current state. Furthermore, since the measurement only takes the values 0
and 1

f(z(5) = 0|x(5)) = 1 − f(z(5) = 1|x(5)) =

{
0.8 if x(5) = 1 or x(5) = 2

0.1 if x(5) = 3 or x(5) = 4 .

Using the given distribution f(x(5)|z(1 :4)), the numerator in (1) can be evaluated to

f(z(5) = 0|x(5))f(x(5)|z(1 :4)) =






0.08 for x(5) = 1

0.24 for x(5) = 2

0.04 for x(5) = 3

0.02 for x(5) = 4

and the denominator is computed using the Total Probability Theorem:

f(z(5) = 0|z(1 :4)) =
4∑

x(5)=1

f(z(5) = 0|x(5))f(x(5)|z(1 :4))

= 0.08 + 0.24 + 0.04 + 0.02

= 0.38 .



Final Exam – Recursive Estimation

The resulting PDF is

f(x(5)|z(1 :5)) =






4
19 for x(5) = 1
12
19 for x(5) = 2
2
19 for x(5) = 3
1
19 for x(5) = 4 .
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Problem 3 20 Points

Consider the following discrete-time system:

x(k) =

[
3 1
0 0.5

]

︸ ︷︷ ︸
A

x(k−1) +

[
1
0

]

︸︷︷︸
B

u(k−1) + v(k−1), v(k−1) ∼ N
(
0,

[
2 0
0 2

]

︸ ︷︷ ︸
Q

)
(2)

z(k) =
[
0.5 0.5

]

︸ ︷︷ ︸
H

x(k) + w(k), w(k) ∼ N
(
0, 0.5︸︷︷︸

R

)
(3)

where N (0, Γ) denotes a zero-mean Gaussian distribution with variance Γ, and k = 1, 2, . . . is
the discrete-time index.

a) Does the Discrete Algebraic Riccati Equation (DARE)

P∞ = AP∞AT + Q − AP∞HT
(
HP∞HT + R

)−1
HP∞AT

have a unique positive semidefinite solution P∞ for the given system? Justify your answer.

b) Consider the estimation error e(k) := x(k) − x̂(k) of the steady-state Kalman Filter given
by

x̂(k) =
(
I − K∞H

)
A x̂(k−1) +

(
I − K∞H

)
B u(k−1) + K∞ z(k) (4)

with

K∞ = P∞HT (HP∞HT + R)−1 .

Are the error dynamics stable, i.e. is lim
k→∞

E[e(k)] = 0 for arbitrary e(0)? Justify your
answer.

c) Now consider the feedback law

u(k−1) =
[
−1 0

]
x̂(k−1). (5)

Is the closed-loop system given by the system (2),(3); the estimator (4); and the feedback
law (5) stable; i.e. given ξ(k) := (x(k), e(k)), is lim

k→∞
E[ξ(k)] = 0 for arbitrary ξ(0)? Justify

your answer.

d) Let the initial state x(0) have a Gaussian distribution with mean x0 and variance P0:
x(0) ∼ N (x0, P0). You initialize the steady-state Kalman Filter given by (4) with the
given mean x0. After the first update with u(0) and z(1), the steady-state Kalman Filter
state estimate is x̂(1) = (1.2087, 0.5).

You have also implemented a time-varying Kalman Filter for the system (2),(3). You
initialize the time-varying Kalman Filter with the given mean x0 and variance P0. Using
the same u(0) and z(1) as with the steady-state Kalman Filter, the first posterior state
estimate of the time-varying Kalman Filter is x̂m(1) = (1.4727, 0.1).

Is one of the two estimates equal to the true conditional expected value E [x(1)|z(1)]? If
this is not the case, which of the two is closer to E [x(1)|z(1)] (measured by the Euclidean
norm)? Justify your answer.
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Example Solution 3

a) A unique positive semidefinite solution P∞ exists if and only if (A, H) is detectable and
(A, G) is stabilizable, where G is any matrix such that Q = GGT .

We begin by checking the pair (A, H) for observability, a sufficient condition for detectabil-
ity. The observability matrix is

[
H

HA

]

=

[
0.5 0.5
1.5 0.75

]

which is full rank. The pair (A, H) is therefore observable and thereby detectable.

Because the process noise variance matrix is positive definite, (A, G) is stabilizable and the
two conditions for a unique positive-semidefinite solution to the Discrete Algebraic Riccati
Equation (DARE) are satisfied. A unique positive-semidefinite steady-state prior variance
P∞ therefore exists.

b) Yes, the error dynamics are stable. This is guaranteed by the existence of a unique positive-
semidefinite solution to the DARE, which was shown in part a).

c) Due to the separation principle, the closed-loop poles are given by the estimator and con-
troller poles. The estimator is stable, as shown above, therefore its poles have magnitude
smaller than one. The feedback law results in the closed-loop state dynamics

A + BF =

[
3 1
0 0.5

]

+

[
1
0

]
[
−1 0

]

=

[
2 1
0 0.5

]

.

The poles are at 2 and 0.5. The pole at 2 has a magnitude greater than one, hence the
closed-loop state dynamics are unstable. The closed-loop system is therefore unstable.

d) The time-varying Kalman Filter is the exact solution to the Bayesian tracking problem for
linear systems with Gaussian distributions. Because this is the case for the given problem
data, E [x(1)|z(1)] = x̂m(1) = (1.4727, 0.1).
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Problem 4 30 Points

Recall the basic particle filtering algorithm we derived in class:

0. Initialization : Draw N samples from the probability density function (PDF) of the initial
state, fx(0)(x(0)).

Obtain xn
m(0), n = 1, 2, . . . , N . Set k = 1.

1. Step 1 : Simulate the N particles via the process model.

Obtain the prior particles xn
p (k).

2. Step 2 : Given the measurement z(k), scale each prior particle by its measurement likeli-
hood, and obtain a corresponding normalized weight βn for each particle.

Resample to get the posterior particles xn
m(k) that have equal weights.

Set k to (k + 1). Go to Step 1.

Consider the discrete-time process and measurement model

x(k) = −2u(k−1)x2(k−1) + v(k−1)

z1(k) = 2x(k) + w1(k)

z2(k) = 3x(k) + 2w2(k)

where k = 1, 2, . . . is the discrete-time index; x(k) is the scalar system state; u(k−1) is a known
control input; v(k−1) is process noise with the PDF

fv(k)(v(k)) =

{
av2(k) v(k) ∈ [−2, 2]

0 otherwise,
for all k

with normalization constant a; z1(k) and z2(k) are measurements; and w1(k) and w2(k) are
measurement noise with the triangular PDFs

fw1(k)(w1(k)) =






1
3 + 1

9w1(k) w1(k) ∈ [−3, 0)
1
3 − 1

9w1(k) w1(k) ∈ [0, 3]

0 otherwise,

for all k

fw2(k)(w2(k)) =






1
2 + 1

4w2(k) w2(k) ∈ [−2, 0)
1
2 − 1

4w2(k) w2(k) ∈ [0, 2]

0 otherwise,

for all k.

The distribution of the initial state x(0) is given by the PDF

x(0)

fx(0)(x(0))

2/9

1/3

−3 10 2
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The random variables {v(∙)}, {w1(∙)}, {w2(∙)}, and x(0) are mutually independent.

a) Initialization : Initialize a particle filter with N = 2 particles. For this calculation, you have
access to a random number generator that generates independent random samples r from
a uniform distribution on the interval [0, 1]. For the calculation of x1

m(0), you obtained
the sample r1 = 11/12. For the calculation of x2

m(0), you obtained the sample r2 = 1/4.

b) Step 1 : At time k = 4, the posterior particles are x1
m(4) = 1/2 and x2

m(4) = −1. The
control input is u(4) = 2. Calculate the prior particles x1

p(5) and x2
p(5). You have access

to the same random number generator as in part a). For the calculation of x1
p(5), you

obtained the sample r1 = 7/16. For the calculation of x2
p(5), you obtained the sample

r2 = 9/16.

c) Step 2 : At time k = 7, the prior particles are x1
p(7) = −1/3 and x2

p(7) = −1. The
measurements are z1(7) = −1 and z2(7) = −3.

1. For the two particles, calculate the measurement likelihoods

fz1(7),z2(7)|x(7)(−1,−3|x1
p(7)) and fz1(7),z2(7)|x(7)(−1,−3|x2

p(7)).

2. Calculate the normalized particle weights β1 for x1
p(7) and β2 for x2

p(7).

3. Calculate the a posteriori particles x1
m(7) and x2

m(7). Do not apply any roughening.
You have access to the same random number generator as in part a). For the calcu-
lation of x1

m(7), you obtained the sample r1 = 2/3. For the calculation of x2
m(7), you

obtained the sample r2 = 1/3.
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Example Solution 4

a) We sample the given state distribution fx(0)(x(0)) using the algorithm discussed in class
and the given random numbers. The cumulative distribution function (CDF) of x(0) is

Fx(0)(ξ) =

ξ∫

−∞

fx(0)(x(0)) dx(0) =






0 ξ < −3
2
9(ξ + 3) ξ ∈ [−3, 0)
2
3 ξ ∈ [0, 1)
2
3 + 1

3(ξ − 1) ξ ∈ [1, 2)

1 ξ ≥ 2.

We now solve Fx(0)(x
1
m(0)) = r1 for x1

m(0). Since r1 = 11/12 > Fx(0)(1) = 2/3 and
r1 = 11/12 < 1, we find that x1

m(0) ∈ [1, 2]. Therefore, we solve

11
12

=
2
3

+
1
3

(
x1

m(0) − 1
)

for x1
m(0) and find x1

m(0) = 7/4. Analogously, we obtain x2
m(0) = −15/8 from r2 = 1/4.

b) We use the process model to simulate the two particles with random samples from the
process noise distribution fv(k)(v(k)). First, we calculate the normalization constant a of
the process noise distribution by making sure that the integral of the PDF evaluates to
one:

1 =

∞∫

−∞

fv(k)(v(k)) dv(k) =

2∫

−2

av2(k) dv(k) =

[
av3(k)

3

]2

−2

= a
16
3

.

It follows that a = 3/16. We can then proceed to sampling fv(k)(v(k)) analogously to
Part a). The CDF of v(k) follows straightforwardly from the above calculation of the
constant a and is

Fv(k)(η) =






0 η < −2
1
2 + η3

16 η ∈ [−2, 2]

1 η > 2.

Solving

r1 = Fv(k)(v
1(4)) ⇔

7
16

=
1
2

+
(v1(4))3

16

for v1(4), we find v1(4) = −1. Analogously, we obtain v2(4) = 1 from r2 = 9/16. Then,
we apply the process model with u(4) = 2 and find

x1
p(5) = −2u(4)(x1

m(4))2 + v1(4) = −2 ∙ 2 ∙

(
1
2

)2

− 1 = −2

x2
p(5) = −2u(4)(x2

m(4))2 + v2(4) = −2 ∙ 2 ∙ (−1)2 + 1 = −3.

c) 1. We first calculate the measurement likelihood for z1(7) = −1 and x1
p(7) = −1/3. By

change of variables, we find

fz1(7)|x(7)(z1(7)|xp(7)) = fw1(7) (z1(7) − 2xp(7)) .

Therefore,

fz1(7)|x(7)(−1|x1
p(7) = −1/3) = fw1(7) (−1 + 2 ∙ 1/3) = fw1(7)(−1/3) =

1
3
−

1
9
∙
1
3

=
8
27

.
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Analogously for the second particle x2
p(7) = −1, we find

fz1(7)|x(7)(−1|x2
p(7)) =

2
9
.

Second, we calculate the measurement likelihood for z2(7) = −3 and x1
p(7) = −1/3.

In order to apply the change of variables formula, we first define

z2(7) = g(w2(7), xp(7)) := 3xp(7) + 2w2(7)

w2(7) = h(z2(7), xp(7)) :=
1
2
(z2(7) − 3xp(7)).

Then, we adapt the change of variables formula to conditional PDFs and find

fz2(7)|x(7)(z2(7)|xp(7)) =
fw2(7) (h(z2(7), xp(7))|xp(7))
∣
∣
∣ dg
dw2(7) (h(z2(7), xp(7)), xp(7))

∣
∣
∣
.

The derivative is straightforward:

dg

dw2(7)
(h(z2(7), xp(7)), xp(7)) = 2, for all z2(7), xp(7).

Therefore, we find

fz2(7)|x(7)(z2(7)|xp(7)) =
fw2(7)(h(z2(7), xp(7))|xp(7))
∣
∣
∣ dg
dw2(7) (h(z2(7), xp(7)), xp(7))

∣
∣
∣

=
1
2
fw2(7)

(
1
2
(z2(7) − 3xp(7))

)

where we used the fact that w2(7) and x(7) are independent. Finally, we obtain

fz2(7)|x(7)(−3|x1
p(7) = −1/3) =

1
2
fw2(7)

(
1
2

(

−3 + 3 ∙
1
3

))

=
1
2
fw2(7)(−1) =

1
2

(
1
2
−

1
4

)

=
1
2
∙
1
4

=
1
8
.

Analogously, for the second particle x2
p(7) = −1, we find

fz2(7)|x(7)(−3|x2
p(7)) =

1
4
.

From the above change of variables and due to the independence of w1(7) and w2(7), it
follows that z1(7) and z2(7) are conditionally independent when conditioned on x(7).
The calculation of the two measurement likelihoods is then straightforward:

fz1(7),z2(7)|x(7)(−1,−3|x1
p(7)) = fz1(7)|x(7)(−1|x1

p(7))fz2(7)|x(7)(−3|x1
p(7)) =

8
27

∙
1
8

=
1
27

fz1(7),z2(7)|x(7)(−1,−3|x2
p(7)) = fz1(7)|x(7)(−1|x2

p(7))fz2(7)|x(7)(−3|x2
p(7)) =

2
9
∙
1
4

=
1
18

.

2. The sum of the measurement likelihoods is 1/27 + 1/18 = 5/54 =: α−1. Finally, we
obtain the particle weights

β1 = αfz1(7),z2(7)|x(7)(−1,−3|x1
p(7)) =

54
5

∙
1
27

=
2
5

β2 = αfz1(7),z2(7)|x(7)(−1,−3|x2
p(7)) =

54
5

∙
1
18

=
3
5
.
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3. We resample the prior particles based on the particle weights β1, β2 using the proce-
dure presented in class. Since β1 < r1 = 2/3, the second particle x2

p(7) is sampled:

x1
m(7) = x2

p(7) = −1.

Analogously, since β1 > r2 = 1/3, the first particle x1
p(7) is sampled:

x2
m(7) = x1

p(7) = −
1
3
.
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Problem 5 15 Points

Consider the measurement vector z(k) at time k of a system with state vector x(k), where the
(known) input vector u(k−1) also appears linearly in the measurement:

z(k) = Hx(k) + Gu(k−1) + w(k).

The measurement noise w(k) is normally distributed with zero mean and variance R:
w(k) ∼ N (0, R). Furthermore, the measurement noise w(k) is independent of the system
state x(k).

In this problem, you will adapt the Kalman Filter measurement update equations to accommo-
date the input term Gu(k−1).

a) Determine fz(k)|x(k)(z(k)|x(k)) as a function of fw(k)(∙).

b) Compute the conditional mean E[x(k)|z(k)] and variance Var[x(k)|z(k)] given that
x(k) ∼ N (μ, Σ).

Hint: One can show that fx(k)|z(k)(x(k)|z(k)) is a normal distribution, which you may
assume for the solution of this problem.
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Example Solution 5

a) Because Gu(k−1) is a deterministic signal, it is straightforward to apply the change of
variables and find

fz(k)|x(k)(z(k)|x(k)) = fw(k)

(
z(k) − Gu(k−1) − Hx(k)

)
.

b) In the following, we use the shorthand notation fx(k)|z(k)(x(k)|z(k)) = f(x(k)|z(k)) for
clarity purposes. By Bayes’ rule,

f(x(k)|z(k)) =
f(z(k)|x(k))f(x(k))

f(z(k))
. (6)

The distribution of f(x(k)) is given to be normal:

f(x(k)) ∝ exp
(
−

1
2

(
x(k) − μ

)T Σ−1(k)
(
x(k) − μ

))
.

As shown in part a), the PDF of f(z(k)|x(k)) is also Gaussian:

f(z(k)|x(k)) ∝ exp
(
−

1
2

(
z(k) − Gu(k−1) − Hx(k)

)T
R−1

(
z(k) − Gu(k−1) − Hx(k)

))
.

The PDF f(z(k)) does not depend on x(k), and is therefore merely a constant in Equa-
tion (6). Therefore

f(x(k)|z(k)) ∝ exp
(
−

1
2

(
(x(k) − μ)T Σ−1(x(k) − μ)

+
(
z(k) − Gu(k−1) − Hx(k)

)T
R−1

(
z(k) − Gu(k−1) − Hx(k)

))
.

The mean and variance of f(x(k)|z(k)) follow from a comparison of coefficients, using the
general form of a GRV for mean and variance:

f(x(k)|z(k)) ∝ exp
(
−

1
2

(
x(k) − x̂m(k)

)T
P−1

m (k)
(
x(k) − x̂m(k)

))
.

By comparing quadratic terms, it follows that

P−1
m (k) = Σ−1 + HT R−1H ,

i.e. the variance of f(x(k)|z(k)) is
(
Σ−1 +HT R−1H

)−1. Comparison of linear terms yields

P−1
m (k)x̂m(k) = Σ−1μ + HT R−1z(k) − HT R−1Gu(k−1)

x̂m(k) = Pm(k)
(
Σ−1μ + HT R−1

(
z(k) − Gu(k−1)

))

= Pm(k)
(
Σ−1μ + HT R−1

(
z(k) − Gu(k−1) + Hμ − Hμ

))

= Pm(k)
(
P−1

m (k)μ + HT R−1
(
z(k) − Gu(k−1) − Hμ

))

x̂m(k) = μ + Pm(k)HT R−1
(
z(k) − Gu(k−1) − Hμ

)

i.e. the mean of f(x(k)|z(k)) is μ + Pm(k)HT R−1
(
z(k) − Gu(k−1) − Hμ

)
.
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Alternative Solution:

As an alternative approach, we introduce the pseudo-measurement z̃(k) as follows:

z̃(k) = z(k) − Gu(k − 1) = Hx(k) + w(k) . (7)

Using the pseudo-measurement, the problem description is in the form of the standard
Kalman Filter as it was presented in the lecture. The required measurement update step
for variance and mean then reads as follows:

Pm(k) =
(
Σ−1 + HT R−1H

)−1

x̂m(k) = μ + Pm(k)HT R−1 (z̃(k) − Hμ) . (8)

Substituting the pseudo-measurement (7) into the mean update equation (8) yields

x̂m(k) = μ + Pm(k)HT R−1 (z(k) − Gu(k − 1) − Hμ)

and the distribution of x(k)|z(k) is given by

x(k)|z(k) ∼ N (x̂m(k), Pm(k)) .
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Problem 6 20 Points

A time-varying Kalman Filter (KF) is used to estimate the state x(k) of the process

x(k) =

[
0.5 0
0 2

]

x(k−1) + v(k−1), v(k−1) ∼ N

(

0,

[
1 0
0 1

])

from measurements z(1), z(2), . . . , given by the measurement equation

z(k) =
[
0 1

]
x(k) + w(k), w(k) ∼ N (0, 1)

where k = 1, 2, . . . is the discrete-time index. The initial state distribution is Gaussian with
mean x0 and variance P0: x(0) ∼ N (x0, P0). While the mean x0 of the initial state distribution
is known and used to initialize the KF, the variance P0 is unknown.

Let x̂m(k) and Pm(k) denote, respectively, the posterior mean and variance of the KF at
time k (that is, the mean and variance of the state x(k), conditioned on the measurements
z(1), z(2), . . . , z(k)). The KF mean x̂m(k) is initialized with the true mean of the initial state
distribution: x̂m(0) = x0 = E[x(0)]. However, since the variance P0 is unknown, the KF variance
Pm(k) is initialized with an arbitrary symmetric, positive semidefinite matrix P̄ : Pm(0) = P̄ .

The estimation error of the KF is defined as e(k) := x(k) − x̂m(k). You shall analyze the
long-term behavior of the estimation error e(k) for k → ∞.

a) What is lim
k→∞

E[e(k)]? Justify your answer.

b) 1. What is lim
k→∞

Var[e(k)]? State every entry of the matrix lim
k→∞

Var[e(k)].

2. Does the limit lim
k→∞

Var[e(k)] depend on P̄? Provide a brief reasoning for your answer.

Now consider the system

x(k) =

[
2 0
0 2

]

x(k−1) + v(k−1), v(k−1) ∼ N

(

0,

[
1 0
0 1

])

with the same measurement equation as above. For this part, you can assume that the KF
variance Pm(k) is initialized with an arbitrary diagonal, positive semidefinite matrix P̄ .

c) What is lim
k→∞

Var[e(k)]? State every entry of the matrix lim
k→∞

Var[e(k)].
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Example Solution 6

We use the typical symbols for the system matrices in the solution below:

A =

[
0.5 0
0 2

]

, Q =

[
1 0
0 1

]

= I, H =
[
0 1

]
, R = 1. (9)

Furthermore, we use Pp(k) to denote the KF prior variance at time k.

a) The KF estimation error obeys the following difference equation (derived in class):

e(k) =
(
I − K(k)H

)
Ae(k−1) +

(
I − K(k)H

)
v(k−1) − K(k) w(k),

where K(k) is the (time-varying) KF gain. Taking the expected value on both sides yields

E[e(k)] =
(
I − K(k)H

)
A E[e(k−1)]. (10)

Since we initialize the KF with the mean of the initial state distribution ( x̂m(0) = x0), we
have E[e(0)] = E[x(0)] − x̂m(0) = x0 − x0 = 0, and it follows from (10) that E[e(k)] = 0
for all k, which implies lim

k→∞
E[e(k)] = 0.

b) 1. We first verify that (A, H) is detectable. To see this, we note that the only unstable
mode (corresponding to the eigenvalue 2 of the matrix A) is observable through the
output (measurement). More formally, we can use the PBH-Test and check whether
the rank condition is satisfied for all unstable eigenvalues of A: for λ = 2, we find
that

[
A − λI

H

]

=




−1.5 0

0 0
0 1





has full column rank, which implies the detectability of (A, H).

Second, we verify that (A, G) is stabilizable, where G is any matrix such that Q =
GGT . Since Q is positive definite, it immediately follows that (A, G) is stabilizable.

Using the convergence theorem for the Discrete Algebraic Riccati Equation (DARE)

P = APAT + Q − APHT
(
HPHT + R

)−1
HPAT (11)

discussed in class, we can thus conclude that the DARE (11) has a unique positive-
semidefinite solution P ≥ 0. Furthermore, limk→∞ Pp(k) = P for any initial Pp(1) ≥ 0
(and thus any initial Pm(0) = P̄ ≥ 0).

Next, we compute P . Applying the problem data to (11) yields

P =

[
p11 p12

p12 p22

]

=

[
p11/4 + 1 p12

p12 4p22 + 1

]

−
1

p22 + 1

[
p2
12/4 p12p22

p12p22 4p2
22

]

.

From this, we obtain three scalar equations for p11, p12, and p22:

p11 = p11/4 + 1 −
p2
12/4

p22 + 1
(12)

p12 = p12 −
p12p22

p22 + 1
(13)

p22 = 4p22 + 1 −
4p2

22

p22 + 1
. (14)
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From equation (14), we find two possible solutions for p22:

p−22 = 2 −
√

5 and p+
22 = 2 +

√
5. (15)

Manipulating equation (13), we find

0 = −
p12p22

p22 + 1
.

Since from (15), it is evident that p22 6= 0, the above equation only holds if p12 = 0.
Using this result, we can solve (12) for p11 and find p11 = 4/3. Since P must be
positive-semidefinite, it follows that p22 ≥ 0 (all eigenvalues must be nonnegative).
Therefore, we find p22 = 2 +

√
5. Finally, we have

P =

[
4
3 0
0 2 +

√
5

]

.

From the convergence of Pp(k) for k → ∞, it follows that also Pm(k) = Var[e(k)]
converges for k → ∞. Let limk→∞ Pm(k) = P̃ , where

P̃ =

[
p̃11 p̃12

p̃12 p̃22

]

.

From the KF prior update equation, we have

P = AP̃AT + Q
[
4/3 0
0 2 +

√
5

]

=

[
p̃11/4 + 1 p̃12

p̃12 4p̃22 + 1

]

.

Solving for p̃11, p̃12, and p̃22, we find

lim
k→∞

Var[e(k)] = P̃ =

[
4
3 0

0 1+
√

5
4

]

.

2. From the convergence theorem for the DARE, we know that the limit calculated in 1
is independent of the initial P̄ ≥ 0.

Alternative approach. An alternative approach to this problem is to realize from the
problem structure that the system can be decoupled into two separate systems:

x1(k) = 0.5 x1(k−1) + v1(k−1), v1(k−1) ∼ N (0, 1)

and

x2(k) = 2 x2(k−1) + v2(k−1), v2(k−1) ∼ N (0, 1)

z(k) = x2(k) + w(k), w(k) ∼ N (0, 1).

Notice that rewriting the system as two separate systems is possible without loss of gen-
erality because there is no coupling of the dynamics (no off-diagonal entries in A), no
cross correlation of the process noise (no off-diagonal entries in Q), and the measurement
equation depends only on x2(k).

One can then apply the KF equations separately to each of the two systems and compute
the steady-state variance accordingly.
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c) For this part, A = 2I and the other matrices are as in (9). The modified system is no
longer detectable because the first element of the state vector is both unobservable and
unstable. This can be checked analogously to Part b). Hence, we expect that the KF
variance will diverge. We compute the individual entries of limk→∞ Pm(k) next.

The update equation for the KF prior variance Pp(k) reads

Pp(k+1) = AP(k)AT + Q − AP(k)HT
(
HP(k)HT + R

)−1
HP(k)AT

which results in
[
p11(k+1) p12(k+1)
p12(k+1) p22(k+1)

]

=

[
4p11(k) + 1 4p12(k)

4p12(k) 4p22(k) + 1

]

−
1

p22(k) + 1

[
4p2

12(k) 4p12(k)p22(k)
4p12(k)p22(k) 4p2

22(k)

]

where p11(k), p12(k), and p22(k) are the entries of Pp(k).

First, we notice that p12(k) = 0 implies p12(k+1) = 0. Furthermore, it is straightforward
to show that p12(1) = 0 from the assumption that Pm(0) is diagonal and the fact that A
and Q are also diagonal. Hence, p12(k) = 0 for all k.

With this result, we obtain the following update equations for p11(k) and p22(k):

p11(k+1) = 4p11(k) + 1 (16)

p22(k+1) = 4p22(k) + 1 −
4p2

22(k)
p22(k) + 1

. (17)

Notice that p22(k) obeys the same update equation as in Part b) (compare (17) to (14)
augmented with appropriate time indices). Therefore, limk→∞ p22(k) = 2 +

√
5 as in

Part b). Furthermore, Pp(1) ≥ 0 and diagonal implies that p11(1) ≥ 0, from which,
together with (16), follows that limk→∞ p11(k) = ∞.

Finally, we find from Pp(k) = APm(k−1)AT + Q = 4Pm(k−1) + I that

lim
k→∞

Var[e(k)] = lim
k→∞

Pm(k) = lim
k→∞

Pm(k−1) =
1
4

(

lim
k→∞

Pp(k) − I

)

=

[
∞ 0

0 1+
√

5
4

]

.

Alternative approach. Since the structure of the problem is the same as in Part b), one
can decouple the system into two separate systems as before:

x1(k) = 2 x1(k−1) + v1(k−1), v1(k−1) ∼ N (0, 1)

and

x2(k) = 2 x2(k−1) + v2(k−1), v2(k−1) ∼ N (0, 1)

z(k) = x2(k) + w(k), w(k) ∼ N (0, 1).

The second system is the the same as in Part b), hence the (2,2)-entry of limk→∞ Pm(k)
is the same as in Part b). The first system is not detectable, hence, the (1,1)-entry of
limk→∞ Pm(k) tends to infinity as k → ∞. The coupling terms of limk→∞ Pm(k) are zero,
since there is no coupling between the two systems.


