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Recall

A (CT or DT) system G is an operator that maps

the input sequence u

to the output sequence y, denoted y = Gu:

G
u

Input

y

Output
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a) Memoryless system

A system is called memoryless

if the output at timestep n only depends on the input at the same
timestep:

y[n] = fn(u[n])

y[n] = u2[n] and y[n] = anu[n] is memoryless,

while
y[n] = u[n]− u[n− 1] is not.
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b) Causal system

A system is called causal or non-anticipative

if at time n, the output y[n] only depends on the present and past
inputs u[k], k ≤ n:

y[n] = fn(u[k]), k ≤ n

For example:

y[n] = u[n]− u[n− 1] is causal,

while y[n] = u[n+ 1]− u[n], which depends on the future
input u[n+ 1], is not causal.
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c) Linear system

A system is called linear if

G{α1u1[n] + α2u2[n]} = α1G{u1[n]}+ α2G{u2[n]}

holds for :

all input sequences {u1[n]}, {u2[n]},

and all constant coefficients α1, α2.

This is also called the superposition principle and is a very useful
property when analysing systems.
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d) Time-invariant system

Definition of a shifted sequence

Given the sequence u1 and the shift k ∈ Z, let u2[n] = u1[n− k]
for all n.
The sequence u2 is a shifted version of u1. We denote this by
{u2[n]} = {u1[n− k]}.
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d) Time-invariant system

Definition of a shifted sequence

Given the sequence u1 and the shift k ∈ Z, let u2[n] = u1[n− k]
for all n.
The sequence u2 is a shifted version of u1. We denote this by
{u2[n]} = {u1[n− k]}.

Property of time-invariance

Let {u2[n]} = {u1[n− k]}, y1 = Gu1 and y2 = Gu2.
If {y2[n]} = {y1[n− k]}, for all possible input sequences u1, and
for all time shifts k,
⇒ then the system is called time-invariant or shift-invariant.
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d) Time-invariant system

Definition of a shifted sequence

Given the sequence u1 and the shift k ∈ Z, let u2[n] = u1[n− k]
for all n.
The sequence u2 is a shifted version of u1. We denote this by
{u2[n]} = {u1[n− k]}.

Property of time-invariance

Let {u2[n]} = {u1[n− k]}, y1 = Gu1 and y2 = Gu2.
If {y2[n]} = {y1[n− k]}, for all possible input sequences u1, and
for all time shifts k,
⇒ then the system is called time-invariant or shift-invariant.

A simple interpretation of time-invariance

It does not matter when an input is applied: a delay in applying
the input results in an equal delay in the output.
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Stability of linear systems

Concept of a bounded sequence

A sequence {x} is said to be bounded (by M) if there exists a
finite value M such that

|x[n]| ≤ M for all n.
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Stability of linear systems

Concept of a bounded sequence

A sequence {x} is said to be bounded (by M) if there exists a
finite value M such that

|x[n]| ≤ M for all n.

Definition of stability

A linear system is said to be stable if:

for all input sequences u bounded by 1: |u[n]| ≤ 1 for all n,

there exists a finite value M , such that the output sequence y

is bounded by M : |y[n]| ≤ M for all n.

Remark: in general, this is referred to as bounded input, bounded output
(BIBO) stability and can be generalized to non-linear systems.
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Definitions of useful DT signals

Unit impulse sequence {δ[n]} with

δ[n] : =

{

1 n = 0

0 n 6= 0

n

δ[n]

−3 −2 −1 0 1 2 3

1
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Definitions of useful DT signals

Unit step sequence {s[n]} with

s[n] : =

{

1 n ≥ 0

0 n < 0

n

s[n]

−3 −2 −1 0 1 2 3

1
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Definitions of useful DT signals: remark on CT vs. DT

In CT, integrating the Dirac delta function δ(t) yields the
Heaviside step function s(t):

s(t) =

t
∫

−∞

δ(τ) dτ.

Likewise in DT, summing over the unit impulse sequence results in
the unit step sequence {s[n]} with

s[n] =

n
∑

k=−∞

δ[k]. (1)
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Definitions of useful DT signals: remark on CT vs. DT

In CT, differentiating the CT step function s(t) 1 yields the Dirac
delta function δ(t):

d

dt
s(t) = lim

ε→0

s(t)− s(t− ε)

ε
= δ(t).

In DT, finite differences replace the process of differentiation: the
unit impulse sequence {δ[n]} is given by the backwards difference

of the DT step sequence {s[n]}:

{s[n]} − {s[n− 1]} = {δ[n]}.

1 In order to show this rigorously, the usage of distributional derivatives is
required, which is beyond the scope of this class. 16 / 42
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Representing a sequence as a linear combination of impulses

DT signals can be expressed as a linear combination of time-shifted
unit impulses. This will allow us to calculate the response of LTI
systems to arbitrary inputs. Consider the following example:

n

x[n]

−4−3−2−1 0 1 2 3 4

a−2

a0

a3

The above sequence can be represented as

x[n] = a−2 · δ[n + 2] + a0 · δ[n] + a3 · δ[n − 3], for all n.

In particular, recalling that δ[n] = 0 for n 6= 0 we have:

x[−2] = a−2, x[0] = a0, x[3] = a3, x[n] = 0 otherwise.
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Representing a sequence as a linear combination of

impulses

In general:

x[n] =

∞
∑

k=−∞

x[k]δ[n − k] for all n. (2)

This is true also for entire sequences:

{x[n]} =

∞
∑

k=−∞

x[k]{δ[n − k]}. (3)
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The system’s impulse response

To derive the response of an LTI system G to an arbitrary input,
we begin by defining :

a unit impulse input sequence: {δ[n]}

the system’s impulse response {h[n]} as the output sequence
given a unit impulse input sequence:

{h[n]} := G{δ[n]}.
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The system’s response to arbitrary inputs

Write a sequence as a linear combination of time-shifted unit impulses:

u[n] =

∞
∑

k=−∞

u[k]δ[n − k]

= · · ·+ u[−1]δ[n+ 1] + u[0]δ[n] + u[1]δ[n − 1] + . . . for all n.
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The system’s response to arbitrary inputs

Write a sequence as a linear combination of time-shifted unit impulses:

u[n] =

∞
∑

k=−∞

u[k]δ[n − k]

= · · ·+ u[−1]δ[n+ 1] + u[0]δ[n] + u[1]δ[n − 1] + . . . for all n.

Given that {y[n]} = G{u[n]}, and linearity (L) and time-invariance (TI) of G:

{y[n]} = G

(

∞
∑

k=−∞

u[k]{δ[n − k]}

)

L
=

∞
∑

k=−∞

u[k]G{δ[n− k]}

TI
=

∞
∑

k=−∞

u[k]{h[n − k]}. (4)
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The system’s response to arbitrary inputs

Write a sequence as a linear combination of time-shifted unit impulses:

u[n] =

∞
∑

k=−∞

u[k]δ[n − k]

= · · ·+ u[−1]δ[n+ 1] + u[0]δ[n] + u[1]δ[n − 1] + . . . for all n.

Given that {y[n]} = G{u[n]}, and linearity (L) and time-invariance (TI) of G:

{y[n]} = G

(

∞
∑

k=−∞

u[k]{δ[n − k]}

)

L
=

∞
∑

k=−∞

u[k]G{δ[n− k]}

TI
=

∞
∑

k=−∞

u[k]{h[n − k]}. (4)

In Equation (3), we saw that a sequence can be represented by the
summation of scaled and shifted unit impulses.

Equation (4) demonstrates that the output of an LTI system can be
represented by the summation of scaled and shifted versions of its impulse
response (this is called convolution).
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The convolution between two sequences x and h is denoted as x ∗ h and is
defined as

x ∗ h = {x[n]} ∗ {h[n]} :=
∞
∑

k=−∞

x[k]{h[n− k]} =
∞
∑

k=−∞

h[k]{x[n− k]}.

Comparing this definition to Equation (4), we see that the output of an LTI
system G is the convolution between its impulse response h and its input u:

y = u ∗ h = h ∗ u. (5)

This can be graphically represented as:

G
u y = Gu = u ∗ h

The convolution operation is:

Commutative: x ∗ h = h ∗ x

Associative: (x ∗ h1) ∗ h2 = x ∗ (h1 ∗ h2)

Distributive: x ∗ (h1 + h2) = x ∗ h1 + x ∗ h2
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Example: Cascaded systems

Consider systems G1 and G2 with impulse responses h1 and h2 respectively.
We cascade these systems as shown in the figure below:

G1 G2(1)
u u ∗ h1 y

y = (u ∗ h1) ∗ h2
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Example: Cascaded systems

Consider systems G1 and G2 with impulse responses h1 and h2 respectively.
We cascade these systems as shown in the figure below:

G1 G2(1)
u u ∗ h1 y

y = (u ∗ h1) ∗ h2

By Equation (5), we can write the output of the cascade to input u as
y = G2(G1u) = (u ∗ h1) ∗ h2.

1 Using the associative property, we can rewrite this as y = u ∗ (h1 ∗ h2).

2 Defining the equivalent system G = G2G1 to have impulse response
(h1 ∗ h2),

3 we can redraw the cascade as:

G(2)
u y

y = u ∗ (h1 ∗ h2)
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Example : Cascaded systems

Rewriting the output again, using the commutative and associative
property, we arrive at the equivalent expression
y = u ∗ (h1 ∗ h2) = u ∗ (h2 ∗ h1) = (u ∗ h2) ∗ h1. We can again
redraw the cascade as

G2 G1(3)
u u ∗ h2 y

y = (u ∗ h2) ∗ h1
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Example : Cascaded systems

Rewriting the output again, using the commutative and associative
property, we arrive at the equivalent expression
y = u ∗ (h1 ∗ h2) = u ∗ (h2 ∗ h1) = (u ∗ h2) ∗ h1. We can again
redraw the cascade as

G2 G1(3)
u u ∗ h2 y

y = (u ∗ h2) ∗ h1

Conclusions:

1 the order in which LTI systems are cascaded does not matter
because of the commutative and associative properties of
convolution.

2 Furthermore, the impulse response of the single equivalent
system is the convolution of the individual impulse responses.
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Step response

The step response {r[n]} of a system is defined as its output to a unit step
{s[n]} input. We therefore have

{r[n]} := {s[n]} ∗ {h[n]} = {h[n]} ∗ {s[n]}

=

∞
∑

k=−∞

h[k]{s[n − k]} =

{

n
∑

k=−∞

h[k]

}

. (6)

In Equation (1), we saw that {s[n]} can be obtained from {δ[n]} via a
summation. Similarly, Equation (6) shows that {r[n]} can be obtained from
{h[n]} via a summation.
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Step response

The step response {r[n]} of a system is defined as its output to a unit step
{s[n]} input. We therefore have

{r[n]} := {s[n]} ∗ {h[n]} = {h[n]} ∗ {s[n]}

=

∞
∑

k=−∞

h[k]{s[n − k]} =

{

n
∑

k=−∞

h[k]

}

. (6)

In Equation (1), we saw that {s[n]} can be obtained from {δ[n]} via a
summation. Similarly, Equation (6) shows that {r[n]} can be obtained from
{h[n]} via a summation.
In Equation (2), we saw that {δ[n]} is the backwards difference of {s[n]}.
Similarly, {h[n]} is the backwards difference of {r[n]}:

r[n]− r[n− 1] =

n
∑

k=−∞

h[k]−

n−1
∑

k=−∞

h[k] = h[n], for all n.
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Causality

Recall that y[n] =
∞
∑

k=−∞

u[k]h[n − k], for all n. (7)

If causality is to hold for all possible input sequences, then all terms h[n− k]
for n− k < 0 ⇐⇒ k > n must be zero. Therefore we have

System is causal ⇐⇒ h[n] = 0 for n < 0.
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Causality

Recall that y[n] =
∞
∑

k=−∞

u[k]h[n − k], for all n. (7)

If causality is to hold for all possible input sequences, then all terms h[n− k]
for n− k < 0 ⇐⇒ k > n must be zero. Therefore we have

System is causal ⇐⇒ h[n] = 0 for n < 0.

We call a sequence x causal if x[n] = 0 for n < 0. We typically work with
causal signals and systems because physical systems are causal, and because we
can assume, without loss of generality, that experiments start at time zero.
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Causality

Recall that y[n] =
∞
∑

k=−∞

u[k]h[n − k], for all n. (7)

If causality is to hold for all possible input sequences, then all terms h[n− k]
for n− k < 0 ⇐⇒ k > n must be zero. Therefore we have

System is causal ⇐⇒ h[n] = 0 for n < 0.

We call a sequence x causal if x[n] = 0 for n < 0. We typically work with
causal signals and systems because physical systems are causal, and because we
can assume, without loss of generality, that experiments start at time zero.

For a causal system with causal input, Equation (7) becomes:

y[n] =

n
∑

k=0

u[k]h[n − k] =

n
∑

k=0

h[k]u[n − k], for all n.

Note that if a system is causal and its input sequence is causal, the output
sequence will also be causal.

28 / 42



Classification of Systems
Linear Time-Invariant (LTI) System Response to Inputs

Linear Constant-Coefficient Difference Equations

The system’s response: impulse and arbitrary inputs
Convolution
System properties from impulse response

Stability

An LTI system is stable ⇐⇒
∞
∑

k=−∞

|h[k]| < ∞. (8)
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Stability

An LTI system is stable ⇐⇒
∞
∑

k=−∞

|h[k]| < ∞. (8)

Proof (we now prove one direction of the above statement)

if an LTI system’s impulse response satisfies Equation (8), the system is stable.

Let M =
∞
∑

k=−∞

|h[k]| < ∞ and let u be any input sequence bounded by 1. It

follows that, for all n:

|y[n]| =

∣

∣

∣

∣

∣

∞
∑

k=−∞

u[k]h[n − k]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=−∞

h[k]u[n − k]

∣

∣

∣

∣

∣

(Equation (4))

≤

∞
∑

k=−∞

|h[k]u[n − k]| =

∞
∑

k=−∞

|h[k]| |u[n− k]| (Triangle Inequality)

≤
∞
∑

k=−∞

|h[k]| 1 = M < ∞ � (Bounded input: |u[n]| ≤ 1 for all n)

Because the system’s output sequence y is bounded by M , the system is stable. We leave it as an exercise to
prove the opposite direction: if an LTI system is stable, its impulse response must satisfy Equation (8).
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System properties from impulse response

Finite Impulse Response (FIR) vs. Infinite Impulse Response (IIR)

A causal system is said to have a finite impulse response (FIR), if there
exists a time N ∈ Z, such that: h[n] = 0 for all n ≥ N. In this case, the
integer N is a finite upper-bound on the length of the system’s impulse
response.

If a finite N that satisfies the above condition cannot be found, the
length of the system’s impulse response is unbounded, and the system is
said to have an infinite impulse response (IIR).
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A causal system is said to have a finite impulse response (FIR), if there
exists a time N ∈ Z, such that: h[n] = 0 for all n ≥ N. In this case, the
integer N is a finite upper-bound on the length of the system’s impulse
response.

If a finite N that satisfies the above condition cannot be found, the
length of the system’s impulse response is unbounded, and the system is
said to have an infinite impulse response (IIR).

Examples

1 FIR: A system with an impulse response of the form:
h = {0, . . . , 0, α0

↑

, α1, 0, 0, . . . } has an FIR (or is an FIR system) since

h[n] = 0 for n ≥ 2.

2 IIR: A system with an impulse response

h[n] =

{

αn for n ≥ 0

0 otherwise
h = {0, . . . , 0, 1

↑
, α, α

2
, . . . , α

n
, . . . }. (9)

has an IIR (or is an IIR system).
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In CT the relationships between different signals are expressed by
differential equations.

In DT, difference equations are the counterpart.
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In CT the relationships between different signals are expressed by
differential equations.

In DT, difference equations are the counterpart.

Definition

A Linear Constant-Coefficient Difference Equation (LCCDE) is of the form

N
∑

k=0

aky[n− k] =

M
∑

k=0

bku[n− k], ak, bk ∈ R, (10)

where N and M are non-negative integers.
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In CT the relationships between different signals are expressed by
differential equations.

In DT, difference equations are the counterpart.

Definition

A Linear Constant-Coefficient Difference Equation (LCCDE) is of the form

N
∑

k=0

aky[n− k] =

M
∑

k=0

bku[n− k], ak, bk ∈ R, (10)

where N and M are non-negative integers.

Recursive definition

Assuming the system is causal (and assuming a0 6= 0), solving Equation (10)
for y[n] results in the recursive definition

y[n] =
1

a0

(

M
∑

k=0

bku[n− k]−

N
∑

k=1

aky[n− k]

)

.
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The state-space (SS) description of a DT system is

q[n+ 1] = A q[n] +B u[n],

y[n] = C q[n] +D u[n] (11)

with A ∈ R
N×N , B ∈ R

N×1, C ∈ R
1×N , and D ∈ R, and where u[n] ∈ R is

the system’s input at time n, q[n] ∈ R
N is the system’s state at time n, and

y[n] ∈ R is the system’s output at time n.

Remark: note that, in comparison to Lecture 1, we have dropped the subscript d from the system matrices for
notational simplicity, as we do not need to distinguish between CT and DT systems. Furthermore, although the SS
description supports multiple-input, multiple-output (MIMO) systems, we will mainly consider single-input,
single-output (SISO) systems in this class.
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The state-space (SS) description of a DT system is

q[n+ 1] = A q[n] +B u[n],

y[n] = C q[n] +D u[n] (11)

with A ∈ R
N×N , B ∈ R

N×1, C ∈ R
1×N , and D ∈ R, and where u[n] ∈ R is

the system’s input at time n, q[n] ∈ R
N is the system’s state at time n, and

y[n] ∈ R is the system’s output at time n.

Remark: note that, in comparison to Lecture 1, we have dropped the subscript d from the system matrices for
notational simplicity, as we do not need to distinguish between CT and DT systems. Furthermore, although the SS
description supports multiple-input, multiple-output (MIMO) systems, we will mainly consider single-input,
single-output (SISO) systems in this class.

Now, we will show how to obtain a SS description of a DT system from an
LCCDE for a special case of Eq. (10), where bk = 0 for k > 0 and a0 = 1 a.
We therefore consider the LCCDE

y[n] + a1y[n− 1] + · · ·+ aNy[n−N ] = b0u[n].

a

Note that the latter can always be achieved for a causal system by rescaling ak and bk , and that the
following results can be generalized for arbitrary values of coefficients bk .
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We consider the LCCDE

y[n] + a1y[n− 1] + · · ·+ aNy[n−N ] = b0u[n].

Step 1: Construct the state q[n] using the N past outputs

To calculate y[n] at time n, we need:

N past outputs

and the current input u[n].

q1[n]= y[n−N ]
q2[n]= y[n− (N − 1)] = y[n−N + 1]

...
qN [n]= y[n− 1]



















q[n] =







q1[n]
...

qN [n]






.
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q1[n]= y[n−N ]
q2[n]= y[n− (N − 1)] = y[n−N + 1]

...
qN [n]= y[n− 1]



















q[n] =







q1[n]
...

qN [n]






.

Step 2: Recursive formulation among the state elements of q[n] and build
q[n+ 1]

q[n+ 1] =















q1[n+ 1]= q2[n],
q2[n+ 1]= q3[n],

... ,
qN−1[n+ 1]= qN [n]

qN [n+ 1]= y[n] = b0u[n]− aNq1[n]− · · · − a1qN [n].














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Step 2: Recursive formulation among the state elements of q[n] and build
q[n+ 1]

q[n+ 1] =















q1[n+ 1]= q2[n],
q2[n+ 1]= q3[n],

... ,
qN−1[n+ 1]= qN [n]

qN [n+ 1]= y[n] = b0u[n]− aNq1[n]− · · · − a1qN [n].















Step 3: DT state space representation

Now that we have defined the state q[n] and q[n+ 1], we need to find the
matrices A,B,C,D, which satisfy :

q[n+ 1] = A q[n] +B u[n],

y[n] = C q[n] +D u[n] (12)
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q[n+ 1] = A q[n] +B u[n],

y[n] = C q[n] +D u[n] (13)

This is achieved by the following:

A =















0 1 0 · · · 0
0 0 1 · · · 0

. . .

1
−aN −aN−1 −aN−2 · · · −a1















B =

















0
...
...
0
b0

















C =
[

−aN −aN−1 −aN−2 · · · −a1
]

D =
[

b0
]

.
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The impulse response of a DT LTI system with a state-space description

The state-space description of a DT LTI system (13) can be solved to obtain
the system’s impulse response. Solving recursively yields:

q[1] = Aq[0] +Bu[0]

q[2] = Aq[1] +Bu[1] = A
2
q[0] +ABu[0] +Bu[1]

...

q[n] = A
n
q[0] +

n−1
∑

k=0

A
n−k−1

Bu[k], n ≥ 0

y[n] = Cq[n] +Du[n] = CA
n
q[0] + C

n−1
∑

k=0

A
n−k−1

Bu[k] +Du[n], n ≥ 0.

Assuming that the system has zero initial conditions (q[n] = 0 for n ≤ 0), and
using a unit impulse input u[n] = δ[n] for all n, we can read off the impulse
response h for n ≥ 0:

h = {y[0], y[1], y[2], . . . , y[n], . . . } = {D,CB,CAB, . . . , CA
n−1

B, . . . }.

Note that the lack of arrow in the above sequence implies that the first term of the sequence (in this case D)
occurs at time n = 0. 39 / 42
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It can be shown that an LTI system that can be written in the non-recursive
form (no dependance on y[n− 1]):

y[n] =

M
∑

k=0

bku[n− k], for some integer M, (14)

has an FIR.

Example (FIR)
Consider the system described by the LCCDE:

y[n] = b0u[n] + b1u[n− 1] for all n,

which can be expressed in the form of (14) with M = 1. The system’s output
can be computed non-recursively, the system therefore has a finite impulse
response. One can verify this by computing the impulse response

h = {. . . , 0, b0
↑
, b1, 0, . . . },

and noting that it has a finite length.
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Example (IIR)
Consider the system described by the LCCDE:

y[n] = a1y[n− 1] + u[n] for all n,

which cannot be expressed in the form of (14). We calculate the
system’s impulse response recursively, assuming y[n] = 0 for n < 0:

h = {. . . , 0, 1
↑
, a1, a

2

1
, . . . , an

1
, . . . },

and note that it has an infinite length, thus implying the system
has an infinite impulse response.
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