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IIR: Difference equation

The class of causal infinite impulse response (IIR) filters can be
captured by the difference equation

y[n] =

M−1
∑

k=0

bku[n− k]−
N−1
∑

k=1

aky[n− k],

Characteristics :

M input coefficients bk ∈ R,

N − 1 output coefficients ak ∈ R.

filter order: is given by max(M − 1, N − 1) and corresponds
to the number of delay elements an implementation of the
filter would require;

it is also the size of the state in a state-space description
of the system.
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FIR vs. IIR

Key differences :

1 the output of a causal IIR filter is dependent on both the filter’s input
and on previous outputs (if one or more coefficients ak are non-zero).

2 Dependence on previous output(s) generally implies that the impulse
response has infinite length (hence the name: IIR filter).

3 IIR filters are not necessarily stable: the stability depends on the
coefficients ak.

Advantages of IIR filters :

1 they usually meet filter specifications with a lower filter order,

2 this corresponds to lower computation and storage cost compared to FIR
filters.
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IIR filter : transfer function

Transfer function and frequency response calculated from difference equation:

H(z) =

M−1∑

k=0

bkz
−k

1 +
N−1∑

k=1

akz−k

z=ejΩ−−−−→ H(Ω) =

M−1∑

k=0

bke
−jΩk

1 +
N−1∑

k=1

ake−jΩk

The goal of IIR filter design : find coefficients ak and bk such that the filter
meets given specifications and is stable.
IIR filter design :

often employs established continuous-time (CT) filter design methods, for
example Butterworth filter design,

and then transforms the resulting CT filter into DT.

In this lecture, we introduce:

1 the concepts underlying IIR filters;

2 how to design a CT Butterworth filter; and finally,

3 how to convert a CT filter into DT using the bilinear transform.G. Ducard 7 / 41
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IIR 1st order low-pass filter

Consider the causal, first-order, low-pass IIR filter, which has the
difference equation

y[n] = α y[n− 1] + (1− α) u[n],

where 0 ≤ α < 1.

Intuition :

For α 6= 0, this is an infinite impulse response filter.

If α = 0 the output is equal to the input and no filtering
occurs.

As α → 1, the output becomes increasingly constant.
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IIR 1st order low-pass filter

Transfer function

H(z) =
1− α

1− α z−1
.

Stability discussion:

The filter has a single pole at z = α.

It immediately follows that the filter is stable if 0 ≤ α < 1.

Frequency response

H (Ω) =
1− α

1− α e−jΩ
.
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IIR 1st order low-pass filter : behavior

Low - frequency signals remain unaltered since

H(Ω = 0) =
1− α

1− αe−j0
= 1.

The magnitude response is:

|H (Ω)| = 1− α
√

(1− α cos Ω)2 + α2 sin2 Ω
.

Furthermore, one can show that the magnitude is monotonically non-increasing:

d|H(Ω)|
dΩ

≤ 0, for 0 ≤ Ω ≤ π.

The phase is

∠H(Ω) = arctan

(
Always negative
︷ ︸︸ ︷

−α sinΩ

1− α cosΩ
︸ ︷︷ ︸
Always positive

)

, for 0 ≤ Ω ≤ π.

Therefore
−π

2
< ∠H(Ω) ≤ 0.
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A plot of the magnitude and phase response follows:
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Choice of parameter α

To choose n , let :

Ts be the sampling time,

and T0 be the desired time for the continuous process to decay to e−1,
i.e., T0 = n Ts.

n =
T0

Ts
⇒ α = e−

1
n = e

−
Ts

T0 ,

we assume that T0 is an integer multiple of Ts (if this is not the case, n may be rounded).

Example :

sampling time Ts = 0.01 s

chosen decay time T0 = 1 s,

α = exp(−0.01) ≈ 0.99.

Usually, T0 is large relative to Ts and we may use a first-order approximation
to obtain

α ≈ 1− Ts

T0
.
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A connection to CT systems can be made: In CT, the transfer function of a
first-order low-pass filter is given by

H(s) =
1

τs+ 1
.

The differential equation for the output is

ẏ(t) = − 1

τ
(y(t)− u(t)) . (1)

Assuming u(t) = 0 for t ≥ 0, we obtain the time-domain system response

y(t) = y(0)e−
t
τ .

Choosing y(0) = 1, we obtain the system response:

τ

e−1

1

t

Therefore, the time to reach e−1 is τ . G. Ducard 17 / 41
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Another connection to CT can be made by discretizing

ẏ(t) = − 1

τ
(y(t)− u(t))

assuming the input u is constant over a sample period Ts, i.e. a zero-order
hold device is used:

[
ẏ
u̇

]

=

[
− 1

τ
1
τ

0 0

] [
y
u

]

0 ≤ t < Ts,

which we solve using the matrix exponential and obtain

[
y(T−

s )
u(T−

s )

]

= exp

([
−Ts

τ
Ts

τ

0 0

]) [
y(0)
u(0)

]

=

[

e−
Ts
τ 1− e−

Ts
τ

0 1

] [
y(0)
u(0)

]

.

As discussed in Lecture 1, this solution is valid on any time interval because the
system is time invariant. Substituting the decay time T0 for the time constant
τ , the resulting difference equation becomes

y[n] = e
−

Ts
T0 y[n− 1] + (1− e

−
Ts
T0 )u[n− 1] = αy[n− 1] + (1− α)u[n− 1]

which closely resembles the first-order, low-pass IIR filter, except that the input
is delayed by one sample. G. Ducard 18 / 41
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IIR filter design

FIR filter design only makes sense in DT.
In contrast,

1 IIR filters are often designed in CT using an established
method, for example

a Butterworth,
or Chebyshev method.

2 they are then converted to DT using the bilinear transform

(sometimes also called Tustin method).

We will see in the following section,

the bilinear transform has properties that make it a useful tool
for the above design procedure.
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CT design: Butterworth filter

It is a general purpose low-pass filter. The starting point is the desired
frequency response, with corner frequency 1 rad/sec:

R(ω) =
1√

1 + ω2K
,

where K is the order of the filter.

10−2 10−1 100 101 102

0

−40

−80

−120

−160

ω

|R
(ω

)|
(d
B
)

K = 2

K = 3

K = 8
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Butterworth filter design: properties

This frequency response has two very desirable properties:

1 it has no ripples,

2 and is maximally flat.

R(ω) =
1√

1 + ω2K
= (1 + ω2K)−

1
2 ,

First, let us calculate the derivative dR/dω.

dR(ω)/dω = −1

2
(1 + ω2K)−

3
2 2Kω2K−1

= −KR3ω2K−1 ≤ 0 for all ω ≥ 0.

Conclusion
This means that the Butterworth filter has no ripples.
In other words, all derivatives of R up to 2K − 1 are 0 at 0 and the filter is said
to be maximally flat.
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Transfer function

Let H(s) be the transfer function of a filter with frequency response R(ω).
We then have that

|H(jω)|2 = R(ω)2 = (1 + ω2K)−1.

The only stable transfer function that achieves this is

H(s) =
1

K∏

k=1

(s− sk)

,

where sk = e
j(2k+K−1)π

2K , k = 1, . . . ,K.

Filters with a transfer function of this structure are known as Butterworth
filters.
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Second-order Butterworth low-pass filter

Consider one of the most common Butterworth filters: a
second-order (K = 2) low-pass. We have,

s1 = ej3π/4 =
−1 + j√

2
, (135◦)

s2 = ej5π/4 =
−1− j√

2
, (225◦)

which results in the transfer function

H(s) =
1

(s+ 1−j√
2
)(s + 1+j√

2
)
=

1

s2 +
√
2s+ 1

.
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Second-order Butterworth low-pass filter

The poles of the CT filter lie on the unit circle in the s-plane (not to be
confused with the z-plane) and are represented by the black crosses below.
Remark: The gray crosses represent the poles of H(−s) and are useful to visualize the pole-placement pattern.

K = 2

Re(s)

Im(s)

135◦

−135◦
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Third-order Butterworth low-pass filter

If, instead, a third-order low-pass filter is chosen (K = 3), the pole plot looks
as follows:

K = 3

Re(s)

Im(s)

120◦

−120◦

G. Ducard 27 / 41



Infinite Impulse Response Filters
First-Order Low-Pass Filter

IIR Filter Design

Methodology
CT Butterworth filter design
Bilinear transform

Corner frequency specification

The design method introduced above assumed a corner frequency
of 1 rad/sec. However, other corner frequencies ωc can be chosen.

In that case, we proceed with the following change of
variable

s → s

ωc
.

For example, the second order filter becomes

H(s) =
ωc

2

s2 +
√
2ωcs+ ωc

2
,

which has the same response as a mass-spring-damper system with
sub-critical damping 1/

√
2 and natural frequency ωc.
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Bilinear transform or Tustin’s method

Once a CT filter has been designed, ⇒ the bilinear transform (also
known as Tustin’s method) can be used to convert it into a DT
filter.

The bilinear transform uses the substitution that

s =
2

Ts

(

z − 1

z + 1

)

,

where Ts is the sampling time.

G. Ducard 30 / 41
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Bilinear transform or Tustin’s method

Recall that z can be given the interpretation of a DT shift operator. If

Y (z) = zU(z),

then
y[n] = u[n+ 1].

Similarly, in CT, esTs can be given the interpretation of a time shift operator. If

Y (s) = esTsU(s)

where Y (s) and U(s) are the Laplace transform of y(t) and u(t), respectively,
then

y(t) = u(t+ Ts).

Therefore, the two operators are equivalent:

z = esTs .
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Bilinear transform or Tustin’s method

A rational approximation for the relation between z and s will map a rational
CT transfer function to a rational DT transfer function. This is equivalent to
converting differential equations to difference equations. We therefore use the
approximation

esTs =
es

Ts
2

e−sTs
2

≈ 1 + sTs

2

1− sTs

2

,

which is valid if sTs is small. We call

z =
1 + sTs

2

1− sTs

2

the bilinear transform. The inverse is

s =
2

Ts

(
z − 1

z + 1

)

and is straightforward to verify by substitution.
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DC- CT mapping

We now evaluate the bilinear transform along the imaginary axis of the s-plane;
that is, let s = jω. Using the bilinear transform, this point maps to

z =
1 + jω Ts

2

1− jω Ts

2

.

Note that

|z| =
∣
∣
∣
∣
∣

1 + jω Ts

2

1− jω Ts

2

∣
∣
∣
∣
∣
= 1.

Conclusion
The bilinear transform therefore maps the imaginary axis of the s-plane to the
unit circle in the z-plane.
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DC- CT mapping

We therefore write

z = ejΩ =
1 + jω Ts

2

1− jω Ts

2

,

and calculate the mapping of a CT frequency ω to a DT frequency Ω as:

∠ejΩ = ∠(1 + jω Ts

2
)− ∠(1− jω Ts

2
)

Ω = arctan(ω Ts

2
)− arctan(−ω Ts

2
)

= 2 arctan(ω Ts

2
).

Conclusion
The frequency response of the CT system at ω (the CT transfer function
evaluated on the imaginary axis at s = jω)

directly corresponds to
the frequency response of the resulting DT system at Ω = 2arctan(ω Ts

2
) (the

DT transfer function evaluated on the unit circle at z = ejΩ).

This is a desirable property, as we will later see. G. Ducard 34 / 41
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DC- CT mapping

For small ωTs, the DT frequency is approximately Ω ≈ 2(ω Ts

2
) = ωTs. This is

also evident when we plot the mapping of CT frequencies to DT frequencies for
z = esTs and the bilinear transform:

0 2/Ts π/Ts

0

π/2
2

π

Ω

ω

Ω = ωTs

Ω = 2 arctan(ωTs/2)

Note how Ω asymptotically converges to π as ω → ∞: The bilinear transform
compresses the imaginary axis of the s-plane onto the unit circle. G. Ducard 35 / 41
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Frequency warping

The underlying nonlinear relation between ω and Ω is called frequency warping.
A few common values are:

ω = 0 ⇒ Ω = 0

ω = ∞ ⇒ Ω = π

ω =
2

Ts
⇒ Ω =

π

2

s = jω ⇒ z = ejΩ.

Other points are:

z = 0 ⇒ s = − 2

Ts
, z = ∞ ⇒ s =

2

Ts
.
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Region of stability mapping

Stable poles in the continuous domain are mapped to stable poles in the
discrete domain:

s-domain z-domain

This is desirable, as it means that a stable CT filter is transformed into a stable
DT filter.

Summary
The bilinear transform preserves stability and maps the imaginary axis in the
s-plane to the unit circle in the z-plane by compressing the CT frequencies
−∞ < ω < ∞ to DT frequencies −π < Ω < π.
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Example: Converting a CT first-order low-pass filter

Consider the CT low-pass filter with time constant τ

H(s) =
1

τs+ 1
.

Using the bilinear transform, we obtain

H(z) =
1

1 + τ 2
Ts

(
z−1
z+1

) =
1− α

1− αz−1

1 + z−1

2

with

α =
1− Ts

2τ

1 + Ts

2τ

.
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Example: Converting a CT first-order low-pass filter

For small values of Ts

τ
, α ≈ 1− Ts

τ
, as before.

Let us compare different discretization methods:

Method Transfer function Filter parameter

Direct H(z) = 1−α
1−αz−1 α = e−

Ts
τ (decay time τ )

Sample and Hold H(z) = (1−α)z−1

1−αz−1 α = e−
Ts
τ (time constant τ )

Bilinear H(z) =
(1−α)( 1+z−1

2
)

1−αz−1 α =
1−Ts

2τ

1+ Ts
2τ

(time constant τ )

G. Ducard 39 / 41
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Example: Converting a CT first-order low-pass filter

A nice property of the bilinear transform, for this example: is that

H(z = −1) = 0

This corresponds to
z = −1 = e−jπ

which is the highest possible DT frequency .

Remark: Observe that the CT first-order low-pass has

lim
s→j∞

H(s) = 0

Conclusion :
the frequency responses at the highest possible frequencies are the same for the
CT and the DT system when using the bilinear transform.
⇒ It follows that their high-frequency behavior is similar, which is one of the
advantages of the bilinear transform. G. Ducard 40 / 41
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Example: Converting a CT first-order low-pass filter

This can be seen by looking at the frequency response plots of the resulting
filters for Ts = 1 and τ = 2:
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