

Modeling and Analysis of Dynamic Systems

by Dr. Guillaume Ducard

Fall 2016

Institute for Dynamic Systems and Control

ETH Zurich, Switzerland

based on script from: Prof. Dr. Lino Guzzella

Outline

1 Introduction

2 System Modeling for Control

Definitions: Modeling and Analysis of Dynamic Systems

Dynamic Systems

systems that are not static, i.e., their state evolves w.r.t. time, due to:

- input signals,
- external perturbations,
- or naturally.

For example, a dynamic system is a system which changes:

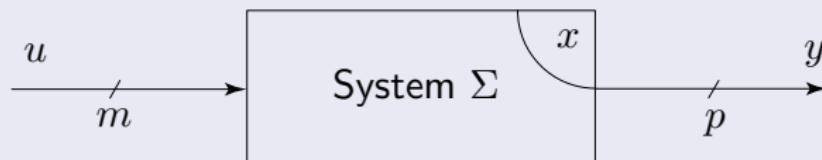
- its trajectory → changes in acceleration, orientation, velocity, position.
- its temperature, pressure, volume, mass, etc.
- its current, voltage, frequency, etc.

Examples of “Dynamic Systems”

Definition: “Modeling and Analysis”

the field of science which formulates a **mathematical representation** of a system:

- 1 for analysis/understanding (unstable, stable, observable, controllable, etc.)
- 2 simulation
- 3 control purposes.

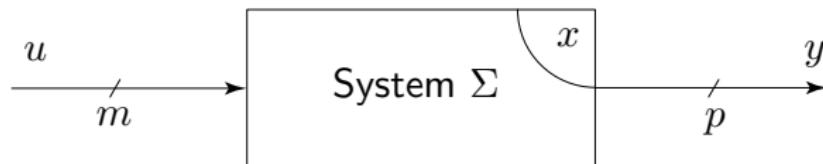


Usually, we have to deal with **nonlinear time-varying** system.

Nonlinear System

A system for which the output is not directly proportional to the input. Example of nonlinearities?

Definition: “Modeling and Analysis”



$$\dot{x}(t) = f(x(t), u(t), t), \quad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$$

$$y(t) = g(x(t), u(t), t), \quad y(t) \in \mathbb{R}^p$$

or as a transfer function (linear time-invariant system)

$$Y(s) = [D + C(sI - A)^{-1}B] U(s), \quad y(t) \in \mathbb{C}^p, \quad u(t) \in \mathbb{C}^m$$

Model Synthesis

Types of Model

- “black-box models”: derived from experiments only
- “grey-box models” : model-based, experiments need for parameter identification, model validation
- “white-box models”: no experiments at all

Model Synthesis

Types of Model

- “black-box models”: derived from experiments only
- “grey-box models” : model-based, experiments need for parameter identification, model validation
- “white-box models”: no experiments at all

Model-based System Description

- Based on **physical first principles**.
- This approach has 2 major benefits (comp. to exp. methods), the models obtained:
 - ➊ are able to **extrapolate** the system behavior (valid beyond the operating conditions used in model validation).
 - ➋ useful, if the **real system is not available** (still in planning phase or too dangerous for real experiments).

Why Use Models?

- 1 System analysis and synthesis
- 2 Feedforward control systems
- 3 Feedback control systems

Why Use Models?

Imagine you are to design a system. Good practice in engineering is to consider:

1. System analysis

- What are the **optimal system parameters** (performance, safety, economy, etc.)?
- Can the system be stabilized and, if yes, what are the “best” (cost, performance, etc.) **control and sensor configurations**?
- What happens if a sensor or an actuator fails and how can the **system's robustness** be increased?

If the real system is not available for experimentation → a mathematical model must be used to answer these questions.

Why Use Models?

1. System analysis

Example: Geostationary Satellite

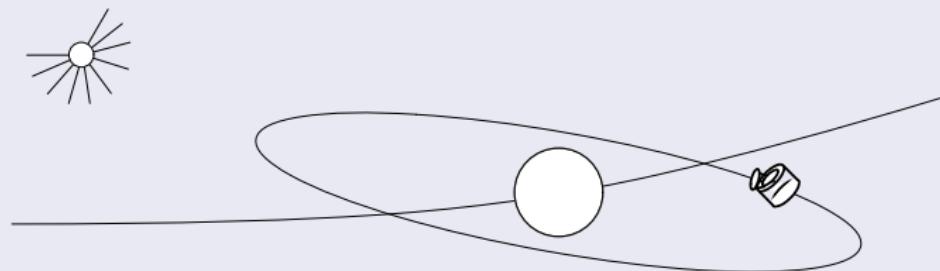


Figure: Geostationary Satellite

Constant altitude, circular orbit, constant angular velocity, despite external disturbances

→ Need for a stabilizing controller

Why Use Models?

1. System analysis

Example: Geostationary Satellite

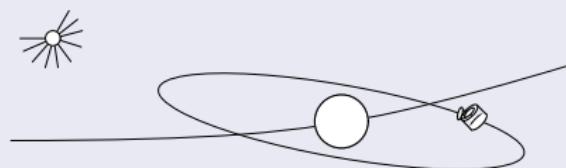


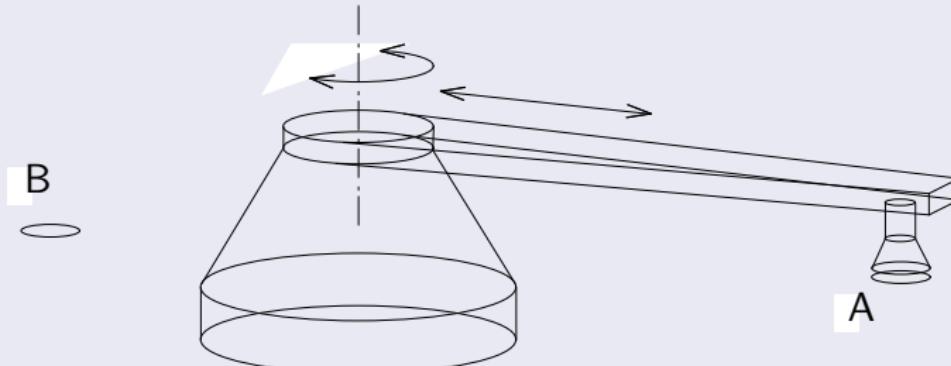
Figure: Geostationary Satellite

- ① What is an optimal geometric thruster configuration?
- ② Minimum thruster size? amount of fuel?
- ③ What kind of sensors are necessary for stabilization?
- ④ What happens if an actuator fails?

Why Use Models?

2. Feedforward control systems

- What are the control signals that yield optimal system behavior (shortest cycle time, lowest fuel consumption, etc.)?
- How can the system response be improved: speed, precision..?
- How much is lost when trading optimality for safety, reliability..?



Why Use Models?

3. Feedback control systems

- How can system **stability** be maintained for a given set of expected **modeling errors**?
- How can a specified **disturbance rejection (robustness)** be guaranteed for disturbances acting in specific frequency bands?
- What are the **minimum and maximum bandwidths** that a controller must attain for a specific system in order for **stability and performance requirements** to be guaranteed?

Why Use Models?

3. Feedback control systems

Example: Magnetic Bearing

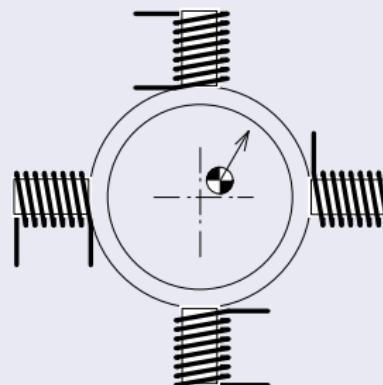


Figure: Cross section of a magnetic bearing

Scope of the lecture

Questions addressed in this lecture:

- 1 How are these mathematical models derived?
- 2 What properties of the system can be inferred from these models?

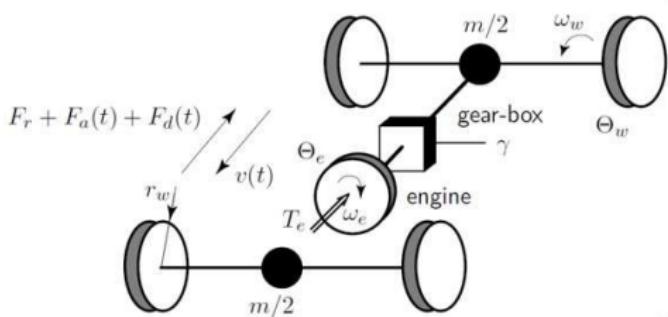
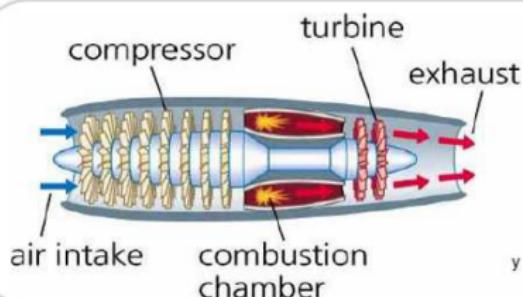
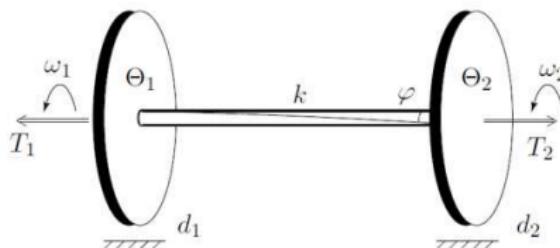
Objectives:

- 1 assemble some methods for model design in a unified way
- 2 suggest a **methodology** to formulate mathematical models (on any arbitrary system).

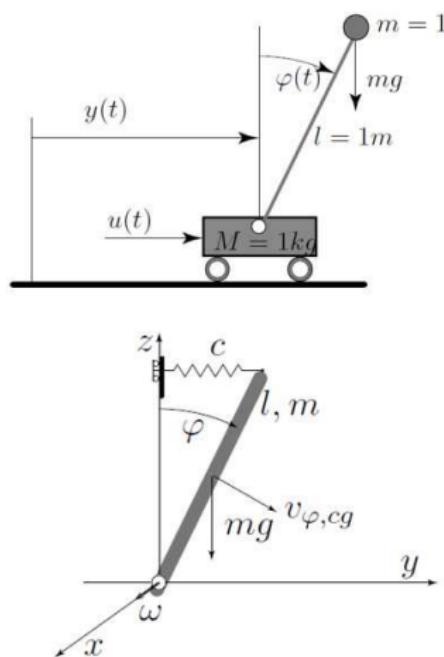
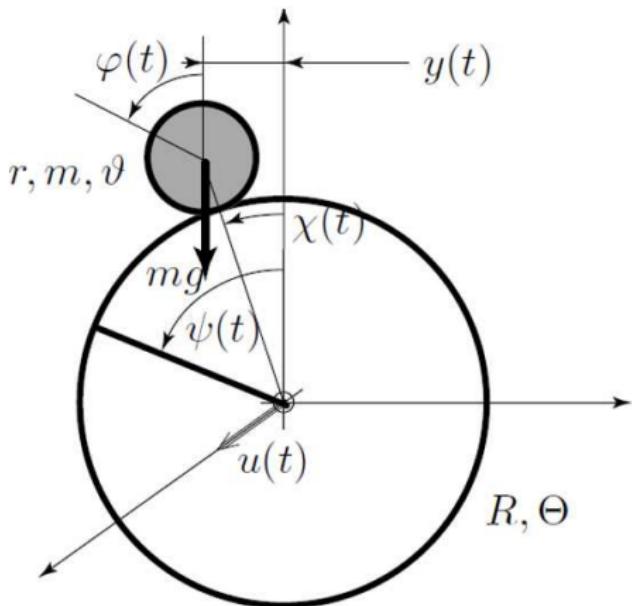
Keep in mind: however hard we try to model a system, it will always contain:

- 1 approximations
- 2 uncertainties
- 3 modeling or parameter errors ...

Case Studies



Case Studies



Case Studies



2. System Modeling for Control

Types of Modeling: Definitions

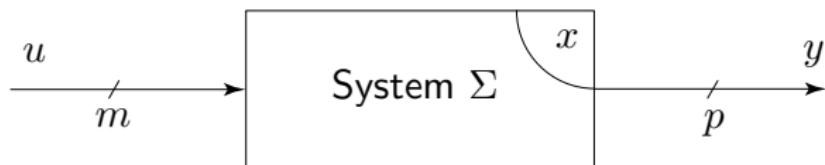


Figure: General definition of a system, input $u(t) \in \mathbb{R}^m$, output $y(t) \in \mathbb{R}^p$, internal state variable $x(t) \in \mathbb{R}^n$.

Mathematical models of dynamic systems can be subdivided into two broad classes

- ➊ parametric models (PM)
- ➋ non-parametric models (NPM) .

Types of Modeling: Definitions

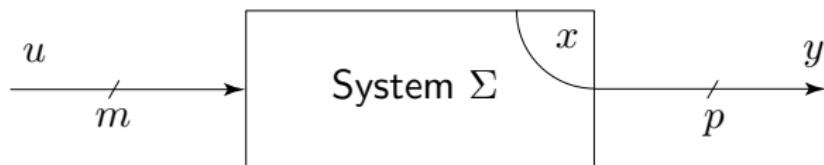


Figure: General definition of a system, input $u(t) \in \mathbb{R}^m$, output $y(t) \in \mathbb{R}^p$, internal state variable $x(t) \in \mathbb{R}^n$.

Mathematical models of dynamic systems can be subdivided into two broad classes

- ➊ parametric models (PM)
- ➋ non-parametric models (NPM) .

Question:

What are the differences between these 2 classes of modeling?

Types of Modeling: Example

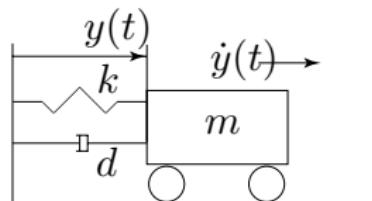


Figure: Spring mass system with viscous damping

Parametric Model

Differential equation

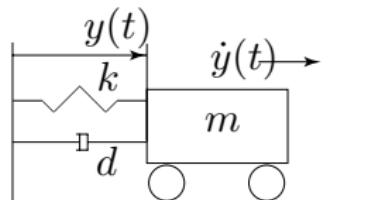
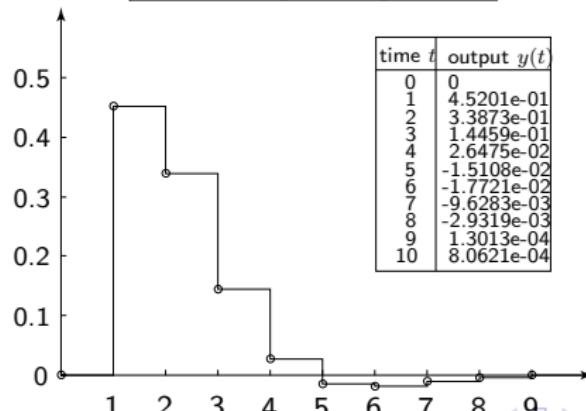
$$m\ddot{y}(t) + dy(t) + ky(t) = F(t)$$

Parameters: mass: m , viscous damping: d , spring constant: k

Types of Modeling: Example

Non Parametric Model

Impulse response of a damped mechanical oscillator



Types of Modeling: Discussion

Non parametric models have several drawbacks

- ① they require the system to be accessible for experiments
- ② they cannot predict the behavior of the system if modified
- ③ not useful for systematic design optimization

During this lecture, we will only consider parametric modeling.

Parametric Models

2 types:

- ① “forward” (regular causality)
- ② “backward” (inverted causality)

causality? causes/effects, inputs/outputs

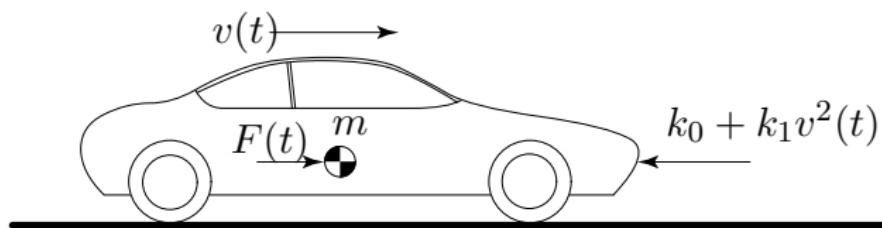


Figure: Car moving in a plane.

Parametric Models

“Forward” models

$$m \frac{d}{dt} v(t) = -\{k_0 + k_1 v(t)^2\} + F(t)$$

System input: Traction force F [N].

System output: actual fuel mass flow $\dot{m}^*(t)$ (or its integral)

$$\dot{m}^*(t) = \{\mu + \epsilon F(t)\} v(t) \quad (1)$$

Parametric Models

“Backward” models

Look at the speed history:

$$v(t_i) = v_i, \quad i = 1, \dots, N, \quad t_i - t_{i-1} = \delta$$

Invert the causality chain to reconstruct the applied forces

$$F(t_i) \approx m \frac{v(t_i) - v(t_{i-1})}{\delta} + k_0 + k_1 \left(\frac{v(t_i) + v(t_{i-1})}{2} \right)^2$$

Insert resulting force $F(t_i)$ and known speed $v(t_i)$ into (1)
compute the total consumed fuel:

$$\sum_{i=1}^N m^*(t_i) \delta$$

Modeling Fundamentals

- b) signals with “relevant” dynamics;
- a) signals with “fast” dynamics;
- c) signals with “slow” dynamics.

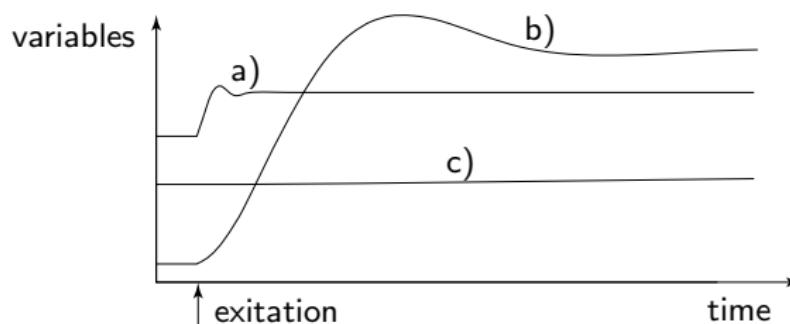


Figure: Classification of variables

When modeling any physical system: 2 main classes of objects to take into account:

- ① “reservoirs,” accumulative element, for ex: of thermal or kinetic energy, of mass or of information;
- ② “flows,” for instance of heat, mass, etc. flowing between the reservoirs.

When modeling any physical system: 2 main classes of objects to take into account:

- ① “reservoirs,” accumulative element, for ex: of thermal or kinetic energy, of mass or of information;
- ② “flows,” for instance of heat, mass, etc. flowing between the reservoirs.

Fundamental notions

- The notion of a reservoir is fundamental: only systems including one or more reservoirs exhibit dynamic behavior.
- To each reservoir there is an associated “level” variable that is a function of the reservoir’s content (in control literature: “state variable”).
- The flows are typically driven by the differences in the reservoir levels. Several examples are given later.

Modeling Methodology: Reservoir-based Approach

- 1 define the system-boundaries (what inputs, what outputs, . . .);

Modeling Methodology: Reservoir-based Approach

- ❶ define the system-boundaries (what inputs, what outputs, ...);
- ❷ identify the relevant “reservoirs” (for mass, energy, information, ...) and corresponding “level variables” (or state variables);

Modeling Methodology: Reservoir-based Approach

- ❶ define the system-boundaries (what inputs, what outputs, . . .);
- ❷ identify the relevant “reservoirs” (for mass, energy, information, . . .) and corresponding “level variables” (or state variables);
- ❸ formulate the differential equations (“conservation laws”) for all relevant reservoirs as shown in eq. (2)

$$\frac{d}{dt} (\text{reservoir content}) = \sum \text{inflows} - \sum \text{outflows};$$

Modeling Methodology: Reservoir-based Approach

- ① define the system-boundaries (what inputs, what outputs, ...);
- ② identify the relevant “reservoirs” (for mass, energy, information, ...) and corresponding “level variables” (or state variables);
- ③ formulate the differential equations (“conservation laws”) for all relevant reservoirs as shown in eq. (2)

$$\frac{d}{dt} (\text{reservoir content}) = \sum \text{inflows} - \sum \text{outflows};$$

- ④ formulate the (usually nonlinear) algebraic relations that express the “flows” between the “reservoirs” as functions of the “level variables”;

Modeling Methodology: Reservoir-based Approach

- ① define the system-boundaries (what inputs, what outputs, ...);
- ② identify the relevant “reservoirs” (for mass, energy, information, ...) and corresponding “level variables” (or state variables);
- ③ formulate the differential equations (“conservation laws”) for all relevant reservoirs as shown in eq. (2)

$$\frac{d}{dt} (\text{reservoir content}) = \sum \text{inflows} - \sum \text{outflows};$$

- ④ formulate the (usually nonlinear) algebraic relations that express the “flows” between the “reservoirs” as functions of the “level variables”;
- ⑤ resolve implicit algebraic loops, if possible, and simplify the resulting mathematical relations as much as possible;

Modeling Methodology: Reservoir-based Approach

- ① define the system-boundaries (what inputs, what outputs, ...);
- ② identify the relevant “reservoirs” (for mass, energy, information, ...) and corresponding “level variables” (or state variables);
- ③ formulate the differential equations (“conservation laws”) for all relevant reservoirs as shown in eq. (2)

$$\frac{d}{dt} (\text{reservoir content}) = \sum \text{inflows} - \sum \text{outflows};$$

- ④ formulate the (usually nonlinear) algebraic relations that express the “flows” between the “reservoirs” as functions of the “level variables”;
- ⑤ resolve implicit algebraic loops, if possible, and simplify the resulting mathematical relations as much as possible;
- ⑥ identify the unknown system parameters using some experiments;

Modeling Methodology: Reservoir-based Approach

- ① define the system-boundaries (what inputs, what outputs, ...);
- ② identify the relevant “reservoirs” (for mass, energy, information, ...) and corresponding “level variables” (or state variables);
- ③ formulate the differential equations (“conservation laws”) for all relevant reservoirs as shown in eq. (2)

$$\frac{d}{dt} (\text{reservoir content}) = \sum \text{inflows} - \sum \text{outflows};$$

- ④ formulate the (usually nonlinear) algebraic relations that express the “flows” between the “reservoirs” as functions of the “level variables”;
- ⑤ resolve implicit algebraic loops, if possible, and simplify the resulting mathematical relations as much as possible;
- ⑥ identify the unknown system parameters using some experiments;
- ⑦ validate the model with experiments that have not been used to identify the system parameters.

Example: Water Tank

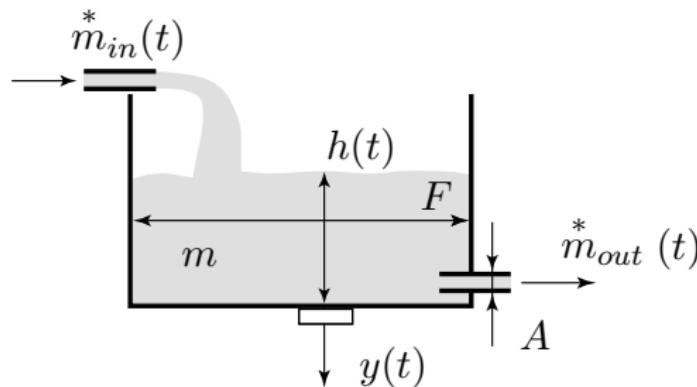


Figure: Water tank system, $m(t)$ mass of water in tank, $h(t)$ corresponding height, F tank-floor area, A = out flow orifice area

Modeling the water tank

Step 1: Inputs/Outputs

- System input is: incoming mass flow $\dot{m}_{in}^*(t)$.
- System output is: water height in the tank $h(t)$.

Modeling the water tank

Step 1: Inputs/Outputs

- System input is: incoming mass flow $\dot{m}_{in}^*(t)$.
- System output is: water height in the tank $h(t)$.

Step 2: Reservoirs and associated levels

- One relevant “reservoir”: mass of water in tank: $m(t)$.
- Level variable: height of water in tank : $h(t)$.
Assumptions: Sensor very fast (type a) variable. Water temperature (density) very slow (type c) variable → mass and height strictly proportional.

Modeling the water tank

Step 3: Differential equation

$$\frac{d}{dt}m(t) = u(t) - \dot{m}_{out}^*(t)$$

Modeling the water tank

Step 3: Differential equation

$$\frac{d}{dt}m(t) = u(t) - \dot{m}_{out}^*(t)$$

Step 4: formulate algebraic relations of flows btw reservoirs

Mass flow leaving the tank given by Bernoulli's law

$$\dot{m}_{out}^*(t) = A\rho v(t), \quad v(t) = \sqrt{2\Delta p(t)/\rho}, \quad \Delta p(t) = \rho g h(t)$$

therefore

$$\frac{d}{dt}m(t) = \rho F \frac{d}{dt}h(t) = u(t) - A\rho \sqrt{2gh(t)}$$

Modeling the water tank

Causality Diagrams

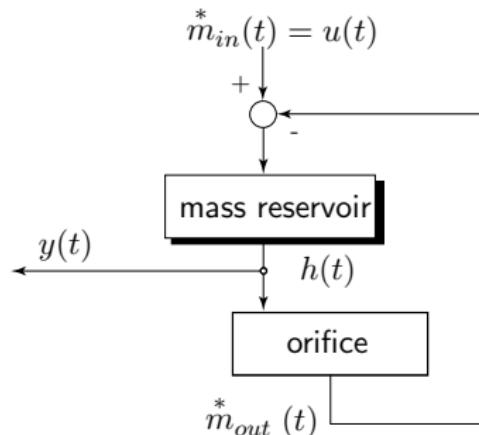


Figure: Causality diagram of the water tank system, shaded blocks represent dynamical subsystems (containing reservoirs), plain blocks represent static subsystems.