Modeling and Analysis of Dynamic Systems

by Dr. Guillaume Ducard ©

Fall 2016

Institute for Dynamic Systems and Control
ETH Zurich, Switzerland

Outline

(1) Lecture 13: Linear System - Stability Analysis

- Zero Dynamics: Definitions
- Zero Dynamics: Analysis
- Example and Summary

Outline

(1) Lecture 13: Linear System - Stability Analysis

- Zero Dynamics: Definitions
- Zero Dynamics: Analysis
- Example and Summary

Zero Dynamics

The dynamic behavior of linear system described as

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{x}(t)=\dot{\boldsymbol{x}}(t) & =\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t) \\
\boldsymbol{y}(t) & =\boldsymbol{C} \boldsymbol{x}(t)+\boldsymbol{D} \boldsymbol{u}(t)
\end{aligned}
$$

can be studied through its poles (eigenvalues of \boldsymbol{A}) for the stability of the state vector \boldsymbol{x}. See previous lecture.
Let's consider the dynamic behavior when the output equation is considered $\boldsymbol{y}(t)$ through the output matrix \boldsymbol{C}.

In the Laplace domain, the relationship between input and output can be represented by a transfer function matrix:

$$
\boldsymbol{P}(s)=\boldsymbol{C} \cdot[s \boldsymbol{I}-\boldsymbol{A}]^{-1} \cdot \boldsymbol{B}+\boldsymbol{D}
$$

SISO Case: Transfer Function

In the SISO case, the transfer function matrix:

$$
\boldsymbol{P}(s)=\boldsymbol{C} \cdot[s \boldsymbol{I}-\boldsymbol{A}]^{-1} \cdot \boldsymbol{B}+\boldsymbol{D}
$$

is a scalar rational transfer function which can always be written in the following form

$$
P(s)=\frac{Y(s)}{U(s)}=k \frac{s^{n-r}+b_{n-r-1} s^{n-r-1}+\ldots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+a_{n-2} s^{n-2}+\ldots+a_{2} s^{2}+a_{1} s+a_{0}}
$$

SISO Case: Transfer Function

$$
P(s)=\frac{Y(s)}{U(s)}=k \frac{s^{n-r}+b_{n-r-1} s^{n-r-1}+\ldots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+a_{n-2} s^{n-2}+\ldots+a_{2} s^{2}+a_{1} s+a_{0}}
$$

Discussions:

- The order of the highest power of s is n.
- Input gain: k
- The relative degree r :
- difference between highest power of s at denominator and the highest power of s at numerator.
- r plays an important role in the discussion of system zeros.

A dynamic system can possess - not only poles - but also zeros.
Question: What is the influence of the zeros?

There is an equivalence between the transfer function

$$
P(s)=\frac{Y(s)}{U(s)}=k \frac{s^{n-r}+b_{n-r-1} s^{n-r-1}+\ldots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+a_{n-2} s^{n-2}+\ldots+a_{2} s^{2}+a_{1} s+a_{0}}
$$

and its state-space representation

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{x}(t) & =\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \ldots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \ldots & -a_{n-1}
\end{array}\right] \boldsymbol{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
\cdot \\
0 \\
k
\end{array}\right] \boldsymbol{u}(t) \\
y(t) & =\left[\begin{array}{llllll}
b_{0} & \ldots & b_{n-r-1} & 1 & 0 & \ldots
\end{array}\right] \boldsymbol{x}(t)=C \boldsymbol{x}(t)
\end{aligned}
$$

Remarks:

- controller canonical form with gain k (min. number of parameters)
- the terms involved in the numerator are those of the C output vector ("transmission zeros").

Zero Dynamics - Definition

The Zero Dynamics of a system:

corresponds to its behavior for those special

- non-zero inputs $u^{*}(t)$
- and initial conditions x^{*}
for which its output $y(t)$ is identical to zero for a finite interval.
(1) Study of the influence of the zeros on the dynamic properties of the system.
(2) Study of the "internal dynamics": analyze the stability of the system states, which are not directly controlled by the input $u(t)$.

Zero Dynamics - Problem

In all the reference-tracking control problems, the controller tries to force the error to zero.

$$
\epsilon=y_{r e f}-y
$$

If $y_{r e f}=0$, then $y(t)$ is to be zero for all times, \Rightarrow all its derivatives are to be zero as well.

If a plant has internal dynamics, which are unstable, but not visible at the system's output, problems are to be expected.

Let's see the form of the derivatives.

The relative degree r

is the number of differentiations needed to have the input $u(t)$ explicitly appear in the "output" $y^{(r)}(t)$

$$
\begin{aligned}
y(t) & =\boldsymbol{C} \boldsymbol{x}(t) \\
\dot{y}(t) & =\boldsymbol{C} \dot{\boldsymbol{x}}(t)=\boldsymbol{C} \boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{C} \boldsymbol{B} \boldsymbol{u}(t)=\boldsymbol{C} \boldsymbol{A} \boldsymbol{x}(t) \\
\vdots & \\
y^{(r-1)}(t) & =\frac{d}{d t} y^{(r-2)}(t)=\boldsymbol{C} \boldsymbol{A}^{r-1} \boldsymbol{x}(t)+\boldsymbol{C} \boldsymbol{A}^{r-2} \boldsymbol{B} u(t)=\boldsymbol{C} \boldsymbol{A}^{r-1} \boldsymbol{x}(t), \\
y^{(r)}(t) & =\frac{d}{d t} y^{(r-1)}(t)=\boldsymbol{C} \boldsymbol{A}^{r} \boldsymbol{x}(t)+\boldsymbol{C A}^{r-1} \boldsymbol{B} u(t)=\boldsymbol{C A}^{r} \boldsymbol{x}(t)+k u(t)
\end{aligned}
$$

where $k \neq 0$ and $r \leq n$.

The relative degree r

$$
\begin{aligned}
z_{1}= & y=\boldsymbol{C} \boldsymbol{x}=\left[b_{0} x_{1}+b_{1} x_{2}+\ldots+b_{n-r-1} x_{n-r}+x_{n-r+1}\right] \\
z_{2}= & \dot{y}=\boldsymbol{C} \boldsymbol{A} \boldsymbol{x}=\left[b_{0} x_{2}+b_{1} x_{3}+\ldots+b_{n-r-1} x_{n-r+1}+x_{n-r+2}\right] \\
\vdots & \\
z_{r}= & y^{(r-1)}=\boldsymbol{C} \boldsymbol{A}^{r-1} \boldsymbol{x}=\left[b_{0} x_{r}+b_{1} x_{r+1}+\ldots+b_{n-r-1} x_{n-1}+x_{n}\right] \\
& y^{(r)}=\boldsymbol{C} \boldsymbol{A}^{r} \boldsymbol{x}+k u=\left[b_{0} x_{r+1}+b_{1} x_{r+2}+\ldots+b_{n-r} x_{n}+\dot{x}_{n}\right]
\end{aligned}
$$

\dot{x}_{n} is found from the state-space representation:

$$
\frac{d}{d t} \boldsymbol{x}(t)=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right] \boldsymbol{x}(t)+\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
0 \\
k
\end{array}\right] \boldsymbol{u}(t)
$$

Outline

(1) Lecture 13: Linear System - Stability Analysis

- Zero Dynamics: Definitions
- Zero Dynamics: Analysis
- Example and Summary

Zero Dynamics: Analysis Formulation

The following coordinate transformation $z=\Phi x$ is introduced

$$
\begin{aligned}
& z_{1}= \\
& y=\boldsymbol{C} \boldsymbol{x}=\left[b_{0} x_{1}+b_{1} x_{2}+\ldots+b_{n-r-1} x_{n-r}+x_{n-r+1}\right] \\
& z_{2}=\quad \dot{y}=\boldsymbol{C} \boldsymbol{A} \boldsymbol{x}=\left[b_{0} x_{2}+b_{1} x_{3}+\ldots+b_{n-r-1} x_{n-r+1}+x_{n-r+2}\right] \\
& \vdots \\
& z_{r}= y^{(r-1)}=\boldsymbol{C} \boldsymbol{A}^{r-1} \boldsymbol{x}=\left[b_{0} x_{r}+b_{1} x_{r+1}+\ldots+b_{n-r-1} x_{n-1}+x_{n}\right]
\end{aligned}
$$

Zero Dynamics: Analysis Formulation

The remaining $n-r$ coordinates are chosen such that the transformation Φ is regular and such that their derivatives also do not depend on the input u. Obviously the choice

$$
\begin{aligned}
z_{r+1} & =x_{1} \\
z_{r+2} & =x_{2} \\
\ldots & \\
z_{n} & =x_{n-r}
\end{aligned}
$$

satisfies both requirements.
To simplify notation the vector z is partitioned into two subvectors

$$
z=\left[\begin{array}{c}
\xi \\
\eta
\end{array}\right], \quad \xi=\left[\begin{array}{c}
z_{1} \\
\cdots \\
z_{r}
\end{array}\right], \quad \eta=\left[\begin{array}{c}
z_{r+1} \\
\cdots \\
z_{n}
\end{array}\right]
$$

Zero Dynamics: Analysis Formulation

In the new coordinates the system has the form

$$
\left[\begin{array}{c}
\dot{\xi} \\
\dot{\eta}
\end{array}\right]=\left[\begin{array}{ccccc|ccccc}
0 & 1 & 0 & \ldots & 0 & 0 & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
- & - & r^{T} & - & - & - & - & s^{T} & - & - \\
\hline 0 & \cdots & \cdots & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 0 & 0 & 0 & 1 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 & 1 \\
- & - & p^{T} & - & - & - & - & q^{T} & - & -
\end{array}\right]\left[\begin{array}{c}
\xi \\
\eta
\end{array}\right]+\left[\begin{array}{c}
0 \\
\cdots \\
0 \\
k \\
\hline 0 \\
\cdots \\
\cdots \\
0
\end{array}\right] u
$$

and obviously $y=z_{1}$.
In order to have an identically vanishing output it is therefore necessary and sufficient to choose the following control and initial conditions

$$
\xi^{*}=0, \quad u^{*}(t)=-\frac{1}{k} s^{T} \eta^{*}(t)
$$

where the initial condition $\eta_{0}^{*} \neq 0$ can be chosen arbitrarily.

Zero Dynamics: Analysis Formulation

The internal states (zero dynamics states) evolve according to the equation

$$
\frac{d}{d t} \eta(t)=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
0 & \ldots & \ldots & 0 & 1 \\
- & - & q^{T} & - & -
\end{array}\right] \eta^{*}(t)=Q \eta^{*}(t), \quad \eta^{*}(0)=\eta_{0}^{*}
$$

Minimum phase system

- If the matrix Q is asymptotically stable (all eigenvalues with negative real part) \Rightarrow then the system is minimum phase.
- Equivalence: a minimum phase system, is a system whose zeros have all negative real parts.

These two definitions are consistent: see definition of the vector q^{T}

$$
q^{T}=\left[\begin{array}{llll}
-b_{0}, & -b_{1}, \ldots, & -b_{n-r-2}, & -b_{n-r-1}
\end{array}\right]
$$

Unstable Zero dynamics

As soon as there is a zero with positive real part:

- system is non-minimum phase,
- system has its zero dynamics unstable,
- its internal states η can diverge without $y(t)$ being affected.

Consequences:

- the input $u(t)$ may not be chosen such that the output $y(t)$ is (almost) zero before the states η associated with the zero dynamics are (almost) zero.
- Feedback control more difficult to design.
- This imposes a constraint of the bandwidth of the closed-loop system:
\Rightarrow significantly slower than the "slowest" non-minimum phase zero.

Zero Dynamics: Analysis Formulation

This equation can be derived using the definition of z_{n}, the original system equation, the definition of $z_{1}(1)$, again the coordinate transformation,

$$
\begin{aligned}
\dot{z}_{n} & =\dot{x}_{n-r} \\
& =x_{n-r+1} \\
& =z_{1}-b_{0} x_{1} \ldots-b_{n-r-1} x_{n-r} \\
& =z_{1}-b_{0} z_{r+1} \ldots-b_{n-r-1} z_{n} \\
& =z_{1}+q^{T} \eta
\end{aligned}
$$

Therefore, the eigenvalues of Q coincide with the transmission zeros of the original system and with the roots of the numerator of its transfer function.

Zero Dynamics: Analysis Formulation

Outline

(1) Lecture 13: Linear System - Stability Analysis

- Zero Dynamics: Definitions
- Zero Dynamics: Analysis
- Example and Summary

Zero Dynamics Analysis on a Small SISO System

$$
P(s)=\frac{Y(s)}{U(s)}=k \frac{b_{1} s+b_{0}}{a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}
$$

Step 1: Convert the plant's transfer function into a state-space controller canonical form
number of states $n=4$, relative degree $r=2$.

$$
\begin{aligned}
\frac{d}{d t} x(t) & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & -a_{3}
\end{array}\right] \cdot x(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
k
\end{array}\right] \cdot u(t) \\
y(t) & =\left[\begin{array}{cccc}
b_{0} & b_{1} & 1 & 0
\end{array}\right] \cdot x(t)+[0] \cdot u(t)
\end{aligned}
$$

Step 2: Coordinate transformation

Relative degree $r=2$, therefore
$y(t)=b_{0} x_{1}(t)+b_{1} x_{2}(t)+x_{3}(t)$
$\dot{y}(t)=b_{0} x_{2}(t)+b_{1} x_{3}(t)+x_{4}(t)$
$\ddot{y}(t)=-a_{0} x_{1}(t)-a_{1} x_{2}(t)+\left(b_{0}-a_{2}\right) x_{3}(t)+\left(b_{1}-a_{3}\right) x_{4}(t)+k u(t)$
The coordinate transformation $z=\Phi^{-1} \cdot x$ has the form

$$
\begin{aligned}
& z_{1}=y=b_{0} x_{1}+b_{1} x_{2}+x_{3} \\
& z_{2}=\dot{y}=b_{0} x_{2}+b_{1} x_{3}+x_{4} \\
& z_{3}=x_{1} \\
& z_{4}=x_{2}
\end{aligned}
$$

Step 3: Find the transformation matrices $\boldsymbol{\Phi}^{-1}$, such that $\boldsymbol{z}=\boldsymbol{\Phi}^{-1} \cdot \boldsymbol{x}$ and then compute $\boldsymbol{\Phi}$

$$
\begin{aligned}
& \mathbf{\Phi}^{-\mathbf{1}}=\left[\begin{array}{cccc}
b_{0} & b_{1} & 1 & 0 \\
0 & b_{0} & b_{1} & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \text { and } \\
& \boldsymbol{\Phi}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & -b_{0} & -b_{1} \\
-b_{1} & 1 & b_{0} b_{1} & b_{1}^{2}-b_{0}
\end{array}\right]
\end{aligned}
$$

Remark: Notice that, by construction, $\operatorname{det}(\Phi)=\operatorname{det}\left(\Phi^{-1}\right)=1$

Step 4: Build a new state-space representation in $z=\left[\begin{array}{l}\boldsymbol{\xi} \\ \boldsymbol{\eta}\end{array}\right]$

$$
\boldsymbol{\xi}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right], \quad \boldsymbol{\eta}=\left[\begin{array}{l}
z_{3} \\
z_{4}
\end{array}\right]
$$

in the new coordinates the system

$$
\begin{gathered}
\frac{d}{d t} \boldsymbol{z}(t)=\mathbf{\Phi}^{-1} \boldsymbol{A} \boldsymbol{\Phi} \boldsymbol{z}(t)+\mathbf{\Phi}^{-1} \boldsymbol{B} \boldsymbol{u}(t), \quad y(t)=\boldsymbol{C} \boldsymbol{\Phi} \boldsymbol{z}(t) \\
\frac{d}{d t}\left[\begin{array}{c}
\xi_{1}(t) \\
\xi_{2}(t) \\
\eta_{1}(t) \\
\eta_{2}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
r_{1} & r_{2} & s_{1} & s_{2} \\
0 & 0 & 0 & 1 \\
1 & 0 & -b_{0} & -b_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
\xi_{1}(t) \\
\xi_{2}(t) \\
\eta_{1}(t) \\
\eta_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
k \\
0 \\
0
\end{array}\right] \cdot u(t)
\end{gathered}
$$

The coefficients $r_{1}, r_{2}, s_{1}, s_{2}$ are listed below

$$
\begin{aligned}
& r_{1}=b_{0}-a_{2}-b_{1}\left(b_{1}-a_{3}\right) \\
& r_{2}=b_{1}-a_{3} \\
& s_{1}=b_{0} b_{1}\left(b_{1}-a_{3}\right)-a_{0}-b_{0}\left(b_{0}-a_{2}\right) \\
& s_{2}=\left(b_{1}-a_{3}\right)\left(b_{1}^{2}-b_{0}\right)-a_{1}-\left(b_{0}-a_{2}\right) b_{1}
\end{aligned}
$$

Figure: System structure of the example's zero dynamics.

Step 5: Study the submatrix \boldsymbol{Q} of $\tilde{\boldsymbol{A}}=\boldsymbol{\Phi}^{-1} \boldsymbol{A} \boldsymbol{\Phi}$ corresponding to the zero-dynamics vector $\boldsymbol{\eta}$

Choosing the following initial conditions $\xi_{1}^{*}(0)=\xi_{2}^{*}(0)=0$ and control signal $u^{*}(t)=-\frac{1}{k}\left[s_{1} \eta_{1}^{*}(t)+s_{2} \eta_{2}^{*}(t)\right]$ yields a zero output $y(t)=0$ for all $t \geq 0$. The initial conditions $\eta_{1}^{*}(0) \neq 0$ and $\eta_{2}^{*}(0) \neq 0$ may be chosen arbitrarily.

The trajectories of state variables $\eta_{1}(t)$ and $\eta_{2}(t)$, in this case, are defined by the equations

$$
\frac{d}{d t} \eta^{*}(t)=\left[\begin{array}{cc}
0 & 1 \\
-b_{0} & -b_{1}
\end{array}\right] \cdot \eta^{*}(t)=\boldsymbol{Q} \cdot \eta^{*}(t)
$$

Step 6: Conclude on the conditions to have Q asymptotically stable

$$
\frac{d}{d t} \eta^{*}(t)=\left[\begin{array}{cc}
0 & 1 \\
-b_{0} & -b_{1}
\end{array}\right] \cdot \eta^{*}(t)=\boldsymbol{Q} \cdot \eta^{*}(t)
$$

