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Zero Dynamics

The dynamic behavior of linear system described as

d
dt
x(t) = ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

can be studied through its poles (eigenvalues of A) for the stability
of the state vector x. See previous lecture.
Let’s consider the dynamic behavior when the output equation is
considered y(t) through the output matrix C.

In the Laplace domain, the relationship between input and output
can be represented by a transfer function matrix:

P (s) = C · [s I −A]−1 ·B +D
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SISO Case: Transfer Function

In the SISO case, the transfer function matrix:

P (s) = C · [s I −A]−1 ·B +D

is a scalar rational transfer function which can always be written in
the following form

P (s) =
Y (s)

U(s)
= k

sn−r + bn−r−1s
n−r−1 + . . .+ b1s+ b0

sn + an−1sn−1 + an−2sn−2 + . . .+ a2s2 + a1s+ a0
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SISO Case: Transfer Function

P (s) =
Y (s)

U(s)
= k

sn−r + bn−r−1s
n−r−1 + . . .+ b1s+ b0

sn + an−1sn−1 + an−2sn−2 + . . .+ a2s2 + a1s+ a0

Discussions:

The order of the highest power of s is n.

Input gain: k

The relative degree r:

difference between highest power of s at denominator and the
highest power of s at numerator.
r plays an important role in the discussion of system zeros.

A dynamic system can possess - not only poles - but also zeros.
Question: What is the influence of the zeros?
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There is an equivalence between the transfer function

P (s) =
Y (s)

U(s)
= k

sn−r + bn−r−1s
n−r−1 + . . .+ b1s+ b0

sn + an−1sn−1 + an−2sn−2 + . . .+ a2s2 + a1s+ a0

and its state-space representation

d

dt
x(t) =













0 1 0 . . . 0
0 0 1 . . . 0
· · · · ·

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1













x(t) +













0
0
·

0
k













u(t)

y(t) = [ b0 . . . bn−r−1 1 0 . . . 0 ] x(t) = Cx(t)

Remarks:

controller canonical form with gain k (min. number of parameters)

the terms involved in the numerator are those of the C output
vector (“transmission zeros”).
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Zero Dynamics - Definition

The Zero Dynamics of a system:

corresponds to its behavior for those special

non-zero inputs u∗(t)

and initial conditions x∗

for which its output y(t) is identical to zero for a finite interval.

1 Study of the influence of the zeros
on the dynamic properties of the system.

2 Study of the “internal dynamics”:
analyze the stability of the system states, which are not directly
controlled by the input u(t).
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Zero Dynamics - Problem

In all the reference-tracking control problems, the controller tries
to force the error to zero.

ǫ = yref − y

If yref = 0, then y(t) is to be zero for all times, ⇒ all its
derivatives are to be zero as well.

If a plant has internal dynamics, which are unstable, but not visible
at the system’s output, problems are to be expected.

Let’s see the form of the derivatives.
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The relative degree r

is the number of differentiations needed to have the input u(t)
explicitly appear in the “output” y(r)(t)

y(t) = Cx(t),

ẏ(t) = Cẋ(t) = CAx(t) +CBu(t) = CAx(t),

...

y(r−1)(t) =
d

dt
y(r−2)(t) = CAr−1x(t) +CAr−2Bu(t) = CAr−1x(t),

y(r)(t) =
d

dt
y(r−1)(t) = CArx(t) +CAr−1Bu(t) = CArx(t) + ku(t)

where k 6= 0 and r ≤ n.

G. Ducard c© 10 / 28



Lecture 13: Linear System - Stability Analysis
Zero Dynamics: Definitions
Zero Dynamics: Analysis
Example and Summary

The relative degree r

z1 = y = Cx = [b0x1 + b1x2 + . . .+ bn−r−1xn−r + xn−r+1]

z2 = ẏ = CAx = [b0x2 + b1x3 + . . .+ bn−r−1xn−r+1 + xn−r+2]

...

zr = y(r−1) = CAr−1x = [b0xr + b1xr+1 + . . .+ bn−r−1xn−1 + xn]

y(r) = CArx+ ku = [b0xr+1 + b1xr+2 + . . .+ bn−rxn + ẋn]

ẋn is found from the state-space representation:

d

dt
x(t) =













0 1 0 . . . 0
0 0 1 . . . 0
· · · · ·

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1













x(t) +













0
0
·

0
k













u(t)

G. Ducard c© 11 / 28



Lecture 13: Linear System - Stability Analysis
Zero Dynamics: Definitions
Zero Dynamics: Analysis
Example and Summary

Outline

1 Lecture 13: Linear System - Stability Analysis
Zero Dynamics: Definitions
Zero Dynamics: Analysis
Example and Summary

G. Ducard c© 12 / 28



Lecture 13: Linear System - Stability Analysis
Zero Dynamics: Definitions
Zero Dynamics: Analysis
Example and Summary

Zero Dynamics: Analysis Formulation

The following coordinate transformation z = Φx is introduced

z1 = y = Cx = [b0x1 + b1x2 + . . .+ bn−r−1xn−r + xn−r+1]

z2 = ẏ = CAx = [b0x2 + b1x3 + . . .+ bn−r−1xn−r+1 + xn−r+2]

...

zr = y(r−1) = CAr−1x = [b0xr + b1xr+1 + . . .+ bn−r−1xn−1 + xn]
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Zero Dynamics: Analysis Formulation

The remaining n− r coordinates are chosen such that the transformation
Φ is regular and such that their derivatives also do not depend on the
input u. Obviously the choice

zr+1 = x1

zr+2 = x2

. . .

zn = xn−r

satisfies both requirements.
To simplify notation the vector z is partitioned into two subvectors

z =

[

ξ

η

]

, ξ =





z1
. . .

zr



 , η =





zr+1

. . .

zn




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Zero Dynamics: Analysis Formulation

In the new coordinates the system has the form

[

ξ̇

η̇

]

=













0 1 0 . . . 0
0 0 1 . . . 0
0 . . . . . . 0 1

− − rT − −

0 . . . . . . . . . 0
0 . . . . . . . . . 0
0 . . . . . . . . . 0

− − sT − −

0 . . . . . . . . . 0
0 . . . . . . . . . 0
0 . . . . . . . . . 0

− − pT − −

0 1 0 . . . 0
0 0 1 . . . 0
0 . . . . . . 0 1

− − qT − −













[

ξ

η

]

+











0
. . .

0
k

0
. . .

. . .

0











u

and obviously y = z1.
In order to have an identically vanishing output it is therefore necessary
and sufficient to choose the following control and initial conditions

ξ∗ = 0, u∗(t) = −
1

k
sT η∗(t)

where the initial condition η∗0 6= 0 can be chosen arbitrarily.
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Zero Dynamics: Analysis Formulation

The internal states (zero dynamics states) evolve according to the
equation

d

dt
η(t) =









0 1 0 . . . 0
0 0 1 . . . 0
0 . . . . . . 0 1
− − qT − −









η∗(t) = Qη∗(t), η∗(0) = η∗0

Minimum phase system

If the matrix Q is asymptotically stable (all eigenvalues with
negative real part) ⇒ then the system is minimum phase.

Equivalence: a minimum phase system, is a system whose zeros
have all negative real parts.

These two definitions are consistent: see definition of the vector qT

qT = [−b0, −b1, . . . , −bn−r−2, −bn−r−1]
G. Ducard c© 16 / 28



Lecture 13: Linear System - Stability Analysis
Zero Dynamics: Definitions
Zero Dynamics: Analysis
Example and Summary

Unstable Zero dynamics

As soon as there is a zero with positive real part:

system is non-minimum phase,

system has its zero dynamics unstable,

its internal states η can diverge without y(t) being affected.

Consequences:

the input u(t) may not be chosen such that the output y(t) is
(almost) zero before the states η associated with the zero dynamics
are (almost) zero.

Feedback control more difficult to design.

This imposes a constraint of the bandwidth of the closed-loop
system:
⇒ significantly slower than the “slowest” non-minimum phase zero.
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Zero Dynamics: Analysis Formulation

This equation can be derived using the definition of zn, the original
system equation, the definition of z1 (1), again the coordinate
transformation,

żn = ẋn−r

= xn−r+1

= z1 − b0x1 . . .− bn−r−1xn−r

= z1 − b0zr+1 . . .− bn−r−1zn

= z1 + qT η

Therefore, the eigenvalues of Q coincide with the transmission
zeros of the original system and with the roots of the numerator of
its transfer function.

G. Ducard c© 18 / 28



Lecture 13: Linear System - Stability Analysis
Zero Dynamics: Definitions
Zero Dynamics: Analysis
Example and Summary

Zero Dynamics: Analysis Formulation

 

   
∫∫∫

∫∫∫ ηn−r−1 η1
sT

qT

k

u

ξr ξr−1 ξ1 =

rT

pT

G. Ducard c© 19 / 28



Lecture 13: Linear System - Stability Analysis
Zero Dynamics: Definitions
Zero Dynamics: Analysis
Example and Summary

Outline

1 Lecture 13: Linear System - Stability Analysis
Zero Dynamics: Definitions
Zero Dynamics: Analysis
Example and Summary

G. Ducard c© 20 / 28



Lecture 13: Linear System - Stability Analysis
Zero Dynamics: Definitions
Zero Dynamics: Analysis
Example and Summary

Zero Dynamics Analysis on a Small SISO System

P (s) =
Y (s)

U(s)
= k

b1s+ b0

a3s3 + a2s2 + a1s+ a0

Step 1: Convert the plant’s transfer function into a state-space
controller canonical form

number of states n = 4, relative degree r = 2.

d

dt
x(t) =









0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 −a3









· x(t) +









0
0
0
k









· u(t)

y(t) = [ b0 b1 1 0 ] · x(t) + [ 0 ] · u(t)
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Step 2: Coordinate transformation

Relative degree r = 2, therefore

y(t) = b0x1(t) + b1x2(t) + x3(t)

ẏ(t) = b0x2(t) + b1x3(t) + x4(t)

ÿ(t) = −a0x1(t)− a1x2(t) + (b0 − a2)x3(t) + (b1 − a3)x4(t) + k u(t)

The coordinate transformation z = Φ−1 · x has the form

z1 = y = b0x1 + b1x2 + x3

z2 = ẏ = b0x2 + b1x3 + x4

z3 = x1

z4 = x2
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Step 3: Find the transformation matrices Φ−1, such that z = Φ
−1 · x

and then compute Φ

Φ
−1 =

















b0 b1 1 0

0 b0 b1 1

1 0 0 0

0 1 0 0

















and

Φ =

















0 0 1 0

0 0 0 1

1 0 −b0 −b1

−b1 1 b0 b1 b21 − b0

















Remark: Notice that, by construction, det(Φ) = det(Φ−1) = 1
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Step 4: Build a new state-space representation in z =

[

ξ

η

]

ξ =

[

z1
z2

]

, η =

[

z3
z4

]

in the new coordinates the system

d

dt
z(t) = Φ

−1AΦ z(t) +Φ
−1B u(t), y(t) = C Φ z (t)

d

dt











ξ1(t)

ξ2(t)

η1(t)

η2(t)











=











0 1 0 0

r1 r2 s1 s2

0 0 0 1

1 0 −b0 −b1











·











ξ1(t)

ξ2(t)

η1(t)

η2(t)











+











0

k

0

0











· u(t)
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The coefficients r1, r2, s1, s2 are listed below

r1 = b0 − a2 − b1(b1 − a3)

r2 = b1 − a3

s1 = b0 b1(b1 − a3)− a0 − b0(b0 − a2)

s2 = (b1 − a3)(b
2
1 − b0)− a1 − (b0 − a2)b1
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∫∫∫∫ η2 η1 s1

s2

r1

r2

−b0

−b1

k

u

ξ1ξ2

Figure: System structure of the example’s zero dynamics.
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Step 5: Study the submatrix Q of Ã = Φ
−1AΦ corresponding to the

zero-dynamics vector η

Choosing the following initial conditions ξ∗1(0) = ξ∗2(0) = 0 and control
signal u∗(t) = − 1

k
[s1η

∗

1(t) + s2η
∗

2(t)] yields a zero output y(t) = 0 for all
t ≥ 0. The initial conditions η∗1(0) 6= 0 and η∗2(0) 6= 0 may be chosen
arbitrarily.

The trajectories of state variables η1(t) and η2(t), in this case, are
defined by the equations

d

dt
η∗(t) =

[

0 1

−b0 −b1

]

· η∗(t) = Q · η∗(t)
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Step 6: Conclude on the conditions to have Q asymptotically stable

d

dt
η∗(t) =

[

0 1

−b0 −b1

]

· η∗(t) = Q · η∗(t)
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