
Problem Solutions

Vehicle Energy and Fuel Consumption

Vehicle Energy Losses and Performance Analysis

Problem 2.1

For a vehicle with mv = 1500 kg, Af · cd = 0.7m2, cr = 0.012, a vehicle speed
v = 120 km/h and an acceleration a = 0.027 g, calculate the traction torque
required at the wheels and the corresponding rotational speed level (tires
195/65/15T). Calculate the road slope that is equivalent to that acceleration.

• Solution

Assume ρa = 1.20kg/m3, g = 9.81m/s2.
a) Traction torque required at wheels:

Ft = mv · cr · g + 1/2 · ρa ·Af · cd · v2 +mv · a =

= 1500 · 0.012 · 9.81 +
1

2
· 1.2 · 0.7 ·

(
120

3.6

)2

+ 1500 · 0.027 · 9.81 = 1041 N

The information about the tires is explained by
newline

195︸︷︷︸
width of the

tire in [cm]

/ 65︸︷︷︸
ratio of sidewall

height to tire

width in [%]

/ 15︸︷︷︸
wheel diameter

in [inch]

T︸︷︷︸
max. 190 [km/h]

.

Thus
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rw =
dw
2

+ hsw =
15”

2
+ 0.65 · 0.195 = 15 ·

0.0254

2
+ 0.65 · 0.195 = 0.317 m

Tt = rw · Ft = 0.317 · 1041 = 330 Nm

b) Rotational speed level:

ωw =
v

rw
=

120/3.6

0.317
· 0.317 = 105.2 rad/s = 1004 rpm

c) Acceleration-equivalent road slope:

α = arcsin((
a

g
= 0.027) rad

α% = 100 · tan(0.027) = 100 · 0.027 = 2.7 %

For the requested velocity, a traction torque of 330 Nm at a rotational speed
of 1004 rpm is required. This is equivalent to the acceleration caused by a
slope of 2.7%.

Problem 2.2

Find the road slope α that is equivalent to a step of height h for a car with
(a rigid) wheel radius rw on a flat terrain. Calculate the result for h/2rw =
{0.01, 0.02, 0.05, 0.1, 0.2}.

• Solution
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Fig. 10.7. Force and torque balance of the problem.

Assume the weight of vehicle distributed uniformly along the wheel base
b, and the reaction force of the front wheel is from the contact point to
the centre of the wheel.
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a) Force balance
When in contact with the step, the car wheel will rotate around the contact
point. Thus the front wheel’s reaction force Rf will be directed from the
contact point to the wheel center (neglect slip here) and the reaction force
at the contact point on the terrain becomes null. Front wheel reaction force
Rf is balanced by the weight Gv, back wheel reaction force Rb and the
traction force Ft, all of which have to be calculated. One can write two
equations for force balance and one equation for torque balance.

x : Ft = Rf sin θ

y : mv g = Rf cos θ +Rb

z : Ft × (rw − h) +Rb × b = mv g ×
b

2

In order to solve the traction force and therefore the traction torque, we
substitute unknowns Rf and Rb with Ft:

Ft − (mv g −Rb) · tan θ = 0

Rb = mv g − Ft · cot θ

Further substituting Rb with Ft, we get:

Ft (rw − h) + (mv g − Ft cot θ) · b = mv g
b

2

Ft =
1
2 mv g

rw−h
a − rw−h

b

.

From the geometry of the plot, we can see

cot θ =
rw − h

a
,

where a denotes the characterization distance from the front wheel centre
to the step. Therefore, the traction torque is:

Tt = Ft × (rw − h) =
mv g

2 ( 1a − 1
b )

b) Calculate the equivalent gradability
In order to calculate the road slope, the traction torque equates that of
overcoming a step with height h:

Tt = Ft × (rw − h) = mv g sinα× rw.

Solving the road slope, we have the exact result for rigid wheels:
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sinα =
Ft (rw − h)

mv g rw
=

1

2 rw
·

ab

b− a

α = arcsin

(
ab

2 rw (b− a)

)

=
1

2 ( rwa − rw
b )

c) Explore a representation of first approximation
If a ≪ b, the solution is no longer correlated with the wheelbase b, which
gives:

α = arcsin
a

2 rw

Discussion

• Other ways of calculation
From the geometry, it can be seen that

a2 = r2w − (rw − h)2 = h · (2 rw − h).

Thus, the approximated calculation correlates only one geometric pa-
rameter z = h

2·rw
:

α = arcsin

⎛

⎝

√
h
rw

· (2 − h
rw

)

4

⎞

⎠

= arcsin

⎛

⎝

√
h

2 rw
· (1− h

2 rw
)

2

⎞

⎠ = arcsin

(√
z(1− z)

2

)

Correspondingly, the exact solution correlates the relative height z =
h/rw and the relative wheelbase zb = b/rw:

α =
1

2 ( rwa − rw
b )

=
1

2

(
1√

2 z(1−z)
− 1

zb

)

• Maximum height of the step that can be overcome
Note that the height of the step cannot be larger than the wheel size
z = h

2 rw
≤ 1

2 , otherwise the rotation around the contact point may
not be achieved.

• Comparison between the approximated and exact solution:
Assume the relative wheelbase b/rw = 6.67, and different relative
step heights as in the Table ??.
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Table 10.1. Different results with different geometric parameters.

z [m] αapprox [rad] αexact [rad]

0.20 0.2867 ( 29%) 0.3090 ( 32 %)

0.10 0.2137 ( 22%) 0.2265 ( 23 %)

0.05 0.1547 ( 16%) 0.1615 ( 16 %)

0.02 0.0991 ( 10%) 0.1020 ( 10 %)

0.01 0.0704 ( 7 %) 0.0718 ( 7 %)

Problem 2.3

Find an equation to evaluate the speed profile of an ICE vehicle under
maximum engine torque. Assume a maximum torque curve of the type
Te = a · ω2

e + b · ωe + c. Include the engine inertia and a traction efficiency ηt.

• Solution

a) Solve theoretically the speed response subject to engine torque
According the vehicle dynamics, the speed dynamics of the vechicle can
be described as follows:

mv,eq v̇ =
γ

rw
· ηtTe −mv · g · Cr −

1

2
ρa · AfCd · v2, (*)

where mv,eq = mv +Θe ·
(

γ
rw

)2
,Te = f(ωe) in some cases.

Assume Te is substituted as a function of vehicle speed v = rw
γ · ωe, and

then sorted Equation (??) with descending order of power, we have the
representation of elementary vehicle speed as follows:

(
1

Av2 +B v + C
) dv = dt (**)

Integrating the elementary speed from the initial state, we have:

∫ v(t)

v0

(
1

Av2 +B v + C
) dv =

∫ t

t0

dt

∫ v(t)

v0

[
1

A (v + B
2A )2 − B2−4AC

4A

]

dv = t− t0

Solving the equation subject to different values of ∆ = B2 − 4AC:
(i) If ∆ ≥ 0

Equation (??) gives:

1

sgn(A)
√
B2 − 4AC

ln

[
2Av +B − sgn(A) ·

√
B2 − 4AC

2Av +B + sgn(A) ·
√
B2 − 4AC

]∣∣∣∣∣

v(t)

v0

= t

∣∣∣∣∣∣

t

t0
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Let

S+ = sqrtB2 − 4AC

Ŝ+ = sgn(A) · sqrtB2 − 4AC

K0 =
2Av0 +B − sgn(A) ·

√
B2 − 4AC

2Av0 +B + sgn(A) ·
√
B2 − 4AC

=
2Av0 +B − Ŝ+

2Av0 +B + Ŝ+

,

then, the vehicle speed v can be represented as a explicit function of
time t, when the vehicle starts are v|t0=0 = v0:

K(t) =
2Av +B − Ŝ+

2Av +B + Ŝ+

=
2Av0 +B − Ŝ+

2Av0 +B + Ŝ+

·e[Ŝ+(t−t0)] = K0·e[Ŝ+(t−t0)]

Equivalently, it can also be represented as

v =
Ŝ+

2A

1 +K(t)

1−K(t)
−

B

2A

=
Ŝ+[1 +K(t)]−B [1−K(t)]

2A [1−K(t)]

(ii) If ∆ < 0
Equation (??) gives:

2

sgn(A) ·
√
4AC −B2

[
arctan

2Av +B

sgn(A)
√
4AC −B2

− arctan
2Av0 +B

sgn(A)
√
4AC −B2

]
= t− t0

Let

S− =
√
4AC −B2

Ŝ− = sgn(A) ·
√

4AC −B2,

then, the vehicle speed v can be represented as a explicit function of
time t, when the vehicle starts are v|t0=0 = v0:

arctan
2Av + B

Ŝ−

− arctan
2Av0 +B

Ŝ−

=
Ŝ−

2
(t− t0).

Equivalently, it can also be represented as

v =
Ŝ− · tan

[
Ŝ−(t−t0)

2 + arctan 2Av0+B
Ŝ−

]
−B

2A
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b) Specific case of maximum torque input
Given that Te = a · ω2

e + b · ωe + c, the corresponding A,B and C in
Equation (??) can be calculated as follows:

A =

(

−
1

2
· ρa · Af · cd +

(
γ

rw

)3

· ηt · a

)

·
1

mv,eq

B =

(
γ

rw

)2

· ηt · b ·
1

mv,eq

C =

(
−g ·mv · cr +

γ

rw
· ηt · c

)
·

1

mv,eq

Finally, substituting these parameters into ∆ and switch to the corre-
sponding equations, we can evaluate the speed profile of an ICE vehicle
under maximum engine torque.
Discussion
• Note that γ/rw generally varies along the acceleration, so a solution

must be obtained step by step.
• Specific cases of parameters

(i) Decided by normal shape of maximum torque curve
Given the fact that typical maximum torque curve can be emulated
by a downward parabolar, which means:

a < 0, b ≥ 0, c > 0.

This parameter set gives both possibilities for ∆ to be positive or
negative.

(ii) Decided by different accerleration of vehicle
When B = 0 and C < 0 (coasting), then D < 0 and one finds back
(2.18) for the coasting velocity.

Problem 2.4

Evaluate the 0-100 km/h time precisely using the result of Problem 2.3. Use
the following data: engine launch speed = 2500 rpm, engine upshift speed
ωe,max = 6500 rpm, γ/rw = {46.48, 29.13, 20.39, 15.04, 11.39}, a = −4.38 ·
10−4Nms2, b = 0.3514Nms, c = 80Nm, and the following vehicle data:
mv = 1240 kg, Af · cd = 0.65 m2, cr = 0.009, ηt = 0.9. Further assume that a
slipping clutch transmits all the torque. The momentum of inertia Θe = 0.128
kg·m2.

• Solution

a) Estimate gear # at the end of acceleration
Since A, B, and C depend on γ, which changes along the speed trajectory,
the calculation of v(t) must be separated in segments according to the
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gear and the clutch status. The target speed will be reached in the gear
# whose γ/rw is immediately lower than

ωe,max

v
=

6500[rpm] · (2 · π/60)
100km/h/3.6

= 24.5

Thus the target speed is reached in the third gear. Four segments (includ-
ing takeoff) must be considered.

b) Vehicle mass and inertia
As for the rolling friction, the orignal vehicle mass is used for reaction
force calculation:

mv = 1240kg.

As for the dynamic force, the equivalent mass with engine inertia is con-
sidered for each gear #:

mv,eq = mv +Θe ·
(
γ

rw

)2

c) 1st segment : takeoff, v0 = 0, t0 = 0
Although the vehicle is at standstill, the engine is operating at the idle
speed. Using the result of Problem 2.6, we get ωe = 2500 rpm; and sub-
stituting torque parameters, we further have:

Te = a · ω2
e + b · ωe + c = 142.0 Nm

as a constant torque during slipping-clutch segment.

mv,eq = mv +Θe ·
(
γ

rw

)2

= 1240 + 0.128 · 46.482 = 1517 kg

A = −
1

2
· ρa · Af · cd ·

1

mv,eq
= −

1

2
·
1.2 · 0.65
1517

= −2.571× 10−4

B = 0

C =

(
−g ·mv · cr +

γ

rw
· ηt · Te

)
·

1

mv,eq
=

=
−9.81 · 1240 · 0.009 + 46.48 · 0.9 · 142

1517
= 3.844

∆ = −4 · A · C > 0

Ŝ+ = sgn(A) ·
√
−4 ·A · C = −1 ·

√
4 · 2.571× 10−4 · 3.844 = −0.06287

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of first
segment.
To be more specific, the synchronization time between the engine and the
vehicle (clutch closed) is when
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v =
ωe[rpm] · (π/30) · rw

γ
= 5.633 m/s = 20.28 km/h,

thus the final state constraint of the first segment appears to be:

K(t0) =
2 · A · v − S

2 · A · v + S
=

2 · (−2.571) · 10−4 · 5.633 + 0.06287

2 · (−2.571) · 10−4 · 5.633− 0.06287
= −0.9119

Because the evolution of K(t) satisfies K(t) = K0 ·eŜ+(t−t0)], the synchro-
nize time is thus

S+ = sgn(A) ·
√
∆ = −0.06287, K0 = −1

t =
ln
(

K(t0)
K0

)

Ŝ+

=
ln(−0.9119

−1 )

−0.06287
= 1.467 s

d) 2nd segment, 1st gear, v0 = 5.633 m/s, t0 = 1.467 s

Here γ/rw = 46.48, thus

mv,eq = mv +Θe ·
(
γ

rw

)2

= 1240 + 0.128 · 46.482 = 1517 kg

A =

(

−
1

2
· ρa ·Af · cd +

(
γ

rw

)3

· ηt · a

)

·
1

mv,eq

=

(
−
1

2
· 1.2 · 0.65− 46.483 · 0.9 · 4.38 · 10−4

)
·

1

1517
= −0.02635

B =

(
γ

rw

)2

· ηt · b ·
1

mv,eq
=

46.482 · 0.9 · 0.3514
1517

= 0.4504

C =

(
−g ·mv · cr +

γ

rw
· ηt · c

)
·

1

mv,eq

=
−9.81 · 1240 · 0.009 + 46.48 · 0.9 · 80

1517
= 2.134

∆ = B2 − 4 · A · C = 0.45042 + 4 · 0.02635 · 2.134 = 0.4278 > 0

Ŝ+ = sgn(A) ·
√
∆ = −0.6541

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of second
segment.

K(t0) =
2 · A · v0 +B − Ŝ+

2 · A · v0 +B + Ŝ+

=
−2 · 0.02635 · 5.633 + 0.4504 + 0.6541

−2 · 0.02635 · 5.633 + 0.4504− 0.6541
= −1.613



10 References

This phase ends when ωe = ωe,max, thus when

v =
ωe,max · (π/30) · rw

γ1
=

6500 · 2 · π
60 · 46.48

= 14.64 m/s = 52.70 km/h.

and the final state constraint gives:

K(t1) =
2 · A · v +B − Ŝ+

2 · A · v +B + Ŝ+

=
−2 · 0.02635 · 14.64 + 0.4504 + 0.6541

−2 · 0.02635 · 14.64 + 0.4504− 0.6541
= −0.3414

thus at time

t1 = t0+ln

(
K(t1)

K(t0)

)
·
1

Ŝ+

= 1.467+ln

(
−0.3414

−1.613

)
·

1

−0.6541
= 1.467+2.374 = 3.841 s

e) 3rd segment, 2nd gear, v0 = 14.64 m/s, t0 = 3.841 s
Here γ/rw = 29.13

mv,eq = mv +Θe ·
(
γ

rw

)2

= 1240 + 0.128 · 29.132 = 1349 kg

A =

(

−
1

2
· ρa ·Af · cd +

(
γ

rw

)3

· ηt · a

)

·
1

mv,eq

=

(
−
1

2
· 1.2 · 0.65− 29.133 · 0.9 · 4.38 · 10−4

)
1

1349
= −0.007512

B =

(
γ

rw

)2

· ηt · b ·
1

mv,eq
=

29.132 · 0.9 · 0.3514
1349

= 0.1989

C =

(
−g ·mv · cr +

γ

rw
· ηt · c

)
·

1

mv,eq

=
−9.81 · 1240 · 0.009 + 29.13 · 0.9 · 80

1349
= 1.474

∆ = 0.19892 + 4 · 0.007512 · 1.474 = 0.08385 > 0

Ŝ+ = −sgn(A) ·
√
∆ = −0.2896

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of third
segment.

K(t1) =
2 ·A · v1 +B − Ŝ+

2 ·A · v1 +B + Ŝ+

=
−2 · 0.007512 · 14.64 + 0.1989 + 0.2896

−2 · 0.007512 · 14.64 + 0.1989− 0.2896
= −0.8645

This phase ends when ωe = ωe,max, thus when
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v =
ωe,max · (π/30) · rw

γ1
=

6500 · 2 · π
60 · 29.13

= 23.37 m/s = 84.1 km/h

and

K(t2) =
2 · A · v2 +B − Ŝ+

2 · A · v2 +B + Ŝ+

=
−2 · 0.007512 · 23.37 + 0.1989 + 0.2896

−2 · 0.007512 · 23.37 + 0.1989− 0.2896
= −0.3110

thus at time

t2 = t1+ln

(
K(t2)

K(t1)

)
·
1

Ŝ+

= 3.841+ln

(
−0.3110

−0.8645

)
·

1

−0.2896
= 3.841+3.530 = 7.371 s

f) 4th segment, 3rd gear, v0 = 23.37 m/s, t0 = 7.371 s
Here γ/rw = 20.39 < 24.5 = ωe,max

vmax

mv,eq = mv +Θe ·
(
γ

rw

)2

= 1240 + 0.128 · 20.392 = 1293 kg

A =

(

−
1

2
· ρa ·Af · cd +

(
γ

rw

)3

· ηt · a

)

·
1

mv,eq

=

(
−
1

2
· 1.2 · 0.65− 20.393 · 0.9 · 4.38 · 10−4

)
1

1293
= −0.002886

B =

(
γ

rw

)2

· ηt · b ·
1

mv,eq
=

20.392 · 0.9 · 0.3514
1293

= 0.1017

C =

(
−g ·mv · cr +

γ

rw
· ηt · c

)
·

1

mv,eq

= (−9.81 · 1240 · 0.009 + 20.39 · 0.9 · 80)/1293 = 1.0507

∆ = B2 − 4AC = 0.10172 + 4 · 0.002886 · 1.0507 = 0.2247 > 0

Ŝ+ = sgn(A) ·
√
∆ = −0.1499

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of fourth
segment.

K(t2) =
2 · A · v2 +B − Ŝ+

2 · A · v2 +B + Ŝ+

=
−2 · 0.002886 · 23.37 + 0.1017 + 0.1499

−2 · 0.002886 · 23.37 + 0.1017 + 0.1499
= −0.6374

We want to calculate the time to reach v = 100 km/h = 27.78 m/s that
will take place in this segment. Thus, this phase ends when v = vmax,
thus when



12 References

K(t3) =
2 · A · v2 +B − Ŝ+

2 · A · v2 +B + Ŝ+

=
−2 · 0.002886 · 27.78 + 0.1017− 0.1499

−2 · 0.002886 · 27.78 + 0.1017 + 0.1499
= −0.4376

thus at time

t3 = t2+ln

(
K(t2)

K(t1)

)
·
1

Ŝ+

= 7.371+
ln
(

−0.4376
−0.6374

)

−0.1499
= 7.371+2, 509 = 9.88 s

Problem 2.5

Consider again Problem 2.4 for an engine with negligible inertia Θe. Compare
the result with (2.16).

• Solution

a) 1st segment : takeoff, v0 = 0, t0 = 0
Although the vehicle is at standstill, the engine is operating at the idle
speed. Using the result of Problem 2.6, we get ωe = 2500 rpm; and sub-
stituting torque parameters, we further have:

Te = a · ω2
e + b · ωe + c = 142.0 Nm

as a constant torque during slipping-clutch segment.

mv,eq = mv = 1240 kg

A = −
1

2
· ρa · Af · cd ·

1

mv,eq
= −

1

2
·
1.2 · 0.65
1240

= −3.145× 10−4

B = 0

C =

(
−g ·mv · cr +

γ

rw
· ηt · Te

)
·

1

mv,eq
=

=
−9.81 · 1240 · 0.009 + 46.48 · 0.9 · 142

1240
= 4.702

∆ = −4 · A · C = 5.915× 10−3 > 0

Ŝ+ = sgn(A) ·
√
−4 ·A · C = −1 ·

√
4 · 3.145× 10−4 · 4.702 = −0.07691

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of first
segment.
To be more specific, the synchronization time between the engine and the
vehicle (clutch closed) is when
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v =
ωe[rpm] · (π/30) · rw

γ
= 5.633 m/s = 20.28 km/h,

thus the final state constraint of the first segment appears to be:

K(t0) =
2 · A · v − S

2 · A · v + S
=

2 · (−3.145) · 10−4 · 5.633 + 0.07691

2 · (−3.145) · 10−4 · 5.633− 0.07691
= −0.9119

Because the evolution of K(t) satisfies K(t) = K0 ·eŜ+(t−t0)], the synchro-
nize time is thus

S+ = sgn(A) ·
√
∆ = −0.07691, K0 = −1

t =
ln
(

K(t0)
K0

)

Ŝ+

=
ln(−0.9119

−1 )

−0.07691
= 1.199 s

b) 2nd segment, 1st gear, v0 = 5.633 m/s, t0 = 1.199 s

Here γ/rw = 46.48, thus

mv,eq = mv = 1240 kg

A =

(

−
1

2
· ρa ·Af · cd +

(
γ

rw

)3

· ηt · a

)

·
1

mv,eq

=

(
−
1

2
· 1.2 · 0.65− 46.483 · 0.9 · 4.38 · 10−4

)
·

1

1240
= −0.03224

B =

(
γ

rw

)2

· ηt · b ·
1

mv,eq
=

46.482 · 0.9 · 0.3514
1240

= 0.5510

C =

(
−g ·mv · cr +

γ

rw
· ηt · c

)
·

1

mv,eq

=
−9.81 · 1240 · 0.009 + 46.48 · 0.9 · 80

1240
= 2.611

∆ = B2 − 4 · A · C = 0.55102 + 4 · 0.03224 · 2.611 = 0.6403 > 0

Ŝ+ = sgn(A) ·
√
∆ = −0.8002

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of second
segment.

K(t0) =
2 · A · v0 +B − Ŝ+

2 · A · v0 +B + Ŝ+

=
−2 · 0.03224 · 5.633 + 0.5510 + 0.8002

−2 · 0.03224 · 5.633 + 0.5510− 0.8002
= −1.613
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This phase ends when ωe = ωe,max, thus when

v =
ωe,max · (π/30) · rw

γ1
=

6500 · 2 · π
60 · 46.48

= 14.64 m/s = 52.70 km/h.

and the final state constraint gives:

K(t1) =
2 · A · v +B − Ŝ+

2 · A · v +B + Ŝ+

=
−2 · 0.03224 · 14.64 + 0.5510 + 0.8002

−2 · 0.03224 · 14.64 + 0.5510− 0.8002
= −0.3413

thus at time

t1 = t0+ln

(
K(t1)

K(t0)

)
·
1

Ŝ+

= 1.199+ln

(
−0.3413

−1.613

)
·

1

−0.8002
= 1.199+1.941 = 3.140 s

c) 3rd segment, 2nd gear, v0 = 14.64 m/s, t0 = 3.140 s
Here γ/rw = 29.13

mv,eq = mv = 1240 kg

A =

(

−
1

2
· ρa ·Af · cd +

(
γ

rw

)3

· ηt · a

)

·
1

mv,eq

=

(
−
1

2
· 1.2 · 0.65− 29.133 · 0.9 · 4.38 · 10−4

)
1

1240
= −0.008173

B =

(
γ

rw

)2

· ηt · b ·
1

mv,eq
=

29.132 · 0.9 · 0.3514
1240

= 0.2164

C =

(
−g ·mv · cr +

γ

rw
· ηt · c

)
·

1

mv,eq

=
−9.81 · 1240 · 0.009 + 29.13 · 0.9 · 80

1240
= 1.603

∆ = 0.21642 + 4 · 0.008173 · 1.603 = 0.09923 > 0

Ŝ+ = −sgn(A) ·
√
∆ = −0.3150

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of third
segment.

K(t1) =
2 ·A · v1 +B − Ŝ+

2 ·A · v1 +B + Ŝ+

=
−2 · 0.008173 · 14.64 + 0.2164 + 0.3150

−2 · 0.008173 · 14.64 + 0.2164− 0.3150
= −0.8644

This phase ends when ωe = ωe,max, thus when

v =
ωe,max · (π/30) · rw

γ1
=

6500 · 2 · π
60 · 29.13

= 23.37 m/s = 84.1 km/h
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and

K(t2) =
2 · A · v2 +B − Ŝ+

2 · A · v2 +B + Ŝ+

=
−2 · 0.008173 · 23.37 + 0.2164 + 0.3150

−2 · 0.008173 · 23.37 + 0.2164− 0.3150
= −0.3108

thus at time

t2 = t1+ln

(
K(t2)

K(t1)

)
·
1

Ŝ+

= 3.841+ln

(
−0.3108

−0.8644

)
·

1

−0.3150
= 3.140+3.247 = 6.387 s

d) 4th segment, 3rd gear, v0 = 23.37 m/s, t0 = 6.387 s
Here γ/rw = 20.39 < 24.5 = ωe,max

vmax

mv,eq = mv = 1240 kg

A =

(

−
1

2
· ρa ·Af · cd +

(
γ

rw

)3

· ηt · a

)

·
1

mv,eq

=

(
−
1

2
· 1.2 · 0.65− 20.393 · 0.9 · 4.38 · 10−4

)
1

1240
= −0.003009

B =

(
γ

rw

)2

· ηt · b ·
1

mv,eq
=

20.392 · 0.9 · 0.3514
1240

= 0.1060

C =

(
−g ·mv · cr +

γ

rw
· ηt · c

)
·

1

mv,eq

= (−9.81 · 1240 · 0.009 + 20.39 · 0.9 · 80)/1240 = 1.0956

∆ = B2 − 4AC = 0.10602 + 4 · 0.003009 · 1.0956 = 0.2242 > 0

Ŝ+ = sgn(A) ·
√
∆ = −0.1563

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of fourth
segment.

K(t2) =
2 · A · v2 +B − Ŝ+

2 · A · v2 +B + Ŝ+

=
−2 · 0.003009 · 23.37 + 0.1060 + 0.1563

−2 · 0.003009 · 23.37 + 0.1060 + 0.1563
= −0.6372

We want to calculate the time to reach v = 100 km/h = 27.78 m/s that
will take place in this segment. Thus, this phase ends when v = vmax,
thus when

K(t3) =
2 · A · v2 +B − Ŝ+

2 · A · v2 +B + Ŝ+

=
−2 · 0.003009 · 27.78 + 0.1060− 0.1563

−2 · 0.003009 · 27.78 + 0.1060 + 0.1563
= −0.4374
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thus at time

t3 = t2+ln

(
K(t2)

K(t1)

)
·
1

Ŝ+

= 6.387+
ln
(

−0.0.4374
−0.6372

)

−0.1563
= 6.387+2.404 = 8.791 s

Discussion
In reality, usually the acceleration time is calculated without accounting
for the engine inertia, and is usually based on a simplified estimation.
According to the given parameters, the maximum power is achieved when
derivative of power is set to 0:

d

dωe
(ωe · Te) =

d

dωe
(aω3

e + bω2
e + cωe) = 0,

which gives ω∗
e = 631.3 rad/s = 6028 rpm, and Pmax|ω∗

e
= 80.35 kW. And

the minimum power:

Pe,min = ωe,launch · Te,launch = 2500 ·
π

30
· 142 = 37.18 kW

With these values, there are two basic ways of estimation:
• Using the maximum engine power

t =
v2 ·mv

Pe,max
=

27.82 · 1240
80.35× 103

= 11.90 s,

which means an over-estimation of 35%.
• Using the corrected engine power

˜Pmax

2
P̄ =

Pe,max + Pe,min

2

The corrected maximum power is therefore:

˜Pmax = 2 · P̄ = 117.5 kW,

and the corresponding acceleration time is:

t =
v2 ·mv

˜Pe,max

=
27.782 · 1240

117.5
= 8.14 s,

which gives an underestimation of 7.4%.

Problem 2.6

Find an equation to calculate the takeoff time (=time to synchronise the speed
before and after the clutch) as a function of engine launch speed and torque.
Assume that the clutch is slipping but transmitting the whole engine torque.
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• Solution

Assume the ratio of gear-ratio to wheel diameter is kept at gear 1 during
the take-off time; and the engine torque is kept constant while engine
speed ωe and wheel speed v are therefore decoupled.

a) Check Delta of the motion
Given the constant torque as input, the law of motion of the type v̇ =
A · v2 + C, where

A = −
1

2
· ρa ·Af · cd ·

1

mv,eq
C =

(
−g ·mv · cr +

γ

rw
· ηt · Te

)
·

1

mv,eq

Given the fact that A < 0, B = 0, we have ∆ = −4AC > 0, then
Ŝ+ = sgnA ·

√
∆ = −

√
∆.

b) Solve the motion law with final condition
Given that t0 = 0, v0 = 0, then

K0 =
2Av0 +B − Ŝ+

2Av0 +B + Ŝ+

= −1.

and the synchronized speed of the wheel should balance the idel speed of
the engine:

vf = ωe,idle ·
rw
γ
.

then

K(tf) =
2Avf +B − Ŝ+

2Avf +B + Ŝ+

=
2Avf − Ŝ+

2Avf + Ŝ+

.

Since K(tf ) = K0 · eŜ+(tf−t0), we have

tf =
ln

2Avf−Ŝ+

2Avf+Ŝ+

−1

Ŝ+

Therefore,

ttakeoff =
ln(−K)

Ŝ+

Problem 2.7

Evaluate the coasting speed and the roll-out time without acting on the brakes
for a vehicle with an initial speed v0 = 50 km/h and mv = 1200 kg, Af · cd =
0.65m2, cr = 0.009. Assume the clutch open (no engine friction).

• Solution
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Assume the coasting speed is defined when the engine is disengaged and
the resistence loss of the vehicle matches exactly the decrease of its kinetic
energy:

d

dt
vc(t) = −

1

2mv
· ρaAf · Cd v

2
c (t)− g Cr

and we let:

α2 =
ρa · AfCd · v2c (t)

2mv
= −A

β2 = g Cr = −C

a) Check Delta of the motion
Given the zero torque as input(engine disengaged), the law of motion of
the type v̇ = A · v2 + C, where

A = −
1

2mv
· ρaAf · Cd C = −g Cr

Given the fact that A < 0, B = 0, C < 0, we have ∆ = −4AC < 0,
therefore we have equation (2.18).

b) Calculate coasting speed
The coasting speed as a function of time (2.18) is

v(t) =
β

α
· tan

{
arctan

(
α

β
· v0
)
− α · β · t

}

where

α =

√
1

2
·
ρa · Af · cd

mv
=

√
1

2
·
1.2 · 0.65
1200

= 0.01803

β =
√
g · cr =

√
9.81 · 0.009 = 0.2971

c) Calculate the roll-off time
The braking time at which v = 0 is calculated by solving:

0 =
β

α
tan

[
arctan

(
α

β
v0

)
− αβ · t

]

trollout =
1

α · β
· arctan

(
α

β
· v0
)

=
1

0.018 · 0.297
· arctan

(
0.018

0.297
·
50

3.6

)
= 130.75 s

Discussion
Take care of the radians calculation in the function arctan.
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Mechanical Energy Demand in Driving Cycles

Problem 2.8

Evaluate the traction energy and the recuperation energy for the MVEG–95
for the vehicle examples of Fig. 2.8, left and right, assuming perfect recuper-
ation.

• Solution

Assume the time intervals in traction mode are not subject ot change dur-
ing artificial cycles like MVEG-95, so the equations used in this problem
is only valid if this assumption holds; and the track length of MVEG-95
is 0.114 km.

a) Left graph configuration (Af · Cd = 0.7 m2,mv = 1500 kg, Cr = 0.012)

(i) The traction energy is given by (2.31), assuming no recuperation.

Ē = Ediss + Ecirc = [1.9× 104 ·AfCd + 8.4× 102 ·mv Cr + 10 ·mv] · xtot

=
(
0.7 · 1.9 · 104 + 1500 · 0.012 · 8.4 · 102 + 1500 · 10

)

= 43.42 MJ/100 km · xtot = 43.42 · 0.114 = 4.950 MJ.

(ii) The total energy is given by (2.35), assuming perfect recuperation.

Ērec = Ediss = [2.2× 104 · AfCd + 9.8× 102 ·mv Cr] · xtot

=
(
0.7 · 2.2 · 104 + 1500 · 0.012 · 9.81 · 102

)
=

= 33.04 MJ/100 km · xtot = 3.767 MJ.

(iii) The energy that can be recuperated:

∆Ē = Ē − Ērec = 1.183 MJ (24.75% of )Ē.

b) Right graph configuration (Af · Cd = 0.4 m2,mv = 750 kg, Cr = 0.008)

(i) The traction energy is given by (2.31), assuming no recuperation.

Ē = Ediss + Ecirc = [1.9× 104 ·AfCd + 8.4× 102 ·mv Cr + 10 ·mv] · xtot

=
(
0.4 · 1.9 · 104 + 1500 · 0.008 · 8.4 · 102 + 750 · 10

)

= 20.14 MJ/100 km · xtot = 20.14 · 0.114 = 2.296 MJ.

(ii) The total energy is given by (2.35), assuming perfect recuperation.

Ērec = Ediss = [2.2× 104 · AfCd + 9.8× 102 ·mv Cr] · xtot

=
(
0.4 · 2.2 · 104 + 750 · 0.008 · 9.81 · 102

)
=

= 14.68 MJ/100 km · xtot = 1.674 MJ.

(iii) The energy that can be recuperated:

∆Ē = Ē − Ērec = 0.622 MJ (27.09% of )Ē.

The potential of regenerative braking is more important for the smaller vehi-
cle, with smaller front area, vehicle mass and rolling friction coefficient.
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Problem 2.9

Calculate the mean force and fuel consumption data shown in Fig. 2.8 left.

• Solution

Assume left graph configuration (Af · Cd = 0.7 m2,mv = 1500 kg, Cr =
0.012)

a) Case 1: No recuperation
Reading constants from (2.30), we get the weights during traction modes
of the cycle MVEG-95:

F̄trac,a =
1

2
· ρa · Af · cd · 319 =

1

2
· 1.2 · 0.7 · 319 = 134.0 N

F̄trac,r = mv · g · cr · 0.856 = 1500 · 9.81 · 0.012 · 0.856 = 151.2 N

F̄trac,m = mv · 0.101 = 1500 · 0.101 = 151.5 N

The mechanical energy per 100 km that corresponds to 1N is

dmf = 1 N · 105 m = 105 J = 105/3600 = 27.78 Wh.

And according to the caption of Figure 2.8, Diesel’s LHV is 104W h/l,
which gives:

1 N = 27.78 Wh/100km = 2.778× 10−3 l/100km

Therefore, for no-recuperation,

∗
V= ¯Ftrac × dmf = 436.6× 2.778× 10−3 = 1.213 l/100km

b) Case 2: Perfect recuperation
Reading constants from (2.34), we get the weights for perfect recupera-
tion over the cycle MVEG-95:

F̄a =
1

2
· ρa ·Af · cd · 363 =

1

2
· 1.2 · 0.7 · 363 = 152.5 N

F̄r = mv · g · cr · 1 = 1500 · 9.81 · 0.012 · 1 = 176.6 N

Therefore, for perfect-recuperation,

∗
V= F̄ × dmf = 329.1× 2.778× 10−3 = 0.9142 l/100km

Discussion
(i) Evaluation of the differences in mean force

F̄m,r = 152.5 + 176.6− (134.0 + 151.2) = 43.9 N

F̄m,b = 436.6− 329.1 = 107.5 N
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where F̄m,r denotes the mean force that is used to overcome the driving
resistance in the non-traction phases; while F̄m,b denotes the part of
mean force that is later dissipated by heat with the brakes.

(ii) Explanatory comments on calculating mean force with/without recu-
peration

• When no recuperation is done, Ftrac overcomes aerodynamic drag,
rolling friction drag and acceleration requirement when ‘trac”
mode is on; while during coasting, non of them is of the concern of
energy consumption, since the kinetic energy at high vehicle speed
apparently cost more energy and cannot be recuperated

• When perfect recuperation is done, Ftrac overcomes aerodynamic
drag, rolling friction drag and acceleration requirement all through
the cycle. Especially during coasting, braking or not braking is still
of the energy concern since the kinetic energy at high speed can
be later recuperated, if the speed profile can be satisfied with the
help of “recuperative brake”. If it is not the case, mechanical brake
has to intervene, so as to dissipate the remaining part of energy
and satisfy speed profile.

Problem 2.10

Calculate the data in Fig. 2.9, left and right.

• Solution

a) Full-sized vehicle ((Af · Cd = 0.7 m2,mv = 1500 kg, Cr = 0.012))
The cycle energy assuming no recuperation is given by (2.31),

Ē = [1.9× 104 · AfCd + 8.4× 102 ·mv Cr + 10 ·mv] · xtot

= 0.7 · 1.9 · 104 + 1500 · 0.012 · 8.4 · 102 + 1500 · 10
= 43 · 103 kJ/100 km,

thus
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S(Af · cd) =
∂E

∂(Af · Cd)
·

Af · Cd

E(Af · Cd)

=
1.9 · 104 · 0.7

43 · 103
= 0.3046

S(cr) =
∂E

∂(Cr)
·

Cr

E(Cr)

=
1500 · 8.4 · 102 · 0.012

43 · 103
= 0.3463

S(mv) =
∂E

∂(mv)
·

mv

E(mv)

=
(0.012 · 8.4 · 102 + 10) · 1500

43 · 103
= 0.6899

b) Light-weight vehicle ((Af · Cd = 0.4 m2,mv = 750 kg, Cr = 0.008))

Ē = [1.9× 104 · AfCd + 8.4× 102 ·mv Cr + 10 ·mv] · xtot

= 0.4 · 1.9 · 104 + 750 · 0.008 · 8.4 · 102 + 750 · 10
= 20 · 103 kJ/100 km

thus

S(Af · cd) =
∂E

∂(Af · Cd)
·

Af · Cd

E(Af · Cd)

=
1.9 · 104 · 0.4

20 · 103
= 0.3774

S(cr) =
∂E

∂(Cr)
·

Cr

E(Cr)

=
750 · 8.4 · 102 · 0.008

20 · 103
= 0.2502

S(mv) =
∂E

∂(mv)
·

mv

E(mv)

=
(0.008 · 8.4 · 102 + 10) · 750

20 · 103
= 0.6226

Discussion
From the result we can conclude, with an advanced vehicle concept (usu-
ally light-weight and smaller rolling friction):
• relative dominance of the vehicle mass on the energy consumption is

unchanged around a level of 60% to 70%, which makes kinetic energy
recuperation an interesting choice.

• Relative influence of the rolling fricition becomes less than that of
Af · Cd (coefficient of aerodynamic force.)
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Problem 2.11

Calculate which constant vehicle speed on a flat road is responsible for the
same energy demand at the wheels along a MVEG–95 cycle, in the case of
no recuperation and of perfect recuperation, respectively. Assume the light-
weight vehicle data of Fig. 2.8, right side of Figure: {Af · cd,mv, cr} =
{0.4 m2, 750 kg, 0.008}.
• Solution

a) No recuperation
The cycle energy is calculated in Problem 2.8 and it is Ē = 20.14 ·
103 kJ/100 km. The mean traction force is

F̄ =
Ē

100 km
= 201.4 N

To have the same F̄ , find v such that

1

2
· ρa ·Af · cd · v2 +mv · g · cr = F̄

v =

√

2 ·
F̄trac −mv · g · cr

ρa · Af · cd

v =

√
2 ·

201.4− 750 · 9.81 · 0.008
1.2 · 0.4

= 24.35 m/s = 87.67 km/h

b) Perfect recuperation
Here, Ē = 14.68 · 103 kJ/100 km, thus

F̄ = 146.8 N

v = 19.5 m/s = 70 km/h

To have the same F̄ , find v such that

1

2
· ρa ·Af · cd · v2 +mv · g · cr = F̄

v =

√

2 ·
F̄trac −mv · g · cr

ρa ·Af · cd

v =

√
2 ·

146.8− 750 · 9.81 · 0.008
1.2 · 0.4

= 19.14 m/s = 68.9 km/h

Discussion

• Note that the mechanical mean force is not accounted for, because the
problem assumes instantaneous energy consumption during flat road
constant speed cruising.

• Note that for artificial driving cycles like MVEG-95, the equivalent
speed can also be calculated by equating mean force representation
with (2.31) or (2.35), respectively.
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Problem 2.12

Calculate the maximum mass allowed for a recuperation system with ηrec =
40%. Use the vehicle parameters of Fig. 2.12: {Af ·cd,mv, cr} = {0.7 m2, 1500 kg, 0.012}.

• Solution

a) Deriving the energy demand with a real recuperation device
Using the equations (2.31),(2.35),(2.39),(2.40):

Ediss + Ecirc = [1.9× 104 · AfCd + 8.4× 102 ·mv Cr + 10 ·mv]

Ediss = [2.2× 104 · AfCd + 9.8× 102 ·mv Cr]

E(ηrec,mrec) = ¯Ediss(mrec) + (1− ηrec)Ecirc(mrec)
¯Ecirc = Ē − ¯Ediss

we get:

¯E(ηrec,mrec)

= [22000− 3000(1− ηrec)]Af · Cd + [980− 140(1− ηrec)]Cr (mv +mrec + 10 (1− ηrec) · (mv +mrec

= (22000− 3000)× 0.6× 0.7 + [980− 140× 0.6]× 0.012 (1500+mrec) + 10× 0.6 (1500+mrec)

c) Equate the energy demand and get the maximum mass of recuperation
device
When we have the maximum weight of recuperation device, the mean
energy demand must equal Ē, which has been calculated in Problem 2.8
as 43.4 · 103 kJ/100 km. Thus

m̃v =
(43.4− 14.1) · 103

16.75
= 1750 kg

14140 + 16.752× (1500 +mrec) = 43.66× 103

mrec = 262.2 kg.

The maximum weight is the one that leads to an energy demand equal to the
energy demand without recuperation. Thus, from (2.41)

Ē(ηrec,mrec) = 0.7 · (2.2 · 104 − 0.6 · 3 · 103)+
+ 0.012 · m̃v · (9.8 · 102 − 0.6 · 1.4 · 102)+
+ 0.6 · 10 · m̃v =

= 14.1 · 103 + (10.75 + 6) · m̃v (kJ/100 km)

where m̃v = mv +mrec.
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IC-Engine-Based Propulsion Systems

Gear-box Models

Problem 3.1

Improve (3.9) in order to take into account the engine inertia and the trans-
mission efficiency.

• Solution

Assume the largest gear ratio (the smallest gear in a manual gear box)
is often chosen according to the towing requirement at constant vehicle
speed vw.

a) Calculate moment of inertia
Including the engine inertia

mv,eq = mv +me,eq

me,eq = Θe ·
(
γ

rw

)2

b) List the power balance
Equating the traction power with the towing requirement, we have:

Ptrac =

[
mv +Θe

γ21
r2w

]
g sin(αmax) · vw = Te,max(

vw
rw

· γ1) ·
vw
rw

· γ1 · ηt

Thus, after rewriting the equation, we have:

(
γ1
rw

)2

−
Te · ηt
Θe · a

·
γ1
rw

+
mv

Θe
= 0,

where the towing acceleration a = g sin(αmax).
This is a quadratic equation in γ. γ1 can be evaluated by imposing that
a = amax. With Θe = 0 and ηt = 1, obtain back equation (3.9).
Discussion
Since the maximum engine torque depends on the vehicle speed and first
gear’s ratio, iterations may be necessary to come up with Te and γ1 values
that both fit.

Problem 3.2

Dimension the first gear of an ICE-based powertrain not based on a given
gradability as in (3.9) but in order to obtain a given acceleration at vehicle
take-off. Do the calculations according to Problem 3.1, using the following
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data: mv = 1100kg, payload mp = 100kg, equivalent mass of the wheels
mr,w = 1/30 of mv, cr = 0.009, transmission efficiency ηt = 0.9, Te = 142Nm
at ωtakeoff , desired acceleration a = 4m/s2, engine inertia Θe = 0.128kgm2,
rw = 30 cm. Compare with the approximate solution of (3.9).

• Solution

Theoretical grounds
From the result of Problem 3.1, γ1 can be dimensioned through the towing
requirement at take-off speed.

Ptrac =

[
mv +Θe

γ21
r2w

]
amax · vw = Te,max(

vw
rw

· γ1) ·
vw
rw

· γ1 · ηt
(
γ1
rw

)2

−
Te · ηt

Θe · amax
·
γ1
rw

+
mv

Θe
= 0 (*)

a) Solving Equation (??) with the flat-road desired acceleration,

mv,eq = mv +mwheel +mpayload = 1100 (1 + 1/30) + 100
(
γ1
rw

)2

−
142.0× 0.9

0.128× 4
·
γ1
rw

+
1100 (1 + 1/30) + 100

0.128
= 0

Let x = γ1

rw
, we have

x2 − 249.61 x+ 9661 = 0

Solving the quadratic equation, we have:

γ1
rw

∣∣∣∣
amax

=
249.61± 153.82

2
=

{
201.7

47.89

We take the smaller root as the solution γ1 = 47.89, for the sake of fuel
economy, gearbox sizing and drivability.

b) Solving Equation (??) assuming a maximum gradability of 27.64o at take-
off speed,

mv,eq = mv +mwheel +mpayload = 1100 (1 + 1/30) + 100
(
γ1
rw

)2

−
142.0× 0.9

0.128× 9.81× sin(27.64o)
·
γ1
rw

+
1100 (1 + 1/30) + 100

0.128
= 0

Let x = γ1

rw
, we have

x2 − 224.65 x+ 9661 = 0
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Solving the quadratic equation, we have:

γ1
rw

∣∣∣∣
amax

=
224.65± 108.74

2
=

{
166.7

57.96

We take the smaller root as the solution γ1 = 57.96, for the sake of fuel
economy, gearbox sizing and drivability.

c) Calculate the approximate solutions with Equation (3.9)
Accroding to (3.9), we have:

γ1 =
mv rw · amax

Te,max(ωe)
,

where amax denotes the desired acceleration or gradability g · sin(αmax).
Therefore, the approximated solutions are:

γ1,accr =
[1100 (1 + 1/30) + 100]× 0.30× 4

142.0
= 34.83,

for desired acceleration of 4 m/s2

γ1,grad =
[1100 (1 + 1/30) + 100]× 0.30× 9.81× sin(27.64o)

142.0
= 38.71,

for desired gradability of 27.64o

d) Comparison of Problem 3.2 with approximated equation (3.9)
The results of the four cases are listed in the table: From the results, we

Table 10.2. Comparison of first gear with different ways of calculation.

Results γ1
rw

γ1|rw=0.3m

Exact with aflat 47.89 14.367

Approx with aflat 34.83 10.449

Exact with αgrad 57.96 17.388

Approx with αgrad 38.71 11.613

could conclude that
• Including more types of losses (e.g. rotational moment of inertia/

transmission efficiency) would increase the gear ratio γ1.
• Increasing the requirement of gradability or acceleration capability

would decrease the 1st order term of the quadratic equation (??), which
indirectly increases the gear ratio γ1.

Discussion
The multiple roots of quadratic equation adds to complexity of the first
gear dimensionization. However, usually only the smaller positive root
makes sense for the following reasons:
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(i) Since the resistence curve of the vehicle correlates the reciprocal of
gear ratio, a too large gear ratio may lead to a resistence curve lying
in an area of low fuel efficiency, as is shown in Figure ??.

ηmax

ηmin

γmid
γmin

γmax

[bar]

[m/s]

pwt

mf [kg]curve

(motor + engine)

Fig. 10.8. Resistence curves with different gear ratios.

(ii) The 5th out of 6-speed gearbox is usually defined to locate a resistence
curve in the best fuel economy area. If too large gear ratio is chosen,
the resistance curves of gear #1 and gear #5 could be too far away,
which will cause bad sizing and a huge gearbox in the end.

(iii) Since the range of engine speed is set to be around 1000 rpm to
6000 rpm for gasoline engine (for diesel engine even narrower), too
large γ1 means a small range of speed increase in the first gear. Thus
the increasing requirement of gear shifts will be detrimental to driv-
ability. For example, for a 30 cm wheel with γ1 = 201.7, 1000− 6000
rpm range means a speed increase from 1.80 km/h to 11.21 km/h,
which is far from acceptable drivability.

Problem 3.3

Dimension the fifth gear in a six-gear transmission for maximum power using
(3.10) for a vehicle with the following characteristics: curb mv = 1100kg,
performance mass = 100 kg, cr = 0.009, Af · cd = 0.65m2, rw = 30cm,
transmission efficiency = 0.9, Pe,max = 80.4kW at 6032 rpm.

• Solution

Assume the maximum speed vmax is achieved at gear #5, and with the
maximum engine power at its corresponding engine speed.
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a) Maximum traction power at wheel
Having the engine power and transmission efficiency, we have:

Ptrac,max = Pe,max · ηt = 72.36 kW.

b) Solving equation (3.10), and find maximum speed:

Ptrac,max = Fmax · vmax

= vmax ·
[
mv g Cr vmax +

1

2
ρa AfCd v

2
max

]∣∣∣∣
gear=5

.

By solving the equation

−72.36× 103 + 105.95 vmax + 0.39 vmax3 = 0,

we have the only solution of real number

vmax|gear=5 = 55.45 m/s = 199.6 km/h

c) Calculate the gear ratio
With the maximum speed achieved with maximum engine power,

γ5
rw

=
π

30
×
ωe|Pmax

vmax

=
π

30
·
6032

55.45
= 11.392

γ5 = 3.418.

where a common wheel radius of 30 cm is used for calculation.

Problem 3.4

Consider again the system of Problems 3.2–3.3. Calculate the vehicle speed
values, vj at which the engine is at its maximum speed, for all the gears j.

• Solution

Assume only the 2nd to 4th gear can be chosen according to a fixed law,
while the 1st,5th and 6th are chosen with towing requirement, maximum
power and fuel efficiency, respectively.

a) Using geometric law

(i) Calculate the common ratio

1

κ
= R1/4 = [

47.9

11.4
]
1
4 = 1.432,

γ1
γ2

=
γ2
γ3

=
γ3
γ4

=
γ4
γ5

=
1

κ
= 1.432,
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(ii) Find corresponding gear ratios

γ2
rw

=
γ1
rw

· κ =
47.89

1.432
= 33.443,

γ3
rw

=
γ2
rw

· κ =
47.89

1.4322
= 23.354,

γ4
rw

=
γ3
rw

· κ =
47.89

1.4323
= 16.309,

γ5
rw

= 11.392 (fixed and confirmed).

b) Using arithmetic law

(i) Calculate the common difference

R =
1

k
·
(
rw
γi

−
rw
γi−k

)

=

(
1

11.392
−

1

47.89

)
·
1

4
= 0.0167.

(ii) Find corresponding gear ratios

γ2
rw

=
1

rw
γ1

+R
=

1
1

47.89 + 0.0167
= 26.609,

γ3
rw

=
1

rw
γ2

+R
=

1
1

26.609 + 0.0167
= 18.422,

γ4
rw

=
1

rw
γ3

+R
=

1
1

18.422 + 0.0167
= 14.088,

γ5
rw

= 11.392 (fixed and confirmed).

c) Validate the shifting speeds
The shifting speeds denotes the vehicle speeds at the maximum engine
speed ωe,gs = 6032 rpm.

vk =
π · ωe,gs

30 · γk

rw

,

thus the values in the following table.

Problem 3.5

Calculate the approximate efficiency of a clutch during a vehicle takeoff ma-
neuver.



References 31

Table 10.3. the maximum speed in each gear #.

Geometric Arithmetic

v1 13.19 m/s = 47.48 km/h

v2 18.89 m/s= 68.00 km/h 23.74 m/s= 85.46 km/h

v3 27.05 m/s= 97.37 km/h 34.29 m/s=123.4 km/h

v4 38.73 m/s=139.4 km/h 44.84 m/s=161.3 km/h

v5 55.45 m/s = 199.6 km/h

• Solution

Assume
• In a first approximation, the transmitted torque could be considered

as equal to the engine torque while the clutch is slipping.
• The engine speed is approximately constant at the launch value ωe.
• The final condition of the launching maneuver is ωgb(tf ) = ωe.

a) Derive first approximation of launching dynamics
The speed downstream of the clutch is given by the differential equation

Θgb ·
dωgb

dt
= Te − Tloss,

with Θgb = Θv/γ2, which can be approximated by neglecting the losses.
Thus

ωgb(t) =
Te

Θgb
· t.

b) Solve the dynamics subject to final state constraint ωgb(tf ) = ωe.
Given that the launch maneuver ends when ωgb(tf ) = ωe. The launch
time is therefore

tf = ωe ·
Θgb

Te
.

The energy provided by the engine during this time is

Ee =

∫ tf

0
Te · ωedt = Te · ωe · tf = Θgb · ω2

e .

The energy transferred to the vehicle is the kinetic energy at the end of
launch, which is

Ev =
1

2
· Θv · ω2

w,0,

=
1

2
· Θgb · ω2

e .

since ωw,0 = ωe/γ and Θgb = Θv/γ2. Therefore, the efficiency is Ev/Ee =
0.5.
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Discussion
The corresponding synchronization speed is

v =
ωe
γ
rw

.

Thus the energy lost is Ee−Ev = 1
2 ·Θgb ·ω2

e which coincides with (3.16),

Ec =
1

2
· Θv · ω2

w,0.

Fuel Consumption of IC Engine Powertrains

Problem 3.6

Find the CO2 emission factor (g/km) as a function of the fuel consumption
rate (l/100km) for gasoline and diesel fuels. Use these average fuels (gaso-
line, diesel) data: density ρ = {0.745, 0.832}kg/l, carbon dioxide to fuel mass
fraction m = {3.17, 3.16}.

• Solution

Assume

Consider the stoichiometric fuel burning reaction, with a fuel of the molar
composition CHa:

CHa +
(
1 +

a

4

)
O2 ! CO2 +

(a
2

)
H2O

a) Find the factor a from CO2 to mass fraction
The mol CO2/mol emission factor is 1. The kg CO2/kg emission factor is
thus

m =
MCO2

Mfuel
=

12 + 2 · 16
12 + a

=
44

12 + a

Table 10.4. Factor a of Diesel and Gasoline.

Variables Gasoline Diesel

m 3.17 3.16

a 1.880 1.924

b) Mass of CO2 per litre of fuel
The kg/l factor is m · ρ, where ρ (kg/l) is the fuel density.
where the fuel consumption of some engine is ṁf = C l/100km,
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Table 10.5. CO2 emission factor of Diesel and Gasoline.

Variables Gasoline Diesel

m · ρ [gCO2/l] 2.362 2.629

CO2factor [gCO2/km] 23.62· C 26.29· C

Problem 3.7

Calculate the fuel consumption and the CO2 emission rate for the MVEG–95
cycle for a vehicle having the following characteristics: mv = 1100kg, payload
= 100kg, cd · Af = 0.7, cr = 0.013, egb = 0.98, P0,gb = 3%, Paux = 250W,
vlaunch = 3m/s, e = 0.4, Pe,0 = 1.26 kW, Pe,max = 66kW, diesel fuel (Hf =

43.1MJ/kg, ρf = 832 g/l), idle consumption
∗
V f,idle= 150g/h. The declared

CO2 emission rate for this car is 99 g/km.

• Solution

Assume the parameters of the driving cycle MVEG-95:

• Launch event happens every 105 s.
• Idling time is around 300 s.
• The track length of the cycle is 11.4 km.
• The fraction of time during traction mode is trac = 0.6.

a) Calculate mean force:
Assuming no recuperation, negligible engine inertia, the mean force of
cycle MVEG-95 can be calculated as follows:

F̄ = Ftrac,r + Ftrac,a + Ftrac,m

=
1

xtot

{
∑

trac

mv g Cr v̄i · h+
∑

trac

1

2
ρaAfCd v̄i

3 · h+
∑

trac

mvāi · v̄i · h

}

= 1200× 9.81× 0.013× 0.856 +
1

2
× 1.2× 0.7× 319 + 1200× 0.101

= 386.2 N = 38.62× 103 kJ/100km

b) Traction power considering different loads
Just like the calculation from (3.23) to (3.32), we further assume
• launch event happens every 105 s, this part of energy is accounted for

with average power.
• during the calculation of engine load, only traction mode is considered,

and thus the power need to be compensated with a coefficienct of 1
trac

First, we calculate the equivalent engine power considering the traction
mode and transmission loss:
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Ptrac,@wheel =
F · v
trac

=
386.2× 9.5

0.6
= 6.114kW

Ptrac,@gb =
Ptrac,@wheel + P0,gb

ηgb

=
(1 + 3%)× (6.114× 103)

0.98
= 6.426 kW

Then, we list the main component of engine power:

Traction power

Ptrac,@eng = 6.426 kW

Launch power

Plaunch,@eng =
1
2 Θv ω2

w,0

tlaunch
= 51.43 W

Auxiliary power

Paux,@eng = 250 W

So the total engine power is evaluated as:

Pe,@eng = Ptrac,@eng + Plaunch,@eng + Paux,@eng

= 6.426 + 0.05143 + 0.250

= 6.727 kW

c) Calculate average fuel power
Using Willan’s approach and compensating back the non-traction time
intervals, we have:

ηe =
e · P̄e

P̄e + P0,e

=
0.4× 6.727

6.727 + 1.26
= 33.69%.

Pf,trac = trac ·
P̄e

ηe
= 11.98kW.

d) Calculate the fuel consumption in category
The fuel consumption from traction force is:

∗
V f=

Pf,trac

Hl · ρf
=

11.98× 103 J/s

43.1× 106 J/kg× 0.832 kg/l
= 3.34× 10−4 l/s.
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In order to switch the unit to the fuel consumption per unit distance, in-
stead of per second, the average cycle speed is used for the approximation:

v̄ = 9.5 m/s = 9.5× 10−5[100km/s].

Therefore, the traction fuel consumption with the unit l/100km given an
approximated average speed is:

∗
V f l/100km =

∗
V f l/s

v

=
3.34× 10−4

9.5× 10−5

= 3.517 l/100km.

Additionally, during the standstill time intervals, the idling fuel consump-
tion should also be calculated from the given idle consumption:

∗
V f,idle l/100km =

∗
V f,idle g/s

ρ g/l
·

tidle
Ltrack [100km]

=
150
3600

832
·
300

0.114
= 0.1318 l/100km.

Consequently, the total fuel consumption of running MVEG-95 is
∗
V Σ=

3.517 + 0.1318 = 3.649 l/100km.
e) Switch to the CO2 emission

Using diesel’s emission factor calculated from Problem 3.6,

mCO2 = 26.29 · C gCO2/km,

where C denotes the fuel consumption in 100 km.

mCO2 = 26.29× 3.649 = 95.93 gCO2/km.

f) Comparison with the declared value 99 gCO 2/km
The additional CO2 not taken into account in this method amounts to
3.07 gCO2/km(env.3.1%). The probable reason is the way of averaging
velocity profile in traction fuel consumption calculation and approximat-
ing idling time in the idle consumption.
Discussion
Take care of the simplified ways of fuel consumption calculation:
• As for the idling consumption, the total time interval of idling and the

length of track are used for the approximation.
• As for the launch event compensation, the frequency of launch event is

used to calculate the average power, and therefore the equivalent fuel
consumption.
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• As for the traction fuel consumption, the average cycle cpeed and the
length of track are used to switch the unit from fuel power to distance-
specifc fuel consumption.

Problem 3.8

Evaluate in a first approximation the contribution of stop-and-start, regenera-
tive braking (mrec = 20% ·mv, ηrec = 0.5) and optimization of power flows in
reducing the fuel consumption when the system of Problem 3.7 is hybridized.
Assume an 80% charge-discharge efficiency for the reversible storage system.

• Solution

From the result of Problem 3.7,

∗
V idle

/ ∗
V tot = 4%

Now consider regenerative braking. Redo calculations of Problem 3.7 with
mv = 1100 · 1.2 = 1320 kg.

F̄trac,r = 1320 · 9.81 · 0.013 · 0.856 = 144 N

F̄trac,a =
1

2
· 1.2 · 0.7 · 319 = 134 N

F̄trac,m = 1420 · 0.101 = 142 N

F̄trac = 144 + 134 + 142 = 420 N

For ideal regenerative braking,

F̄trac,r = 1320 · 9.81 · 0.013 · 1 = 168 N

F̄trac,a =
1

2
· 1.2 · 0.7 · 363 = 152 N

F̄trac,m = 0 N

F̄trac = 168 + 152 = 320 N

For ηrec = 0.5, the traction force is

F̄trac = 320 + (1− 0.5) · (420− 320) = 370 N

Thus the potential gain due to regenerative braking seems rather limited,
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P̄trac =
370 · 9.5

0.6
= 5.8 kW

P̄1 =
5.8 · 103 · 1.03

0.98
= 6.1 kW

P̄start =
1

2
·
1200 · 32

105
= 51 kW

P̄e = 6.1 · 103 + 0.25 + 0.05 = 6.4 kW

ηe =
e · P̄e

P̄e + P0,e
=

0.4 · 6.4
6.4 + 1.26

= 0.33

P̄f =
0.6 · P̄e

ηe
= 11.6 kW

∗
V trac =

11.6 · 103

43.1 · 106 · 0.832
= 3.2 · 10−4 l/s =

=
3.2 · 10−4

9.5
· 105 l/100 km = 3.4 l/100 km

In summary we have 3.6 l/100 km w.r.t. 3.4 l/100 km. The benefit due to regen-
erative braking is equal to the benefit due to idle consumption suppression
and they amount to 3%. To evaluate the potential benefit of engine oper-
ating point shifting, assume that the engine could be able to work always
at its maximum efficiency point, thus at Pe,max = 66 kW. The efficiency is
ηe = 0.4 · 66/(66 + 1.26) = 0.39. Moreover, during a time t1, the engine de-
livers its surplus power to the battery, to be reused later. An energy balance
across the traction phase yields P̄e · 0.6 = Pe,max · t1 +(Pe,max − P̄e) · t1 · ηacc,
where ηacc is the efficiency of the accumulation system (to be charged and
then discharged). Assuming ηacc = 0.8, from the latter one calculates

t1 =
6.4 · 0.6

66 + (66− 6.4) · 0.8
= 0.034,

thus

P̄f =
0.034 · 66 · 103

0.39
= 5.7 kW

∗
V trac =

5.7 · 103

43.1 · 16 · 0.832
= 1.6 · 10−4 l/s =

=
1.6 · 10−4

9.5
· 105 l/100 km = 1.7 l/100 km

Ideal gain due to optimization of power flows = (3.4− 1.7)/3.6 = 47%.
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Electric and Hybrid-Electric Propulsion Systems

Electric Propulsion Systems

Problem 4.1

Design an electric powertrain for a small city car having the following char-
acteristics: curb mass = 840 kg, payload = 2 · 75 kg, tires: 155/65/14T,
cd ·Af = 1.85m2, rolling resistance coefficient = 0.009, to meet the following
performance criteria: (i) max speed = 65km/h, (ii) max grade = 16%, (iii)
100km range. Assume perfect recuperation, overall efficiency of 0.6, and 85%
SoC window. Choose motor size in a class with a maximum speed of 6000 rpm
and the number of battery modules having a capacity of 1.2 kWh each.

• Solution

For vmax = 65 km/h = 18.1 m/s, the required power is

Pmax = mv · g · cr · vmax + 0.5 · 1.2 · cd ·Af · v3max = 8 kW.

The max speed of the motor is ωm,max = vmax · γ/rw where γ is the
reduction ratio and rw is the wheel radius. The wheel radius is obtained from
the tire specifications (see Problem 2.1) as

14”

2
+ 0.65 · 0.155 m =

14 · 0.0254
2

+ 0.65 · 0.155 = 0.28 m.

If one fixes ωm,max = 6000 rpm = 628 rad/s, then γ = 628/18.05 · 0.28 = 9.7.
The max torque is

Tm,max = rw/γ ·mv · g · sin(α) = 0.28/9.7 · (840 + 150) · 9.8 · 0.16 = 45 Nm.

Thus the base speed is Pm,max/Tm,max = 8000/45 = 178 rad/s = 1700 rpm.
The base to max speed ratio is 1:3.5, which is a reasonable design choice.

Assuming an efficiency η = 0.6 and perfect recuperation, the mean traction
force for an ECE drive cycle is (see (2.34))

F̄ = mv · g · cr +
1

2
· 1.2 · Af · cd · 100 + 840 · 0.14 = 303 N.

Thus the energy required is 303/0.6 · 100 · 103 = 50.5 MJ = 14 kWh. Add an
unused 15% range and obtain 16.1 kWh. Using 6V/200Ah (1.2 kWh) modules,
14 modules would be needed for a stored energy of 16.8 kWh.

Problem 4.2

Find an equation for the AER Dev of a full electric vehicle as a function of its
vehicle parameters, battery capacity and powertrain efficiency. Then evaluate
the Dev for a bus with the following characteristics: ηrec = 100%, ηsys =
0.45 (including unused SoC), cr = 0.006, Af · cd = 6.8 · 0.62, Qbat = 89Ah,
Ubat = 600V, mv = 14.6 t, without payload and with a load of 60 passengers,
respectively. Assume a MVEG-type speed profile.
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• Solution

Equation (2.30) is used for the energy at the wheels. To have energy de-
mand in Wh/km, divide the outcome of (2.30) by the factor 100 · 3.6. Now, if
the battery capacity is expressed in Ah,

Dev =
Qbat · Ubat

Erec,MV EG−95

100·3.6·ηsys

.

For the numerical case without payload,

Ē = 6.8 · 0.62 · 2.2 · 104 + 14620 · 0.006 · 9.81 · 100 = 1.8 · 105 kJ/100km =

= 500 Wh/km,

Dev =
89 · 600

500
0.45

= 48 km.

For a payload of 60 · 75 kg = 4500 kg,

Ē = 6.8 · 0.62 · 2.2 · 104 + 19120 · 0.006 · 9.81 · 100 = 2.05 · 105 kJ/ km =

= 570 Wh/km,

Dev =
89 · 600

570
0.45

= 42 km.

Problem 4.3

The 2011 Nissan Leaf electric vehicle has been rated by the EPA as achieving
99mpg equivalent or 34 kWh/100miles. Justify this rating.

• Solution

Just consider that the energy content of one U.S. liquid gallon of gasoline
is 33.41kWh. Then

33.4
kWh

gal
·
1

99

gal

miles
· 100 = 34

kWh

100miles
.

Hybrid-Electric Propulsion Systems

Problem 4.4

Classify the five different parallel hybrid architectures, (1) single-shaft with
single clutch between engine and electric machine (E-c-M-T-V), (2) single-
shaft with single clutch between engine–electric machine and transmission
(E-M-c-T-V) or (M-E-c-T-V), (3) two-clutches single-shaft (E-c-M-c-T-V),
(4) double-shaft (E-c-T-M-V), (5) double-drive, with respect to the following
features:
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- regenerative braking: optimized (without unnecessary losses) / not opti-
mized

- ZEV mode: optimized (without unnecessary losses) / not optimized
- stop-and-start: optimized (independent from vehicle motion) / not opti-

mized / not possible
- battery recharge at vehicle stop: possible / not possible
- gear synchronization: optimized (no additional inertia on the primary

shaft) / not optimized
- compensation of the torque “holes” during gear changes: possible / not

possible
- active dampening of engine idle speed oscillations: possible / not possible

- Solution

Architecture (1):

- compensation of the torque ”holes” during gear changes not possible
- reg. braking ideal
- ZEV mode ideal
- stop/start compromised
- battery recharge at vehicle stop impossible
- gear synchronization compromised (but compensation through the electric

machine itself possible)
- active dampening impossible

Architecture (2), e.g., an Honda IMA-type system (E-M-c-T-V), or a belt
starter-alternator case (M-E-c-T-V):

- reg. braking compromised
- ZEV mode compromised
- stop/start ideal
- active dampening possible
- battery recharge at vehicle stop possible
- gear synchronization ideal

Architecture (3):

- reg. braking ideal
- ZEV mode ideal
- stop/start ideal
- active dampening possible
- battery recharge at vehicle stop possible
- gear synchronization ideal

Architecture (4):

- reg. braking compromised
- ZEV mode compromised
- stop/start compromised
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- active dampening impossible
- battery recharge at vehicle stop impossible
- gear synchronization ideal
- compensation of the torque ”holes” during gear changes possible

Architecture (5):

- reg. braking ideal
- ZEV mode not ideal
- stop/start impossible (would need an additional starter machine)
- active dampening impossible (see stop/start)
- battery recharge at vehicle stop impossible
- gear synchronization ideal
- compensation of the torque ”holes” during gear changes possible

Find a summary of these features in the table below.

E-c-M-T-V E-M-c-T-V E-c-M-c-T-V E-c-T-M-V E-c-T-V-M

RB " × " " "

ZEV " × " " "

S/S × " " × ×
rech. at stop × " " × ×
gear sync. × " " " "

comp. holes × × × " "

act. dmp. × " " × ×

Problem 4.5

Determine the overall degrees of freedom u in modeling (i) a parallel hybrid,
(ii) a series hybrid, (iii) a combined hybrid, with the quasistatic approach.
For (ii) and (iii) use both the generator causality depicted in Figs. 4.11 – 4.13
and the alternative causality introduced in Sect. 4.4.

• Solution

Parallel hybrid There are 6 blocks {V, T,E,M,P,B} and 7 relationships:

1. fV (v, Ft) = 0
2. fT,1(Ft, Te, Tm, γ) = 0
3. fT,2(v,ωe, γ) = 0
4. fT,3(v,ωm, γ) = 0
5. fE(ue, Te,ωe) = 0 (ue is the engine control vector)
6. fM (Tm,ωm, Pm) = 0
7. fP (Pm, Pb) = 0
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between the 10 variables v, Ft, Te, Tm,ωe, ue,ωm, γ, Pm, Pb. Consider γ as
fixed. Thus there are two independent variables. In the quasistatic approach,
v is known, thus the remaining degree of freedom is, e.g., the torque split ratio
at the torque coupler u (needed to solve the fT,1 equation).

Series hybrid There are 7 blocks and relationships

1. fV (v, Ft) = 0
2. fT,1(Ft, Tm) = 0
3. fT,2(v,ωm) = 0
4. fM (Tm,ωm, Pm) = 0
5. fP (Pm, Pg, Pb) = 0
6. fG(Pg,ωg, Tg) = 0
7. fE(ue, Te,ωe) = 0

between the 10 variables v, Ft, Tm,ωm, Pm, Pb, Pg, Tg = Te,ωg = ωe, ue. Thus
there are three independent variables. In the quasistatic approach, v is known,
thus the remaining degrees of freedom are the power split ratio u (needed to
solve the fP equation) and the generator speed ωg (needed to solve the fG
equation). In the alternative causality of the generator block, generator speed
and torque Tg are used to solve the fG equation.

Combined hybrid There are 8 blocks and 11 relationships

1. fV (v, Ft) = 0
2. fT,1(Ft, Tf ) = 0
3. fT,2(v,ωf ) = 0
4. fPSD,1(ωf ,ωg,ωe) = 0
5. fPSD,2(ωf ,ωg,ωm) = 0
6. fPSD,3(Tf , Tg, Te) = 0
7. fPSD,4(Tf , Tg, Tm) = 0
8. fM (Tm,ωm, Pm) = 0
9. fP (Pm, Pg, Pb) = 0
10. fG(Pg,ωg, Tg) = 0
11. fE(ue, Te,ωe) = 0

between the 14 variables v, Ft,ωf , Tf , Tm,ωm, Pm, Tg,ωg, Pg, Pb, Te,ωe, ue. Thus
there are three independent variables. The degrees of freedom are the same
as for the series hybrid case.

Problem 4.6

Perform the same analysis as in Problem 4.5 with the dynamic approach.
Calculate the number nv of variables in the flowcharts of Figs. 4.11 – 4.13.
Then calculate the number ne of the equations available using the simple
models presented in this chapter. Finally evaluate the manipulated variables
that are necessary to realize the degrees of freedom (DOF) determined in
Problem 4.5.

• Solution
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Parallel hybrid There are 6 blocks and ne = 10 relationships:

1. fV (v, Ft) = 0
2. fT,1(Ft, Te, Tm, γ) = 0
3. fT,2(v,ωe, γ) = 0
4. fT,3(v,ωm, γ) = 0
5. fM,1(Tm, Im) = 0
6. fM,2(ωm, Um, um) = 0 (um is the motor control vector)
7. fP,1(Um, Ub) = 0
8. fP,2(Im, Ib) = 0
9. fE(ue, Te,ωe) = 0
10. fB(Ib, Ub) = 0

between the nv = 10 variables represented in the figure. If γ is fixed, the
control inputs ue, um determine the vehicle speed and the torque split ratio.

Series hybrid There are 6 blocks and ne = 12 relationships:

1. fV (v, Ft) = 0
2. fT,1(Ft, Tm) = 0
3. fT,3(v,ωm) = 0
4. fM,1(Tm, Im) = 0
5. fM,2(ωm, Um, um) = 0
6. fP,1(Um, Ub, Ug) = 0
7. fP,2(Im, Ib) = 0
8. fP,3(Im, Ig) = 0
9. fG,1(Tg, Ig) = 0
10. fG,2(ωg, Ug, ug) = 0 (ug is the generator control vector)
11. fE(ue, Te,ωe) = 0
12. fB(Ib, Ub) = 0

between the nv = 12 variables represented in the figure. The control inputs
ue, um, and ug determine the vehicle speed, the power split ratio, and the
generator speed.

Combined hybrid There are 8 blocks and ne = 16 relationships:

1. fV (v, Ft) = 0
2. fT,1(Ft, Tf ) = 0
3. fT,2(v,ωf ) = 0
4. fPSD,1(ωf ,ωg,ωe) = 0
5. fPSD,2(ωf ,ωg,ωm) = 0
6. fPSD,3(Tf , Tg, Te) = 0
7. fPSD,4(Tf , Tg, Tm) = 0
8. fM,1(Tm, Im) = 0
9. fM,2(ωm, Um, um) = 0
10. fP,1(Um, Ub, Ug) = 0
11. fP,2(Im, Ib) = 0
12. fP,3(Im, Ig) = 0
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13. fG,1(Tg, Ig) = 0
14. fG,2(ωg, Ug, ug) = 0
15. fE(ue, Te,ωe) = 0 (ue is the engine control vector)
16. fB(Ib, Ub) = 0

between the nv = 16 variables represented in the figure. The control inputs
ue, um, and ug determine the vehicle speed, the power split ratio, and the
generator speed.

Problem ??

Perform the same analysis as in Problems 4.5 – 4.6 for an electric powertrain
powered by a battery and a supercapacitor.

• Solution

Quasistatic approach There are 6 blocks {V, T,M, P,B, SC} and 5 relation-
ships:

1. fV (v, Ft) = 0
2. fT,1(Ft, Tm) = 0
3. fT,2(v,ωm) = 0
4. fM (Tm,ωm, Pm) = 0
5. fP (Pm, Pb, Psc) = 0

between the 7 variables v, Ft, Tm,ωm, Pm, Pb, Psc. Thus there are two indepen-
dent variables. In the quasistatic approach, v is known, thus the remaining
degree of freedom is, e.g., the power split ratio at the DC link u (needed to
solve the fP equation).

Dynamic approach There are 6 blocks and ne = 10 relationships

1. fV (v, Ft) = 0
2. fT,1(Ft, Tm) = 0
3. fT,2(v,ωm) = 0
4. fM,1(Tm, Im) = 0
5. fM,2(ωm, Um, um) = 0
6. fP,1(Um, Ub, Usc) = 0
7. fP,2(Im, Ib) = 0
8. fP,3(Im, Isc) = 0
9. fB(Ib, Ub) = 0
10. fSC(Isc, Usc) = 0

between the nv = 10 variables. If there is only one control input um the power
split ratio cannot be chosen. Thus a second controllable component is needed,
typically a DC–DC converter on either the supercapacitor or the battery side.



References 45

Problem 4.8

For a plug-in hybrid, the fuel consumption according to UN/ECE regulation
[91] is

C =
De · C1 +Dav · C2

De +Dav
,

where C1 is the fuel consumption in charge-depleting mode, C2 is the con-
sumption in charge-sustaining mode, De is the electric range, and Dav is
25 km, the assumed average distance between two battery recharges. Esti-
mate the fuel consumption of the electric system of Problem 4.1 equipped
with a range extender having a max power of 5 kW and an efficiency of 0.4.

• Solution

De = 100 km, C1 = 0, Dav = 25 km. To evaluate the fuel consumption
in charge-sustaining mode, divide the cycle into two phases, with (i) APU on,
and (ii) APU off. The mean force is the same. During phase (i),

Ebat = −Fr · eb · xon,

where Fr is the mean traction force to recharge the battery, eb =
√
e is the

battery efficiency, and xon is the distance covered during the phase (i). During
phase (ii)

Ebat =
F

e
· (xtot − xon).

By equalizing these two energy terms (charge sustaining),

xon =
xtot · F

F + Fr · e ·
√
e
.

The APU mean power during phase (i) is

Papu =

(
Fr +

F√
e

)
·
xon

ttot
=

F + Fr ·
√
e

F + Fr · e ·
√
e
·

v̄√
e

and the average fuel power is

Pf =
Papu

eapu · xon

xtot

Numerically,

Fr =
Papu,max

v̄
−

F√
e
=

5 · 103

9.5
−

303√
0.6

= 135 Nm

Papu =
303 + 135 ·

√
0.6

303 + 135 · 0.6 ·
√
0.6

·
9.5√
0.6

= 4.1 kW

Pf =
4.1 · 103

0.4
= 10.4 kW

Vf =
10.4 · 103

43.5 · 106 · 0.75
= 3.2 · 10−4 l/s =

3.2 · 10−4

9.5
· 1 · 105 = 3.4 l/100 km = C2
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Thus the combined fuel consumption is

C =
De · C1 +Dav · C2

De +Dav
=

100 · 0 + 25 · 3.4
125

= 0.68 l/100 km

Motor and Motor Controller

Problem 4.9

Consider a separately-excited DC motor having the following characteristics:
Ra = 0.05Ω, battery voltage = 50V (neglect battery resistance), rated power
= 4kW, nominal torque constant κa = κi = 0.25Wb, aimed at propelling
a small city vehicle. Calculate the motor voltage and current limits, then
the flux weakening region limit (maximum torque and base speed). Calculate
the step-down chopper duty-cycle α for the following operating points: (i)
ωm = 100 rad/s and Tm = 15Nm; (ii) ωm = 300 rad/s and Tm = 8Nm.

• Solution

The maximum voltage is Umax = 50V. The maximum admissible current is
calculated by forcing Ua = Umax and ωm ·Tm = Pmax. The following quadratic
equation is obtained,

Umax · Imax = Ra · I2max + Pmax, or

0.05 Ω · I2max − 50 V · Imax + 4000 W = 0,

whose solution is Imax = 88A. Thus the maximum torque is 88·0.25 = 22Nm.
The flux weakening region limit occurs when Ua = Umax thus

Ra · Tm

κa
+ κa · ωm = Umax, or

0.2 · Tm + 0.25 · ωm = 50,

extending from Tm = 250Nm on the torque axis to ωm = 200 rad/s on the
speed axis. The base speed is ωb = 4000/22 = 182 rad/s. For the first operating
point,

Ia =
Tm

κa
=

15

0.25
= 60 A

Ua = Ra · Ia + κa · ωm = 0.05 · 60 + 0.25 · 100 = 3 + 25 = 28 V.

Both current and voltage limits are respected. The chopper duty-cycle is α =
28/50 = 56%. The second operating point belongs to the flux weakening
region. In fact, if one were to calculate the current and voltage with the above
equations, Ia = 8/0.25 = 32A would be obtained, but Ua = 0.05 · 32 + 0.25 ·
300 = 77V that is beyond the admissible voltage. Thus κa must be reduced.
To find κa such that Ua = 50V (α = 100%), the following equation is used
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Umax =
Ra · Tm

κa
+ κa · ωm,

which leads to κa = 0.16Wb. An approximated value is obtained by neglecting
the resistance as κa = Umax/ωm = 50/300 = 0.17Wb.

Problem 4.10

For the DC motor of Problem 4.9, evaluate the approximation of mirroring the
efficiency from the first to the fourth quadrant, for the two operating points
(i) ωm = 50 rad/s and Tm = 22Nm; (ii) ωm = 300 rad/s, Tm = 8Nm. Assume
further that Pl,c = 0.

• Solution

From (4.14), for Tm > 0

1

ηm
= 1 +

Ra · Tm

κ2a · ωm
,

Pl =
Ra · T 2

m

κ2a
.

For Tm < 0

ηm = 1 +
Ra · Tm

κ2a · ωm
= 0.88.

For the point (i)

ηm(50, 22) =
1

1 + 0.05·22
0.252·50

= 0.74,

ηm(50,−22) = 1−
0.05 · 22
0.252 · 50

= 0.65,

Pl = 0.05 ·
(

22

0.25

)2

= 387 W.

In the field weakening region, for the point (ii),

ηm(300, 8) =
1

1 + 0.05·8
0.252·300

= 0.98,

ηm(300,−8) = 1−
0.05 · 8

0.252 · 300
= 0.98,

Pl = 0.05 ·
(

8

0.25

)2

= 51 W.

For the given values, the approximation of mirroring the efficiency is better
as the losses decrease.
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Problem 4.11

Using the PMSMmodel 4.40–4.43 calculate a static control law, i.e., a selection
of reference values Id, Iq as a function of torque and speed, such that the stator
current intensity is minimized. Do the calculation in the case (i) Is ≤ Imax,
Us ≤ Umax = mUm (maximum torque region) and (ii) when the voltage
constraint is active (flux weakening region). Neglect the stator resistance Rs

and consider a machine with p = 1. The stator current and voltage intensities
are defined as

I2s = I2q + I2d , U2
s = U2

q + U2
d .

Evaluate the base speed.

• Solution

If Rs is neglected, the static counterparts of (4.26)-(4.28) are

Uq = ωm · (ϕm + Ls · Id),
Ud = −ωm · Ls · Iq,

T ′
m =

2

3
Tm = ϕm · Iq.

To obtain the desired torque, set Iq = T ′
m/ϕm. To minimize Is without con-

straints, Id = 0. Under these conditions, Is = Iq = T ′
m/ϕm and

U2
s = ω2

m ·

(

ϕ2
m +

(
Ls · T ′

m

ϕm

)2
)

.

Such a situation is valid in (i), i.e., if Is ≤ Im, i.e., if T ′
m ≤ ϕm · Imax, and if

U2
s = ω2 ·

(

ϕ2
m +

(
Ls · T ′

m

ϕm

)2
)

≤ U2
max.

The base speed is obtained from the intersection of the latter limits, i.e., for

ωb =
Umax√

ϕ2
m + (Ls · Imax)2

.

If a negative Id is allowed, points above the base speed are obtained. In case
(ii), Us = Umax and T ′

m = ϕm ·Iq and Id is calculated (a second-order equation
is obtained) as

Id =

√(
Umax

Lsωm

)2

−
(
T ′
m

ϕm

)2

−
ϕm

Ls
.
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Problem 4.12

Evaluate the torque limit curve for a PMSM both (i) in the maximum torque
region and (ii) in the flux weakening region, see Problem 4.11, assuming Rs =
0. Evaluate the transition curve between these two regions. Assume that ϕm >
LsImax (why is that important?).

• Solution

The torque limit in the maximum torque region is simply T ′
max = ϕmImax.

In the flux weakening region, the torque limit is generally lower than ϕmImax

and is calculated using a graphical construction. The maximum current (“I”)
curve is a circle in the Id–Iq plane, with center at the origin and radius Imax.
The maximum voltage (“U”) curve is a circle with center [−ϕm/Ls, 0] and
radius Umax/(ωmLs). Under the assumption that ϕm > LsImax, the center of
U-curve is found outside the I-curve.

Thus the largest value of Iq that fulfills both constraints is where the two
curves I and U intersect. In this case, the coordinates of the intersection are

Id =

(
Us

ωm

)2
− ϕ2 − L2

s · I2max

2 · ϕm · Ls
,

Iq =

√√√√I2max −
1

4 · ϕ2
m · L2

s

((
Umax

ωm

)2

− ϕ2
m − (Ls · Imax)2

)2

,

from whence T ′
max(ωm) = ϕm · Iq(ωm).

The maximum speed at which the maximum torque is null is

ωmax =
Umax

ϕm − Ls · Imax
.

The transition curve is the locus of the torque points that can be still
achieved with Id = 0. It is given by the intersection of U-curve with the
y-axis, resulting in

L2
s · I2q =

(
Umax

ωm

)2

− ϕ2
m,

that is the transition curve sought with T ′
m = ϕmIq. In particular, for Iq =

Imax, obtain the base speed as

ω2
b =

U2
max

ϕ2
m + L2

s · I2max

Problem 4.13

Using the same assumptions as in Problem 4.11, evaluate the maximim power
curve as a function of speed.
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• Solution

The general expression for the maximum power is

Pmax = ωm · Tmax.

Let us calculate the maximum of Pmax.

dPmax

dωm
= 0 ⇒ Tmax + ωm ·

dTmax

dωm
= 0.

But Tmax = ϕm · Iq and I2q = f(X) as given by Problem 4.11, where X =
Umax/ωm. Consequently, the maximum condition is given by

2 · Iq ·
dIq
dωm

= −
df

dX
·
X

ω
⇒ ϕm · Iq − ϕm ·

df

dX
·

X

2 · Iq
= 0 ⇒ 2 · f =

df

dX
·X.

After having calculated the derivative df/dX , obtain a 2nd-order equation in
the variable X , whose solution is X2 = ϕ2

m − L2
sI

2
max, from whence

ωP =
Umax√

ϕ2
m − L2

s · I2max

.

For this speed,

f = 4 · L2
s · I2max(ϕ

2 − L2
s · I2max) = 4 · L2

s · I2max(
Umax

ωm
)2,

I2q = f/(4 · ϕ2 · L2
s) ⇒ Iq =

Umax · Imax

ϕm · ωm
,

and finally Tm = Umax·Imax

ωm
or Pmax = Umax · Imax.

Problem 4.14

Equation 4.42 is only valid when Ld = Lq = Ls. In the general case in which
Ld ≠ Lq, the correct equation is

Tm =
3

2
· p · Iq · (ϕm − p · (Lq − Ld) · Id).

Consider again Problem 4.11 and derive a static control law Id, Iq that mini-
mizes the current intensity (MTPA), assuming that the constraints over cur-
rent and voltage are not active, for a motor where p = 4, Rs = 0.07Ω,
Lq = 5.4 · 10−3H, Ld = 1.9 · 10−3H, ϕm = 0.185Wb and T = 50Nm. Then
compare the result with that obtained for ∆L = Lq − Ld = 0.

• Solution
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To evaluate Id, a procedure similar to that of Problem 4.11 is used. Now
minimize I2d + I2q , subject to the condition

ϕm · Iq −∆L · Id · Iq = T ′
m.

This is a parameter optimization problem in the two parameters Id, Iq. Build
the Hamiltonian

H = I2d + I2q + µ · (ϕm · Iq −∆L · Id · Iq − T ′
m).

Pontryagin’s Minimum Principle reads

dH

dId
= 2 · Id − µ ·∆L · Iq = 0,

dH

dIq
= 2 · Iq + µ · ϕm − µ ·∆L · Id = 0,

from whence
∆L · I2d − ϕm · Id −∆L · I2q = 0,

that is, a quadratic equation is found. Now combine this equation with the
torque equation to have Id and Iq as a function of T ′

m,

∆L · (T ′
m)2 = (∆L · I2d − ϕm · Id) · (ϕm −∆L · Id)2 =

= ∆L3 · I4d − 3 · ϕm ·∆L2 · I3d + 3 · ϕ2
m ·∆L · I2d − ϕ3

m · Id =

= Id · (∆L · Id − ϕm)3

For the numerical case, ∆L = 3.5 · 10−3H, T ′
m = 50/(3/2 · 4) = 8.33Nm, thus

0 =
(
3.5 · 10−3

)3 · I4d − 3 · 0.185 ·
(
3.5 · 10−3

)2 · I3d+
+ 3 · 0.1852 · 3.5 · 10−3 · I2d − 0.1853 · Id−
+ 3.5 · 10−3 · 8.332 ⇒ Id = −17 A,

0 = 3.5 · 10−3 · 172 + 0.185 · 17− 3.5 · 10−3 · I2q ⇒ Iq = 34 A.

Verify that

Tm = 4 ·
3

2
· 34 · (0.185 + 3.5 · 10−3 · 17) = 50 Nm.

With ∆L = 0, one would have obtained Id = 0 and

Iq = 50/4/(3/2)/0.185 = 45 A.

Problem 4.15

Calculate the torque characteristic curve Tm(ωm, Us) of a PMSM having the
following characteristics: Rs = 0.2Ω, L = 0.003H, 3

2ϕm = 0.89Wb, p = 1,
for a voltage intensity (see definition in Problem 4.11) Us = 30V. Derive
an affine approximation of the DC-motor type, Tm,lin(ωm, Us). Evaluate the
torque error ε(ωm) # U2

s (Tm)−U2
s (Tm,lin) and calculate its maximum value.
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• Solution

If Ld = Lq, the MTPA (maximum torque per ampere) control is (see Prob-
lem 4.11) Id = 0, Iq = T ′

m/ϕm. Consequently, the voltage is

Uq = ωm · ϕm +Rs · Iq = ωm · ϕm +
Rs · T ′

m

ϕm
,

Ud = −ωm · Ls · Iq = −ωm ·
Ls · T ′

m

ϕm
.

The torque characteristic curve T ′
m = T ′

m(ωm, Us) for a given Us =
√
U2
d + U2

q

is given by

U2
s = ω2

m · ϕ2
m +

R2
s · (T ′

m)2

ϕ2
m

+ 2 · ωm · Rs · T ′
m + ω2

m ·
L2
s · (T ′

m)2

ϕ2
m

⇒

(ϕm · Us)
2 − ω2

m · ϕ4
m = (T ′

m)2 ·
(
(ωm · Ls)

2 + R2
s

)
+ 2 · Rs · ωm · ϕ2

m · T ′
m.

For ωm = 0, the breakaway torque is

T ′
br =

Us · ϕm

Rs
.

The zero torque speed is

ω0 =
Us

ϕm
.

The affine approximation of the characteristic curve is

T ′
lin(ωm, Us) = T ′

br +
∂T ′

m

∂ωm

∣∣∣∣
ωm=0

· ωm

where T ′
m = T ′

m(ω, Us) is derived from the equation above. From a comparison
with the DC-motor characteristic curve, one can make the equivalence κa =
ϕm, and

T ′
lin(ωm, Us) =

ϕm

Rs
· Us −

ϕ2
m

Rs
· ωm.

At ωm = ω0 the approximated torque is

T ′
0 =

ϕm

Rs
· Us −

ϕm

Rs
· Us = 0.

Thus, at ω0 the error is zero with respect to the nonlinear characteristic curve.
To generally evaluate this error, calculate Us(Tm) from the nonlinear curve
and Us(Tm,lin) from the affine curve. One obtains

U2
s (Tm)− U2

s (Tm,lin) = ε(ωm).

This term can be calculated using the results above, such that
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ε(ωm) =
(
R2

s + ω2
m · L2

s

)
·
(T ′

m)2

ϕ2
m

+ 2 · ωm · Rs · T ′
m−

+

(
1 +

ω2
m · L2

s

R2
s

)
· (Us − ωm · ϕm)2 − 2 · ωm · ϕm · (Us − ωm · ϕm)

=
R2

s · (T ′
m)2

ϕ2
m

+
ω2
m · L2

s · (T ′
m)2

ϕ2
m

+ ω2
m · ϕ2

m + 2 · ωm · Rs · T ′
m − U2

s−

+

(
ωm · Ls

Rs

)2

· (Us − ωm · ϕm)2

= −
(
ωm · Ls

Rs

)2

· (Us − ωm · ϕm)2,

which is zero for ωm = 0 and ωm = ω0. Define

E(ωm) = ω2
m · (Us − ωm · ϕm)2.

The maximum value for E(ωm) is obtained by differentiating w.r.t. ωm:

dE

dωm
= 2 · ωm · (Us − ωm · ϕm)2 + 2 · ω2

m · (Us − ωm · ϕm) · (−ϕm) = 0

⇒ Us − ωm · ϕm = ωm · ϕm

⇒ ωmax,E =
Us

2 · ϕm
=
ω0

2
.

The maximum error is

ε(ωmax,E) =

(
U2
s ·

Ls

4 · ϕm ·Rs

)2

.

In relative terms
ε(ωmax,E)

U2
s

=

(
Us · Ls

4 · ϕm · Rs

)2

.

With the numerical data ε(ωmax,E) = 14.4V2 or in relative terms 14.4/302 =
1.6%.

Problem 4.16

A simple thermal model of an electric machine reads

Ct,m ·
d

dt
ϑm(t) = Pl(t)−

ϑm(t)− ϑa
Rth

,

where Ct,m is an equivalent thermal capacity, Rth is an equivalent thermal
resistance, ϑm(t) is the relevant motor temperature, and ϑa is the external
temperature. Derive the current limitation to Imax from thermal considera-
tions using the models of Sect. 4.3.3 (DC motor). How would the result change
if other losses of the type β · ωm (iron losses, mechanical losses) were taken
into account?
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Fig. 10.9. Schematic representation of the development of the number of passenger
cars operated worldwide.

• Solution

Behind the limitation Ia = Imax leading to Tm = Tmax (for ωm < ωb) there
is a temperature limitation ϑm = ϑmax. Consider the DC motor model. Here
the only loss is due to ohmic losses

Pl = Ra · I2a .

The motor (windings) temperature varies according to this power dissipated
into heat and according to heat exchange to the ambient, so

Ct,m ·
dϑm
dt

= Pl −
ϑm − ϑa

Rth
= Ra · I2a −

ϑm − ϑa
Rth

. (10.24)

To guarantee that ϑm < ϑmax, it should be

Ra · I2a < α · (ϑmax − ϑa),

or

Ia <

√
ϑmax − ϑa
RthRa

= const. = Imax.

If other losses of the type β ·ωm are considered (the factor β could in turn be
dependent on ωm), the condition on temperature reads

Ra · I2a + β · ωm <
ϑm − ϑa

Rth
,

from whence

Ia <

√
ϑmax − ϑa − β · ωm

RthRa
= Imax(ωm).

Thus the maximum torque for ωm < ωb would decrease with ωm.
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Problem 4.17

Derive a (simplified) rule to express peak torque limits of an electric machine
as a function of application time. Use the result of Problem 4.16.

• Solution

Relax the condition on stationary temperature. The solution to the ODE (??)
is then

ϑm(t) = ϑa + (ϑstat − ϑa) · (1− e−
t
τ ),

where ϑstat = ϑa + RthRa · I2a , and τ = Ct,mRth. Impose that ϑ(t) = ϑmax

and obtain Imax as a function of time,

ϑmax − ϑa = RthRa · I2max(t) ·
(
1− e−

t
τ

)

⇒ Imax(t) =

√√√√
(ϑmax − ϑa)

RthRa ·
(
1− e−

t
τ

)

⇒ Tmax(t) = κa · Imax(t)

For t → ∞, one finds

Tmax = κa ·
√
ϑmax − ϑamb

RthRa
,

which is the result of Problem 4.16.

Problem 4.18

One PMSM has the following design parameter: external diameter d1 =
0.145m, weight m1 = 14kg, length l1 = 0.06m. At 5500 rpm it delivers
a maximum torque T1 = 12Nm. Predict the power P2 and the weight m2

for a similarly designed machine with a diameter d2 = 0.2m and a length
l2 = 0.2m. Compare the cases in which the design is made (i) on the basis of
constant tangential stress and peripheral speed, or (ii) of constant speed.

• Solution

Case (i). The power of machine 1 is

P1 =
5500 · π

30
· 12 = 6.9 kW.

The mean rotor speed is

cm =
ω1 · d1

2
=

5500 · π
30

·
0.145

2
= 41.8 m/s.

The mean pressure is
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pme =
T1

2 · V1
=

12

2 ·
(
π·0.1452

4 · 0.06
) = 6 kPa.

Indeed, P1 = π · d1 · l1 · pme · cm = π · 0.145 · 0.06 · 6 · 103 · 41.8 = 6.9 kW. For
machine 2,

P2 = π · 0.2 · 0.2 · 6 · 103 · 41.8 = 31.5 kW,

m2 = m1 ·
(
d2
d1

)2

·
l2
l1

= 14 ·
(

0.2

0.145

)2

·
0.2

0.06
= 89 kg,

assuming constant density.
Case (ii). What changes now is that

P = ω · pme · π ·
d2

2
· l.

For machine 2,

P2 =
π · 5500

30
· 6 · 103 · π ·

0.22

2
· 0.2 = 43 kW,

while m2 is unchanged. The specific power is the same for machine one and
two,

6.9 · 103

14
=

43 · 103

89
= 0.49 kW/kg,

Problem 4.19

Evaluate the specific power of a motor and inverter assembly, knowing that(
P
m

)
motor

= 1.2 kW/kg and
(
P
m

)
inverter

= 11kW/kg.

• Solution

The specific power of the motor system is simply
(
P

m

)
=

1
1

( P
m )

motor

+ 1

( P
m )

inverter

=
1

1
1.2 + 1

11

= 1.08 kW/kg.

Range extenders

Problem 4.20

Consider an APU for a series hybrid. Given the engine model

Pf =
Pe + P0

e
,

1

e
= 5.07− 0.0117 · ωe + 1.50 · 10−5 · ω2

e = a1 + b1 · ωe + c1 · ω2
e

P0

e
= −1.22 · 103 + 31.7 · ωe + 0.421 · ω2

e = a2 + b2 · ωe + c2 · ω2
e

Tmax = 96.9 + 1.35 · ωe − 0.0031 · ω2
e = h · ω2

e + g · ωe + f,
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and a generator model with constant efficiency ηg = 0.92, derive an OOL
structure ω̂(Pg). Then calculate the operating points for (i) Pg = 10kW, (ii)
Pg = 40kW, and (iii) Pg = 60kW.

• Solution

The problem is finding ωg for each Pg = ηg · Pe such that Pf is minimized.
By differentiating Pf with respect to ωe = ωg one obtains

dPf

dωg
= b2 + 2 · c2 · ωg + b1 · Pe + 2 · c1 · ωg · Pe = 0 ,

thus

ω̂ = −
b1 · Pe + b2

2 · (c1 · Pe + c2)
. (10.25)

For the case (i), ω̂ = 81.7 rad/s, which is below the minimum APU speed,
therefore ω̂ = 1000 rpm = 104.7 rad/s.

For the case (ii), ω̂ = 222 rad/s. The torque is Tg = 196Nm, which is below
the maximum torque at the speed ω̂. Thus the operating point is admissible.

For the case (iii), ω̂ would be equal to 261 rad/s and the torque would be
250Nm, while the maximum torque at that speed is 239Nm. Thus a different
calculation should be used: find ω̂ such that

(
96.9 + 1.35 · ω̂ − 0.0031 · ω̂2

)
· ω̂ =

60 · 103

0.92
.

The solution is ω̂ = 279 rad/s.

million cars

all countries

USA

800

400

1980 2000 year

Fig. 10.10. Schematic representation of the development of the number of passen-
ger cars operated worldwide.
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Problem 4.21

For the APU model of Problem 4.20, find a piecewise affine approximation
Pf = a + b · Pg. Evaluate the error with respect to the nonlinear model, for
(i) Pg = 10kW, (ii) Pg = 40kW, and (iii) Pg = 60kW.

• Solution

Three discontinuity points are identified: Pe = 0, Pe = P1 such that ω̂ =
1000 rpm, Pe = P2 such that the engine torque limitation is active, and Pe =
Pmax. The value P1 is calculated as the root of the equation

ω̂(P1) = 1000 rpm ⇒ b1 · P1 + b2 = −2 ·
1000 · π

30
· (c1 · P1 + c2)

⇒ P1 = 14 kW .

The value P2 is calculated as the root of the equation

P2 = ω̂(P2) · Tmax(ω̂(P2)) ⇒ P2 = 62 kW .

The value of Pmax is given by finding the stationary point of

P (ωe) =
(
h · ω2

e + g · ωe + f
)
· ωe ⇒

dP

dωe
= 3 · h · ω2

e + 2 · g · ωe + f = 0 ,

which gives ω̂ = ωe = 324 rad/s and Pmax = 68.3 kW.
The value of Pf at Pe = 0 is

Pf (0
+) = c2 ·

(
1000 · π

30

)2

+ b2 ·
1000 · π

30
+ a2 = 6.7 kW .

The value of Pf at Pe = P1 is

(
c1 · 14 · 103 + c2

)
·
(
1000 · π

30

)2

+

+
(
b1 · 14 · 103 + b2

)
·
1000 · π

30
+ a1 · 14 · 103 + a2 = 62.9 kW .

The value of Pf at Pe = P2 is calculated after having calculated the

ωe = −
b1 · P2 + b2

2 · (c1 · P2 + c2)
= 256 rad/s,

with b = −694 and c = 1.35 (and a = 3.13 · 105). Then

Pf = c · ω2
e + b · ωe + a = 224.4 kW.

The value of Pf at Pe = Pmax is calculated with a = 3.45 · 105, b = −767,
c = 1.45. The value is Pf = 248.7 kW. The piecewise affine model is therefore
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Pf = 0, Pe = 0 (Pg = 0)

Pf = 6.7 · 103 +
62.9− 6.7

14
· Pe, for 0 <

Pe

103
< 14

Pf = 62.9 · 103 +
224.4− 62.9

62− 14
·
(
Pe − 14 · 103

)
, for 14 <

Pe

103
< 62

Pf = 224.4 · 103 +
248.7− 224.2

68.3− 62
·
(
Pe − 62 · 103

)
, for 62 <

Pe

103
< 68.3

The engine power can be replaced by Pe = Pg/ηg to get the affine relationship
between fuel power and APU power.

For the operating point (i), Pg = 10 kW and Pe = 10.9 kW. The exact Pf

is 50.3 kW. The approximated value is

6.7 · 103 +
62.9− 6.7

14
· 10.9 · 103 = 50.5 kW,

with a 2% error.
For the operating point (ii), Pg = 40 kW and Pe = 43 kW, the exact

Pf = 166.4 kW. The approximated value is

62.9 · 103 +
224.4− 62.9

62− 14
·
(
43 · 103 − 14 · 103

)
= 162.2 kW,

with a 2.5% error.
For the operating point (iii), Pg = 60 kW and Pe = 65.2 kW, the exact

Pf = 234.7 kW. The approximated value is

224.4 · 103 +
248.7− 224.2

68.3− 62
·
(
65.2 · 103 − 62 · 103

)
= 236.8 kW,

with a 1% error.

Problem ??

Propose an algorithm to calculate the OOL of an engine for a combined hybrid
from the data w4x (APU speed breakpoint vector), T4x (APU torque break-
point vector), Tmax(w4x) (APU maximum torque), and mfuel(w4x,T4x) (en-
gine consumption map).

• Solution

FOR P = 0 TO max(w4x * Tmax)
WHILE w = w4x AND P/w < Tmax(w)
Pf(w) = Hl*mfuel(w,T);
h(w) = P/Pf(w);

END
wopt(P) = arg min(h(w));
END
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Problem 4.23

Find an optimal design for a range extender working at a stationary operating
point, i.e., select optimal values for the displacement volume Vd and the speed
ωe of the engine, neglecting stop-and-start effects and making the following
approximations. The IC engine is modeled with a Willans line

pme = e · pmf − (pme0 + pme2 · ω2
e)

with e = 0.4, pme0 = 1.5 · 105Pa, pme2 = 1.4Pa·s2. The generator is a DC
machine with constant armature resistance Ra = 0.2Ω and κa = 0.5. The
battery is modeled as an internal voltage source Uoc = 180V with an internal
resistance Rb = 0.3Ω. The overall system efficiency

ηov =
Uoc · Ia
∗
mf ·Hl

should be optimal. The nominal power Pe of the range extender should be
greater than 30 kW and the brake mean effective pressure of the engine smaller
than 9 bar. The design parameters can be chosen between the following bound-
aries: Vd ∈ [0.5, 2] l, ωe ∈ [Uoc/κa, 600] rad/s.

• Solution

The generator current is

Ia =
Te

κa
=
κa · ωe − Uoc

R
,

where R = Ra +Rb. The fuel consumption rate is

∗
mf ·Hf =

ωe · Te

e
+
ωe

e
·
(
pme0 + pme2 · ω2

e

)
·

Vd

4 · π
Thus the overall efficiency is

ηov =
e · Uoc · (κa · ωe − Uoc)

κa · ωe · (κa · ωe − Uoc) + ωe · (pme0 + pme2 · ω2
e) · Vd

4·π ·R
= ηov(ωe, Vd).

The power is also expressed as a function of ωe and Vd as

Pe = Ia · Ua = Ia · κa · ωe =
(κa · ωe − Uoc) · κa · ωe

R

while the brake m.e.p. is

pme =
4 · π · Te

Vd
=

4 · π · κa · (κa · ωe − Uoc)

Vd · R
.

It can be seen by inspection that the efficiency decreases for increasing values
of Vd. The lower Vd is obtained at the intersection of the two conditions on
Pe and pme. The former gives
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κ2a · ω2
e − κa · Uoc · ωe −R · Pg = 0 ⇒ ωe = 484 rad/s.

The latter condition gives

Vd =
4 · π

R · pme
· (κ2a ·ωe−κa ·Uoc) =

4 · π
0.5 · 9 · 105

· (0.52 ·484−0.5 ·180) = 0.87 l.

At this speed, the current is (0.5 · 484 − 180)/0.5 = 124 A, the torque is
0.5 · 124 = 62 Nm, the engine power is thus 484 · 62 = 30 kW, the fuel power
is

30 · 103

0.4
+

484

0.4
· (1.5 · 105 + 1.4 · 4842) ·

0.87 · 10−3

4 · π
= 115 kW,

(engine efficiency 26%), the armature voltage is 0.5 · 484− 0.2 · 124 = 217 V,
the battery power is 217·124 = 26.9 kW (generator efficiency 26.9/30 = 90%),
the battery internal power is 180 · 124 = 22.3 kW (battery internal efficiency
83%), the overall efficiency is 19%, as it can be verified using the expression
calculated for ηov(ωe, Vd).

Problem ??

In Problem 4.23, set the engine displacement volume to Vd = 1.6 l and find the
optimal operating speed that maximizes the overall efficiency while respecting
the two constraints on Pe and pme.

• Solution

The overall efficiency as a function of ω is given by

ηov =
e · Uoc · (κa · ωe − Uoc)

κa · ωe · (κa · ωe − Uoc) + ωe · (pme0 + pme2 · ω2
e) · Vd

4·π · R
= ηov(ωe).

To find the maximum efficiency, differentiate with respect to ωe,

κa ·
(
κa · ωe · (κa · ωe − Uoc) + ωe · (pme0 + pme2 · ω2

e) · a
)
=

(κa · ωe − Uoc) · (3 · a · pme2 · ω2
e + 2 · κ2a · ωe − κa · Uoc + a · pme0),

where a = Vd · R/4/π is a constant. By manipulating the expression above,
obtain the third-order equation

2 · κa · a · pme2 · ω3
e + (κ3 − 3 · a · pme2 · Uoc) · ω2

e−
+ 2 · κ2a · Uoc · ωe + (κa · U2

oc − a · Uoc · pme0) = 0,

whose solution is ωe = 503 rad/s for Vd = 1.6 · 10−3, a = 6.37·−5.
At this speed, the current is (0.5 · 503 − 180)/0.5 = 143 A, the torque

is 0.5 · 143 = 71.5 Nm, the pme is 4 · π · 71.5/1.6 · 10−3 = 5.6 bar (thus the
constraint is not violated), the engine power is thus 503 · 71.5 = 36 kW, the
fuel power is
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36 · 103

0.4
+

503

0.4
· (1.5 · 105 + 1.4 · 5032) ·

1.6 · 10−3

4 · π
= 171 kW

(engine efficiency 21%), the armature voltage is 0.5 · 503− 0.2 · 143 = 223 V,
the battery power is 223·143 = 31.8 kW and thus also the second constraint is
not violated (generator efficiency 31.8/36 = 88%), the battery internal power
is 180 · 143 = 25.7 kW (battery internal efficiency 81%), the overall efficiency
is 15%, as it can be verified using the expression calculated for ηov(ωe). Thus
the choice of a non-optimal value for the displacement volume leads to a
substantial loss in the overall efficiency.

Batteries

Problem 4.25

For a battery pack having the following characteristics: Qcell = 5Ah, Ucell =
3.14 + 1.10 · ξ (V), Rcell = 0.005− 0.0016 · ξ (Ω) under discharge and Rcell =
0.0020 · ξ2 − 0.0020 · ξ + 0.0041 (Ω) under charge, N = 96, calculate the
electrochemical power Pech for an electric power demand of 15 kW in charge
and discharge, respectively, and for 20% and 90% state of charge.

• Solution

Pech = Uoc · Ib with Ib =
Uoc

2 · Ri
−

√
U2
oc

4 ·R2
i

−
Pb

Ri
.

For (i) Pb = 15kW and q = 0.2,

Uoc = (3.14 + 1.10 · 0.2) · 96 = 323 V,

Ri = Rd = (0.005− 0.0016 · 0.2) · 96 = 0.45Ω,

Ib =
323

2 · 0.45
−
√

3232

4 · 0.452
−

15 · 103
0.45

= 50 A,

Pech = 323 · 50 = 16.1 kW

(
efficiency =

15

16.1
= 93%

)
.

For (ii) Pb = 15kW and q = 0.9,

Uoc = (3.14 + 1.10 · 0.9) · 96 = 396 V,

Ri = Rd = (0.005− 0.0016 · 0.9) · 96 = 0.34Ω,

Ib =
396

2 · 0.34
−
√

3962

4 · 0.342
−

15 · 103
0.34

= 39 A,

Pech = 396 · 39 = 15.4 kW

(
efficiency =

15

15.4
= 97%

)
.

For (iii) Pb = -15 kW and q = 0.2,
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Uoc = 323 V,

Ri = Rc = (0.0020 · 0.04− 0.0020 · 0.2 + 0.0041) · 96 = 0.36Ω,

Ib =
323

2 · 0.36
−
√

3232

4 · 0.362
+

15 · 103
0.36

= −44 A,

Pech = 323 · (−44) = −14.3 kW

(
efficiency =

14.3

15
= 95%

)
.

For (iv) Pb = -15kW and q = 0.9,

Uoc = 396 V,

Ri = Rc = (0.0020 · 0.81− 0.0020 · 0.9 + 0.0041) · 96 = 0.38Ω,

Ib =
396

2 · 0.38
−
√

3962

4 · 0.382
+

15 · 103
0.38

= −37 A,

Pech = 396 · 37 = −14.7 kW

(
efficiency =

14.7

15
= 98%

)
.

Problem 4.26

Find a quadratic approximation for the relationship between battery power
Pb and electrochemical power Pech. Compare the results with those of Prob-
lem 4.25.

• Solution

The relationship between power and current is

Ib =
Uoc

2 · Ri
−

√
U2
oc

2 ·R2
i

−
Pb

Ri
or Ib = c−

√
c2 − a · Pb.

By expanding this function as a Taylor series, one obtains

Ib(0) = 0,

dIb
dPb

∣∣∣∣
Pb=0

=
a

2 ·
√
c2 − a · Pb

∣∣∣∣
Pb=0

=
1

Uoc
,

d2Ib
dP 2

b

∣∣∣∣
Pb=0

=
a2

4 · (c2 − a · Pb)3/2

∣∣∣∣
Pb=0

=
2 · Ri

U3
oc

.

Thus

Îb =
Pb

Uoc
+ 2 ·

Ri

U3
oc

· P 2
b .

For the cases of Problem 4.25 and the approximation we get
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Pb (kW) q Uoc (V) Ri (Ω) Ib (A) Pech (kW)

15 0.2 323 0.45 50 16.1

15 0.9 396 0.34 39 15.4

15 0.2 323 0.36 -44 -14.3

15 0.9 369 0.38 -37 -14.7

Îb (A) P̂ech (kW) error (%)

52.4 16.9 5

40.3 16.0 4

-41.6 -13.4 6

-35.1 -13.9 5

Problem 4.27

One couple of electrodes for a lithium cell has the following characteris-
tics: Negative electrode (graphite): capacity qrev,n = 340mAh/g, potential
Un = 0.25V, density ρn = 2.2 g/cm3, thickness sn ≤ 80µm. Positive elec-
trode (LiCoO2): capacity qrev,p = 140mAh/g, potential Up = 3.85V, density
ρp = 4g/cm3, thickness sp ≤ 80µm. Separator, collector: surface density
0.047 g/cm2. Calculate the cell voltage and the cell specific energy.

• Solution

Ucell = Up − Un = 3.85− 0.25 = 3.6 V.

If Q = Qn = Qp, then

qrev =
qrev,n · qrev,p
qrev,n + qrev,p

=
1

1
340 + 1

140

= 99 mAh/g (theoretical),

(
E

m

)

rev

= qrev · Ucell = 99 · 3.6 = 356 Wh/kg (theoretical).

To add the masses of the collector and separator, the surface density Lact of the
active mass must be calculated. To do that, consider the maximum electrode
thickness. Since the surface is the same for the anode and the cathode,

Qn = Qp → sn · qn · ρn · S = sp · qp · ρp · S
sn
sp

=
qp · ρp
qn · ρn

=
140 · 4
340 · 2.2

= 0.75, thus sn < sp

Assume sp = 80 µm, then sn = 60 µm.

Qn

Sn
=

Qp

Sp
=

Q

S
= 80 · 10−4 · 140 · 4 mAh/cm2 = 4.48 mAh/cm2,

Lact =
Q

S
·

1

qrev
=

4.48

99
g/cm2 = 0.045 g/cm2 (active mass).
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Add the mass of the separator to obtain

L = Lact + Lsep = 0.045 + 0.047 = 0.092 g/cm2.

The practical specific capacity qcell is thus

qcell =
Q

S
·
1

L
=

4.48

0.092
= 49 mAh/g (practical),

or approximatly 50% of the theoretical capacity. The practical energy density
e is (

E

m

)

cell

= 3.6 · 49 = 176 Wh/kg (practical).

The pack specific energy will be even lower.

Problem 4.28

Develop an equation for the battery apparent capacity as a function of the
current for constant current discharge using the battery modeling equations of
Section 4.5.2. Then evaluate the apparent capacity of a battery with nominal
capacityQ0 = 72Ah, κ4 = −0.005, κ2 = 1.22, at C/10, C1, and C10 discharge.

• Solution

Ub = Uoc −Ri · Ib = (κ1 + κ2 · ξ)− (κ3 + κ4 · ξ) · Ib, with κ4 < 0

ξ̇ = −
Ib
Q∗

0

,

thus

U̇b = −κ2 ·
Ib
Q∗

0

+ κ4 ·
I2b
Q∗

0

= −c,

Ub(t) = Ub(0)− c · t, where Ub(0) = κ1 + κ2.

The discharge ends when Ub(tf ) = Ucut, thus for

tf =
Ub(0)− Ucut

c
.

The capacity or Ah rate is

Q0 = Ib · tf = Q∗
0 ·

Ub(0)− Ucut

κ2 − κ4 · Ib
,

which is dependent on Ib. To calculate Q0(Ib)/Q0(I∗b ), define Kc = 1−κ4/κ2 ·
I∗b . One finds that

Q0

Q∗
0

=
Kc

1 + (Kc − 1) · Ib
I∗

b

,
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that is (4.58) with n = 2.
The nominal capacity must be retrieved for very slow currents, ideally

when I∗b = 0, as

Q∗
0 = Q∗

0 ·
Ub(0)− Ucut

κ2
= Q∗

0 ·
κ1 + κ2 − Ucut

κ2
,

from whence it must be Ucut = κ1. The dependency Q0(Ib) can be rewritten
as

Q0(Ib) =
Q∗

0

1 + e · Ib
, where e =

|κ4|
κ2

.

In the numerical case, e = 0.005/1.22 = 0.0041 The C/10 current is 72/10 =
7.2 A. For this current, the capacity Q0 is

Q0 =
72

1 + 0.0041 · 7.2
= 70 Ah (97% of the nominal capacity)

and the discharge time tf is

tf =
70

7.2
= 9.7 h.

For a C1 current = 72 A,

Q0 =
72

1 + 0.0041 · 72
= 56 Ah (77% of the nominal capacity),

tf =
56

72
= 0.78 h = 46 min.

For a C10 current = 720 A,

Q0 =
72

1 + 0.0041 · 720
= 18 Ah (25% of the nominal capacity),

tf =
18

720
= 0.025 h = 1.5 min.

Problem 4.29

Verify that the round-trip efficiency of a battery under constant current
discharge-charge and for varying parameters Uoc, Ri as described in Sec-
tion 4.5.2 has the same form as (4.82) but with Uoc and Ri calculated for
ξ = 0.5.

• Solution

The energy discharged Ed is

Ed = Ib ·
∫ tf

0
Uoc(ξ)−Ri(ξ) · Ib dt =

= Ib ·
∫ tf

0
(κ1 + κ2 · ξ)− (κ3 + κ4 · ξ) · Ib dt.
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Since ξ(t) = 1− Ib/Q0 · t under constant current discharge,

Ed = Ib·

[

κ1 · tf + κ2 ·

(

tf −
Ib · t2f
2 ·Q0

)

− κ3 · tf · Ib − κ4 · Ib ·

(

tf −
Ib · t2f
2 ·Q0

)]

.

Since tf = Q0/Ib,

Ed = Ib ·
[
κ1 · tf + κ2 ·

(
tf −

tf
2

)
− κ3 · tf · Ib − κ4 · Ib ·

(
tf −

tf
2

)]
=

= Ib · tf ·
[
κ1 +

κ2
2

− κ3 · Ib − κ4 ·
Ib
2

]
,

which is equal to

Ed = Ib · tf ·
(
Uoc, 12

−Ri, 12
· Ib
)

Similarly for Ec,

Ec = |Ib| · tf ·
(
Uoc, 12

+Ri, 12
· |Ib|

)
,

and thus

ηb =
Uoc, 12

−Ri 12
· Ib

Uoc, 12
+Ri, 12

· |Ib|
.

Supercapacitors

Problem 4.31

Derive Equation (4.117).

• Solution

Psc is considered as a constant. By differentiating (4.116) one obtains

2 · Usc ·
d

dt
Usc +

Isc
Csc

· Usc −
Qsc

Csc
·
d

dt
Usc = 0,

where the second of (4.115) has been used. By solving (4.116) for Qsc, one
obtains

Qsc =
Csc

Usc
· (Psc · Rsc + U2

sc),

thus

2 · Usc ·
d

dt
Usc +

Psc

Csc
−

d

dt
Usc ·

(
Psc ·

Rsc

Usc
+ Usc

)
.

Since 2 · Usc · dUsc/dt = d/dt(U2
sc), one obtains

d

dt
U2
sc+

Psc

Csc
−
Psc · Rsc · d

dtU
2
sc

2 · U2
sc

−
d
dtU

2
sc

2
= 0 ⇒

d

dt

U2
sc

2
+
Psc

Csc
−
Psc · Rsc · d

dtU
2

2 · U2
sc

= 0,

from whence (4.117) follows. For Rsc = 0 it is found that dEsc/dt = d/dt(Csc ·
U2
sc/2) = −Psc (Psc positive during discharge).
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Problem 4.32

Derive an analytical solution for the discharge of a supercapacitor with max-
imum power. Then verify the solution with the data of Figure 4.42.

• Solution

At max power

Psc =
Q2

sc

4 ·Rsc · C2
sc
,

then from (4.118)

Usc =
Qsc

2 · Csc
,

from (4.115)

Rsc · Isc =
Qsc

Csc
−

Qsc

2 · Csc
=

Qsc

2 · Csc

and
dQsc

dt
= −

Qsc

2 ·Rsc · Csc
.

Thus

Qsc(t) = Q0 · e−
t

2·Csc·Rsc ,

Isc(t) =
Q0

2 · Csc · Rsc
· e−

t
2·Csc·Rsc ,

Usc(t) =
Q0

2 · Csc
· e−

t
2·Csc·Rsc ,

Psc(t) =
Q2

0

4 ·Rsc · C2
sc

· e−
t

Csc·Rsc .

For t = 2 s, Csc = 12.5 F, Rsc = 0.08Ω, and Q0 = 800 C, find

Qsc(t) = 800 · e−
2

2·12.5·0.08 = 294 C,

Isc(t) =
800

2 · 12.5 · 0.08
· e−

2
2·12.5·0.08 = 147 A,

Usc(t) =
800

2 · 12.5
· e−

2
2·12.5·0.08 = 12 V,

Psc(t) =
8002

4 · 0.08 · 12.52
· e−

2
12.5·0.08 = 1.7 kW.

Problem 4.33

Yet another definition of supercapacitor efficiency that is sometimes found
(e.g., in [222]) is

ηsc,d = 1− 2
τ

tf
,
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during discharge at constant current, and

ηsc,c =
1

1 + 2 τ
tf

,

during charge at constant current, where τ = Csc · Rsc and tf has the same
meaning as in the text. Explain this definition.

• Solution

The energy amount that can be obtained from a fully-charged supercapacitor
with constant-current discharge in the ideal case of negligible resistance is
obtained from (4.119) as

Ed,id =
Q2

0

2 · Csc
,

which coincides with the maximum stored energy defined in (4.129). By defin-
ing the efficiency as

ηsc,d =
Ed

Ed,id
,

find the value in the problem statement.
For charge, define the efficiency as

ηsc,c =
|Ec,id|
|Ec|

,

and find the value in the problem statement with |Ec,id| = Ed,id.

Electric Power Links

Problem 4.34

Consider again Problem 4.9 and account for a battery internal resistance of
0.025Ω.

• Solution

Combine DC motor equations and battery equations with Ub = Um and
Ib = Im. The relationship linking the motor torque, speed, and the DC–DC
converter duty cycle is

α · Uoc −
(Ra + α2 ·Rb) · Tm

κa
− κi · ωm = 0.

The flux weakening region limit is obtained for α = 1 as 0.3 · Tm + 0.25 ·
ωm = 50V (axis intercepts at 200 rad/s and 167Nm). The current limit is
obtained by setting α = 1 and ωm · Tm = Pm,max. The result is the same as
in Problem 4.9 but now Ra should be replaced by Ra + Rb = 0.075Ω. The
new solution is Im,max = 93A (increase).
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In the case (i) only the calculation of α changes, since Ua = 28V and
Ia = 60A are still admissible values. Knowing that

Ub = Uoc −Rb · Ib,

α =
Ua

Ub
=

Ib
Ia

,

one obtains
Ua = Uoc · α−Rb · Ia · α2,

from whence α = 57% (increase) and correspondingly Ub = 49V, Ib = 34A
(increase). Alternatively, α can be directly calculated from the general equa-
tion above.

For the case (ii) again Ra is replaced by the sum of the two resistances. The
duty cycle is still fixed at α = 100% and the flux is now κi = κa = 0.14Wb.
Thus the flux weakening increases.

Problem 4.35

For an electric drive including a battery, a step-down DC–DC converter (chop-
per), and a DC motor, calculate the duty cycle that maximizes the regenerated
power during braking. Calculate the corresponding motor current, using the
data presented in Problem 4.9.

• Solution

The limitation is imposed by the step-down converter for which R = Ua/Ub =
1− α. Evaluate R as a function of ωm and Ia:

R · Uoc −Rb ·R2 · Ia −Ra · Ia − κi · ω = 0.

For R = 0,

Ia = −κi ·
ω

Ra
,

but Ib = R · Ia = 0 (no recuperation). For R = κi ·ωm/Uoc, Ia = 0 and Ib = 0
(again no recuperation). Thus there must be a value R > 0 that maximizes
the recuperated power. The power is

Pa = Pb = Ia · (Ra · Ia + κi · ωm) = Ra · I2a + κi · ωm · Ia,
dPa

dIa
= 2 · Ra · Ia + κi · ωm = 0 ⇒ Ia = −κi ·

ωm

2 · Ra
= Ia,min.

For this value of current

R · Uoc +
Rb

2 ·Ra
· κi · ωm · R2 −

κi · ω
2

= 0 ⇒ Rmin.

And inserting the data of Problem 4.9,
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Ia,min = −
κi · ωm

2 · Ra
= −

0.25 · 100
2 · 0.05

= −250 A,

R2 · (Rb · Ia,min)− u · Uoc +Ra · Ia,min + κi · ω = 0 ⇒ Rmin = 24%.

Problem 4.36

Consider an electric drive including a battery, a boost DC–DC converter and a
motor. Derive a relationship between the maximum torque curve of the motor
and the converter ratio, assuming that for ωm > ωb, Pmax ≈ Umax · Imax.
Conceive a strategy to perform quasistatic simulations in this case.

• Solution

A simplified expression for the motor maximum torque is

Tmax = min{k · Imax, Pmax/ωm}

where the constant k is given by κa in DC motors and by 3/2·p·ϕm in PMSMs.
The maximum power is Pmax = Imax ·Umax where Umax is the voltage at the
DC side of the motor. One obtains

Pmax = Umax · Imax = Imax ·R · (Uoc −Rb ·R · Imax) = f(R)

In backward modeling, the required torque Tm has to be saturated by the
maximum value Tmax. However, this value depends on R. Physically, there is
one value of R that realizes the desired speed and torque (see a similar situa-
tion in Problem 4.34). For simulation purposes, one could map the conversion
ratio as a function of motor speed and torque and then feed the maximum
torque map. Alternatively, Tmax could be mapped as a function of speed and
voltage Umax and the latter calculated as Ub · Ib/Imax.

Problem 4.37

Consider a semi-active power link with a battery, a supercapacitor, an elec-
tric motor, and a DC–DC converter on the supercapacitor branch. Derive an
analytical relationship between the control factor u (4.132) and the DC–DC
converter voltage ratio R. Calculate the values of R to obtain a pure bat-
tery supply (u = 0) or a pure supercapacitor supply (u = 1). Describe the
supercapacitor on a quasistatic basis, i.e.,

Csc ·
Us0 − Usc

τ
= −Isc,

where τ is the time step.

• Solution
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The battery equation is Ub = Uoc −Rb · Ib. The DC link equations are Um =
R · Usc = Ub. Additionally, Ib + Isc/R = Im. The supercapacitor equation is
given in the problem formulation. There are five equations in the six variables
Ub, Ib, Usc, Isc, Um, Im. However, in dynamic modeling Im is given from the
downstream powertrain. Thus all the other quantities can be calculated as a
function of R. The result is

Um = Ub =
Uoc

Rb
+ C

τ
Us0
R − Im

1
Rb

+ C
τR2

,

from whence Usc, Isc, and Ib are calculated as well. The supercapacitor power
Psc is

Psc = UscIsc =
Um

R

C

τ
(Us0 − Usc)

and the control ratio u is

u =
Psc

Pm
=

1

Im

(
CUs0

τR
−

C

τR2

Uoc

Rb
+ C

τ
Us0
R − Im

1
Rb

+ C
τR2

)

= u(R, Im).

To find u = 0, the DC–DC converter must be regulated such as

R =
Uoc −RbIm

Us0
.

To obtain u = 1, the DC–DC converter must be regulated such as R is the
solution of the quadratic equation

τImR2 − CUs0R + CUoc = 0.

The condition to have a solution is

(CUs0)
2 − 4τImCUoc > 0.

Therefore, pure supercapacitor operation is allowed for

Im <
CU2

s0

4τUoc
.

Torque Couplers

Problem 4.38

Consider a through-the-road parallel hybrid. The torque coupling has the fol-
lowing characteristics: transmission ratio between the rear-axle motor and the
wheels γm = 11, transmission ratios between the front-axle engine and the
wheels γe = {15.02, 8.09, 5.33, 3.93, 3.13, 2.59}, wheel radius rwh = 31.7 cm.
Moreover, Tm,max = −Tm,min = 140Nm, Pm,max = −Pm,min = 42kW, en-
gine speed limited to ωe,max = 4500 rpm, engine maximum torque Te,max =
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1.34 · 10−5 · ω3
e − 0.0149 · ω2

e + 4.945 · ωe − 243 (Nm), engine minimum
torque Te,min = −20Nm. For a driving situation with V = 30m/s and
Twh = 675Nm, determine the limits imposed by the motor operation on the
engine operation.

• Solution

The engine speed for various gears is

ωe = γe ·
V

rwh
= {947, 510, 336, 248, 197, 163} rad/s.

Since ωe,max = 471 rad/s only the third to sixth gears are admissible. The
engine maximum torque Te,max for the four admissible speeds is

Te,max = {242, 270, 255, 225} Nm.

However, the torque coupling equation reads

Te · γe + Tm · γm = Twh.

Since Tm ≥ Tm,min, consequently,

Te ≤
Twh − γm · Tm,min

γe
= {259, 351, 441, 533}.

In all cases, the motor imposed limits overshadow the engine physical limits
during generating operation. For motoring operation,

Te ≥
Twh − γm · Tm,max

γe
= {1.6, 2.1, 2.7, 3.2}.

that prevents, e.g., purely electric operation (Te = 0).

Power Split Devices

Problem 4.39

Consider a power-split combined hybrid powertrain with a planetary gear set
linking the engine, the generator, and the output shafts with the following
Willis relation

ωg = 3.6 · ωe − 2.6 · ωf .

The second electric machine is mounted directly on the output shaft with-
out any reduction gear. The generator has the following characteristics (both
in motor and in generator modes): maximum torque = 160 Nm, maximum
power = 25 kW, maximum speed = 1200 rad/s. The motor has the following
characteristics (both in motoring and in generating mode): maximum torque
= 400Nm, maximum power = 25kW, and maximum speed = 700 rad/s. The
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S.I. engine has the following characteristics: maximum torque curve = {0 87
110 107}Nm @ {400 1300 3700 5000} rpm. The maximum battery power is
35 kW. Consider a driving situation in which the speed of the output shaft
is 343 rad/s and the required torque is 129Nm. Supposing that the decision
variables of the energy management strategy are engine speed and torque,
evaluate the admissible range of these variables.

• Solution

The degrees of freedom are selected as the engine torque and speed. Thus the
admissible range is drawn on the engine speed-torque plane. The engine limits
themselves are drawn as straight lines (curve A)

Te = 0, for ωe ≤ 42

Te =
87

94
· (ωe − 42), for 42 < ωe ≤ 136

Te = 87 +
23

251
· (ωe − 136), for 136 < ωe ≤ 387

Te = 110−
3

136
· (ωe − 387), for 387 < ωe ≤ 524

The motor speed is fixed, i.e., ωm = ωf = 343 rad/s. The motor base speed
is 25000/400 = 62 rad/s. Thus the max torque is 25000/343 = 73 Nm. The
relationship between engine torque, motor torque, and output torque is

Te ·
2.6

3.6
= Tf − Tm.

Thus the engine torque corresponding to the maximum motor torque (curve
B) is

Te =
129− 73

0.72
= 78 Nm.

Only engine torque values greater than 78 Nm are admissible, since they do
not saturate the motor limits.

The relationship between generator torque and engine torque is Tg =
Te/3.6. The engine torque corresponding to the maximum generator torque
is 160 · 3.6 = 576 Nm, thus far beyond the engine limits. The generator base
speed is 25000/160= 156 rad/s (in both rotating directions). The engine speed
corresponding to the generator base speed is

ωg + 2.6 · ωf

3.6
= ±156 + 2.6 · 343 = 291 and 204 rad/s.

Thus outside of this range the max power limit of the generator could limit
the engine operation. The max power limit of the generator is Tg = 25000/ωg,
thus in engine variables (curve C) is

Te

3.6
=

25000

3.6 · ωe − 892
.
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The intersection of curve C with the curve Te = 110 Nm is at 475 rad/s.
To be more precise, the intersection should be made with the fourth branch
of the curve A, leading to a quadratic equation.

Neglecting in a first approximation the motor and generator losses, the
battery power is Pb = Pm − Pg = Pf − Pe. The output power is Pf =
129 · 343 = 44247 W. Thus the limit Pb = 35 kW in engine variables becomes
ωe · Te = 44247 W − 35000 W = 9247 W (curve D). The intersection with
curve B is at 118 rad/s. The curve A at this engine speed gives 70Nm, which
is below curve B. Thus the battery constraint is not active at these driving
conditions. All the other limits (generator minimum torque, motor minimum
torque) are not active as well.

The engine admissible range is thus between curve B (Te = 78 Nm), curve
A (between ωe = 126 rad/s and 475 rad/s), and curve C (between ωe =
475 rad/s and 524 rad/s).

million cars

all countries

USA

800

400

1980 2000 year

Fig. 10.11. Schematic representation of the development of the number of passen-
ger cars operated worldwide.

Problem 4.40

Derive the coupling matrix for the four torque levels of a PSD from the el-
ements of the kinematic matrix in the case of quasistatic modeling. Do the
same in the case of forward modeling, i.e., derive (4.166).

• Solution

In backward modeling the kinematic matrix generally reads

ωe = A · ωf +B · ωg,

ωm = C · ωf +D · ωg.
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Moreover, the power balance of the PSD reads

Te · ωe + Tm · ωm = Tg · ωg + Tf · ωf .

In backward modeling one wants to calculate Te and Tm as a function of Tf

and Tg. To do so, use the kinematic relationships

Te · A · ωf + Te ·B · ωg + Tm · C · ωf + Tm ·D · ωg = Tg · ωg + Tf · ωf .

By equating the factors of ωg and, respectively, ωf , one obtains

Te ·A+ Tm · C = Tf ,

Te · B + Tm ·D = Tg,

thus,

Te =
1

A ·D −B · C
· (D · Tf − C · Tg), and

Tm =
1

A ·D −B · C
· (−B · Tf +A · Tg).

In the case of forward modeling, the input variables are ωf and ωg, while the
output variables are Tg and Tf . As a result, Equation 4.141 is obtained.

Problem 4.41

For the compound power split device architecture shown in Fig. 4.56, derive
the kinematic matrix M and the values of the two kinematic nodes.

S1

C1

R1

M/G2

M/G1

ICE

R2

C2

S2

to final drive

Fig. 10.12. Compound power-split configuration for Problem 4.41

• Solution

Let the first electric machine be the motor and the second the generator. The
general relationship of a PGS is

ωr + z · ωs = (1 + z) · ωc.

For the first PGS,
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ωe + z1 · ωm = (1 + z1) · ωf .

For the second PGS,

ωf + z2 · ωg = (1 + z2) · ωe.

Thus the kinematic matrix is A = 1/(1 + z2), B = z2/(1 + z2), C = (z1 +
z2 + z1z2)/z1(1 + z2), D = −1/z1(1 + z2). The two nodes are calculated (see
Problem 4.42) as K1 = 1/(1 + z1) and K2 = 1 + z2).

Problem 4.42

Derive equation (4.167) for Kv as a function of K and equation (4.168) for r
as a function of K, including the definitions of K1 and K2.

• Solution

We use the definition of M as in Problem 4.40. By defining K = ωf/ωe, we
have

ωg/ωe = A ·K +B and ωm/ωe = C ·K +D.

Thus,

Kv =
ωm

ωg
=

C ·K +D

A ·K +B
=

D

B·
(

1− K
K1

)

1− K
K2

from whence the definition of K1 = −D/C and K2 = −B/A. The power split
ratio is

r =
ωg

ωe
·
Tg

Te
=
ωm

ωe
·
Tm

Te
.

By using the torque matrix calculated in Problem 10,

r = (A ·K +B) ·
D · Tf

Te
+ C

B · C −A ·D
= (C ·K +D) ·

B · Tf

Te+A

B · C −A ·D
.

Equating the last two equations and defining Tf/Te = X , derive that

(D ·X + C) · (A ·K +B) = (C ·K +D) · (B ·X +A)

from whence

X · (D · (A ·K +B)−B · (C ·K +D)) = A · (C ·K +D)− C · (A ·K +B)

⇒ X · (A ·D ·K −B · C ·K) = A ·D −B · C,

thus X = 1/K. Hence,

r =
1

K
·
(C ·K +D) · (B +A ·K)

B · C −A ·D
=

1

K
·D · B ·

(1 + K
K1

) · (1 + K
K2

)

B · C −A ·D
.

As B · C −A ·D can be written as

D · B ·
(
C

D
−

A

B

)
= D ·B ·

(
1

K2
−

1

K1

)
,

equation (4.143) is obtained.
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Problem 4.19

Derive (4.163)-(4.164).

• Solution

Speed balance:
ωe = a · ωg + (1− a) · ωf ,

where a = z/(1 + z), 1− a = 1/(1 + z).
Steady-state torque balance:

Te = Tg + Tr,

Tr = Tf − Tm.

Dynamic torque balance (note the sign of inertia torque in the right-hand
side):

Te −Θc ·
dωe

dt
= Tg +Θs ·

dωg

dt
+ Tr +Θr ·

dωf

dt
.

Power balance:
(
Te −Θc ·

dωe

dt

)
· ωe =

(
Tg +Θs ·

dωg

dt

)
· ωg +

(
Tr +Θr ·

dωf

dt

)
· ωf =

=

(
Te −Θc ·

dωe

dt

)
· a · ωg +

(
Te −Θc ·

dωe

dt

)
· (1 − a) · ωf =

=

(
Tg +Θs ·

dωg

dt

)
· ωg +

(
Tr +Θr ·

dωf

dt

)
· ωf =

=

(
Te −Θc · a ·

dωg

dt
− Θc · (1− a) ·

dωf

dt

)
· a · ωg+

+

(
Te −Θc · a ·

dωg

dt
−Θc · (1 − a) ·

dωf

dt

)
· (1− a) · ωf

from whence, by equalizing the terms multiplying ωg and those multiplying
ωf , one obtains

a · Te −Θc · a2 ·
dωg

dt
−Θc · (1− a) · a ·

dωf

dt
= Tg +Θs ·

dωg

dt

(1− a) · Te −Θc · a · (1− a) ·
dωg

dt
−Θc · (1− a)2 ·

dωf

dt
= Tr +Θr ·

dωf

dt

which are the equations sought, since

a · (1− a) =
z

(1 + z)2
, a2 =

z2

(1 + z)2
, and (1 − a)2 =

1

(1 + z)2
.
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Problem ??

Extend equations (4.149)-(4.150) to the case where there are losses in the
planetary gearset.

• Solution

Assume that es and er are the efficiencies of the contacts carrier-sun and
carrier-ring, respectively, the power balance neglecting the inertia terms is
simply written as

Pe =
1

es
· Pg +

1

er
· Pr,

Te · ωe =
Tg

es
· ωg +

Tr

er
· ωf , from whence

Tg = es · a · Te, and

Tr = er · (1− a) · Te, where a =
z

1 + z
.

The lost power Plost is

Plost = Te · ωe − Tg · ωg − Tr · ωf =

= a · Te · ωg · (1− es) + (1− a) · Te · ωf · (1− er).

Non-electric Hybrid Propulsion Systems

Hybrid-inertial Powertrains

Problem 5.1

Derive a Ragone curve similar to (5.1) and (5.2) for a flywheel battery. Then
evaluate the maximum energy and power. Use a simplified expression for the
loss power of the type Pl = R · ω2

f .

• Solution

Assume constant power output of the flywheel and assume the flywheel
starts at speed ω0.
newline

a) Dynamics of the flywheel
For constant power Pf , the dynamic equation:

Θf · ωf · ω̇f = −Pf −R · ω2
f ,

which can be rewritten as the following integral:
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Θf · dωf

Pf +R · ω2
f

= −dt

Θf

2R · d(Rω2
f + Pf )

(Rω2
f + Pf )

= −dt

Θf

2R
ln
[
Pf +Rω2

f(∞)
] ∣∣t∞

t0
= −t

∣∣∞
0

Θf

2R
ln

[
Pf +Rω2

f (∞)

Pf +Rω2
f(0)

]

= −(t∞ − t0)

By setting integral limits from t = 0,ωf = ω0 to t = t∞,ωf = 0 yields

Θf

2R
ln

[
Pf +Rω2

f(∞)

Pf

]

= −(t∞)

t∞ = τ · ln(1 +R · ω2
0/Pf ).

where τ # Θf/(2R).
b) Energy delivery

Ef = Pf · t∞

= Pf ·

⎧
⎨

⎩
−
Θf

2R
· ln

⎡

⎣ 1

1 +Rω2
0

Pf

⎤

⎦

⎫
⎬

⎭

=
Θf

2R
· Pf ln

[
1 +R

ω2
0

Pf

]
.

c) Initial energy available
The initial energy stored in the flywheel is

E0 = 1/2 · Θf · ω2
0 .

Thus the efficiency can be calculated as

ηf =
Ef

E0
=

Pf

R · ω2
0

· ln
[
1 +

R · ω2
0

Pf

]
.

Discussion
If we plot out the Ragone curve Ef = Ef (Pf ), it appears to be a
monotonously increasing curve, contrarily to battery and supercapaci-
tors. That is, the larger is the power, the larger is the energy that can
be extracted from the flywheel and thus its efficiency.
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Problem 5.2

Dimension a flywheel for the following application (F1 KERS): Pmax = 60kW,
Emax = 500kJ, ωmax = 60000 rpm. Assume β = 0.5, ρ = 1658kg/m3 (carbon
fiber), ρ0.8a η0.2a = 0.48 (sealed flywheel).

• Solution

Assume β denotes the the geometric ratio of the wheel width over the
wheel diameter; d = 0.2 [m], and q denotes the ratio between inner and
outer diameters of the flywheel rings.

a) Calculate the moment of inertia
The maximum speed is ωmax = 60000 rpm = 60000 · 2π/60 = 6283 rad/s.
From the maximum energy, the moment of inertia can be calculated with

Θf =
2 · Emax

ωmax
= 2 · 500 · 103/(6283)2 = 0.0233 kg · m2.

b) Find the flywheel diameter
By setting Pl,a = Pmax and neglecting bearing losses, the diameter is
found from (5.5) by setting Pl,a = Pmax, i.e.,

0.04 · ρ0a.8 · η0a.2 · u2.8(t) · (β + 0.33) = Pl,a(t) = Pmeax

0.04 · 0.48 · d4.6 · (6283/2)2.8 · 0.83 = 60 · 103,

from whence d ≈ 0.2m. Thus b = β · d = 0.5 · 0.2 = 0.1m.
c) Dimension the flywheel mass with material property

Using (5.7), find the geometric ratio q from the equation:

Θf =
π

2
· ρ · b

d4

16
(1 − q4)

0.026 = 3.14 · 1658/32 · (1− q4) · 0.1 · 0.24,

from whence q = 0.4069.
The mass is obtained from (5.8) as

mf = ρ ·
∫ rout

rin

1 · (2πr)dr

mf = πρb
d2

4
· (1 − q2)

mf = 0.1 · 0.22 · 3.14 · 1658 · (1− 0.40692)/4 = 4.346 kg.

Problem 5.3

Evaluate the charging efficiency of the flywheel of Problem 5.2 for a braking
at maximum power for 2 s. Evaluate the round-trip efficiency.
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• Solution

a) Charging efficiency

(i) estimate the coefficient of loss power using maximum achievable power
During charging, the flywheel dynamics reads Θf ·ωf ·ω̇f = Pf−R·ω2

f .
Using the data of Problem 5.2, an approximation for R could be

R = Pmax/ω
2
max = 60 · 103/(60000 · 2π/60)2 = 0.0015.

Thus, the charging speed trajectory ωf satisfies:

θf cdotωf · ω̇f = Pf −R · ω2
f

which gives, τ ln

[
Pf −R · ω2

f (∞)

Pf −R · ω2
f (0)

]

= −(t∞ − t0)

By definition, τ # Θf/(2R) = 8.332 s. Therefore, beginning at rest,
the speed profile is as follows, with the maximum braking power charg-
ing the flywheel for 2 s:

ωf =
Pf

R

[
1− e−

t
τ

]
,

ωf |t=2 s =

√
60× 103

1.52× 10−3

[
1− e−

2
8.332

]
= 2902 rad/s.

(ii) Charging efficiency
Charging efficiency is the ratio of available energy storage to available
energy input from regenerative braking:

Ein =Pf · t

Eout =
1

2
Θf ω

2
f =

1

2
Θf

Pf

R

[
1− e−

t
τ

]

ηc =
Eout

Ein
=

Θf

2Rt

[
1− e−

t
T

]
.

=
8.332 s

2 s

[
1− e−

2 s
8.332 s

]
= 88.90%.

b) Calculate discharge and thus roundtrip efficiency
The initial speed for discharging equals the final speed of charging:

ω0,disch = ωf,ch = 2902 rad/s.

Thus, the total discharging energy equals:

Ef,disch =
Θ

2R
Pf ln

[

1 +
R · ω2

0,disch

Pf

]

.
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With the energy storage in the flywheel, the discharging efficiency can be
calculated:

ηdisch =
Ef,disch

Eout
=

⎧
⎪⎨

⎪⎩

ln
[
1 +

R·ω2
0,disch

Pf

]

1− e−
tch
τ

⎫
⎪⎬

⎪⎭
= 90.64%

Finally, the round-trip efficiency is therefore η = ηch · ηdisch = 80.58%.
Discussion
Generally, the maximum energy of flywheel is used to estimate the moment
of inertia and mass, while the maximum power is used to estimate the
coefficient of loss power.

Problem 5.4

Evaluate the CVT ratio ν(t) during a deceleration of a vehicle equipped with
a flywheel-based KERS and the opening time of the clutch. Use the flywheel
data of Problem 5.3. The flywheel is connected to the input stage of the
CVT through a fixed-reduction gear with ratio 8.33. Final drive and wheel

ratio
(

γfd

rw

)
= 13. Initial conditions: v(0) = 80km/h, ωf (0) = 10000 rpm,

mv = 600kg, braking time 2 s (assume a constant braking power), CVT range
νmax/νmin = 6.

• Solution

a) Calculate the range of CVT ratio
As for the initial speed,

ν(0) =
ωf (0)

γf · ν(0) · γfd

rw

=
10000× 2 π/60

8.33 · 80/3.6 · 13
= 0.4352.

Therefore, given the CVT range, the maximum CVT ratio is as follows:

ν(t) = ν(0)×
νmax

νmin
= 6× 0.4352 = 2.611.

b) List equations from the vehicle side
Given that the vehicle speed trajectory during decceleration is

v2(t) = v2(0)− 2Pb · tb/mv

, where Pb is the constant braking power which brings the vehicle approx-
imately towards standstill. Thus, the average braking power is

Pb =
mv · ω2

tb
= 1/2 · 600 · (80/3.6)2/2 = 74.07 kW.

The corresponding final speed at the clutch opening time equals:

v2(tc) =

(
80

3.6

)2

−
2× 74.07× 103 · tc

600
.
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c) List equations from the flywheel side
According to the result of Problem 5.3:

Pf

R
− ω2

f (t) =

[
Pf

R
− ω2

f (0)

]
· e−

t
τ .

Using intemediate results from Problem 5.3, the following values are
known:

Pf = 60 kW, R = 0.01520 kg · · ·m2, τ = 8.332 s.

Equations from the flywheel side can be established by substituting values
in.

d) Solve equations with the CVT ratio constraint

⎧
⎪⎪⎨

⎪⎪⎩

ν(tc) = 2.611 = ωf (tc)

ν(tc)·γf ·
γfd
rw

ω2
f(tc) = −

[
Pf/r − ω2

f (0)
]
· e− t

τ +Pf/R

v2(tc) = v2(0)− 2Pb · tc/mv

Substituting one speed with the other, we get:

(
2.611×

80

3.6
× 8.33× 13

)2

=
ω2
f (tc)

v2(tc)
. (*)

Eliminate the second unknown variable and make equations of tc only:

1

3.948× 107

{
Pf/R−

[
Pf/R− ω2

f(0)
]
· e−

tc
τ

}
= v2(0)− 2× Pb × tc/mv.

(10.26)
The solution is therefore:

⎧
⎪⎨

⎪⎩

tc = 1.9999 s ≈ 2 s

ωf (tc) = 1431 rad/s = 13660 rpm

v(tc) = 0.1648m/s.

Discussion
After the clutch opening time t > tc, the clutch is open and the vehicle
can further decelerate util rest, with the help of tyre friction power.

Hybrid-hydraulic Powertrains

Problem 5.5

Derive a Ragone curve similar to (5.1) and (5.2) for a hydraulic accumulator.
Show that for high power this definition is equivalent to that adopted in the
text.

• Solution
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a) Energy balance
Establish the accumulator’s energy balance for Ragone Curve:

⎧
⎪⎨

⎪⎩

Ė = mg · cv · d
dt θg(t) = −pg(t) · d

dt Vg(t)− hAw(θg(t)− θw)
d
dt Vg(t) = Qh(t)

Pg(t) =
mg Rg θg(t)

Vg(t)
.

b) Power output
As from the textbook, the power of a hydraulic accumulator is output
through the change of pressurized flow:

Ph = pg(t) ·Qh(t).

Therefore, given that E = mg cv θg(t), rewrite the energy balance as fol-
lows:

Ė = −Ph −
hAw

mg cv
· E + hAw θw.

Let τ = mg cv
hAw

, and E∗ = E + τ (Ph − hAw θw), then we have:

dE∗

E∗
= −

dt

t
.

c) Solve ODE with initial and final conditions.

Assume constant power output.

Assume starting of the cycle is defined as point “B”, while the end of
power output is reached when gas temperature equals liquid temperature.

E|t=0 = mgcv,gθBE|t=∞ = mgcv,gθw = Eh

Solving the ODE subject to these conditions, we get:

t∞ = τ · ln
[
Ph + (E0 − Ew)

Ph

]

So the total energy transmitted is:

Eha = Ph · t∞ = Ph · τ · ln
[
1 +

E0 − Ew

Ph · τ

]

d) Prove the equivalence of validity
According to the reference cycle used for power output:

WAB = mg · cv,g (θB − θA) = E0 − Ew

. When Ph → ∞, using L’Hospital rule in limit calculation, we get:
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Eha = k · (E0 − Ew) = k ·WAB,

which proves the validity of definition (5.36), as an equivalence of the
Ragone Curve function
Discussion

• the energy balance ODE assuming the mode of constant power output
is a source of Ragone Curve Function;

• the Ragone Curve shows the energy is positively correlated with the
power, so the energy output is hight if the constant power level is
higher.

Problem 5.6

Derive (5.48) and (5.50).

• Solution

Fuel-Cell Propulsion Systems

Fuel Cells

Problem 6.1

For high pressures, the thermodynamic properties of gas have to be calculated
using the Redlich–Kwong equation of state instead of the ideal gas law. The
Redlich–Kwong equation reads

p =
R̃ · ϑ
Ṽ − b

−
a√

ϑ · Ṽ · (Ṽ + b)
, (10.27)

where p is pressure, R̃ is the universal gas constant, ϑ is temperature, Ṽ is
the molar volume. The constants a and b are defined as

a =
0.4275 · R̃2 · ϑ2/5c

pc
, b =

0.08664 · R̃ · ϑc
pc

, (10.28)

where ϑc is the temperature at the critical point, and pc is the pressure at
the critical point. Using this equation of state, evaluate the gaseous density
of hydrogen at 350bar, 700 bar, when the gas temperature is 300K.

• Solution

Assume the temperature of H2 is 300K.
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a) Gas states and constants
From thermodynamic tables, R̃ = 8.314J/mol · K, θc = 32.97K, pc =
1.293 MPa. Then, we find the constants:

a =
0.4275× R̃2 × θ0c .4

pc

=
0.4275× 8.3142 × 32.970.4

1.293× 106

= 9.251× 10−5;

b =
0.08664× R̃× θc

pc

=
0.08664× 8.314× 32.97

1.293× 106

= 1.837× 10−5.

b) when p1 = 350× 105 Pa, θ1 = 300 K.

P1 =
R̃ θ1

Ṽ1 − b
−

a
√
θ1 · Ṽ1 · (Ṽ1 + b)

350× 105 =
8.314× 300

Ṽ1 − 1.837× 10−5
−

9.251× 10−5

sqrt300× Ṽ1(Ṽ1 + 1.837× 10−5)

Solve the 3rd order algebraic equation, we get:

{
Ṽ1 = 8.963× 10−5m3/mol;

ρ1,H2 = Mh

Ṽ1
= 22.31kg/m2.

c) when p2 = 700× 105 Pa, θ2 = 300 K.

P2 =
R̃ θ2

Ṽ2 − b
−

a
√
θ2 · Ṽ2 · (Ṽ2 + b)

700× 105 =
8.314× 300

Ṽ2 − 1.837× 10−5
−

9.251× 10−5

sqrt300× Ṽ2(Ṽ2 + 1.837× 10−5)

Solve the 3rd order algebraic equation, we get:
{
Ṽ2 = 5.400× 10−5m3/mol;

ρ2,H2 = Mh

Ṽ2
= 37.04kg/m3.
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Discussion

• when p1 = 350× 105 Pa, θ1 = 300 K.
ρ1,idealgas =

P1
Rg T1

= 28.07kg/m3

Its compressibility factor Z1 = p1 Ṽ1

R̃ θ1
= ρ1,idealgas

ρ1,realgas
= 1.258.

• when p2 = 700× 105 Pa, θ2 = 300 K.
ρ2,idealgas =

P2
Rg T2

= 56.14kg/m3

Its compressibility factor Z2 = p2 Ṽ2

R̃ θ2
= ρ2,idealgas

ρ2,realgas
= 1.516.

• over-estimation of high pressure cases As can be seen from the com-
parative result, the higher the pressure is, the larger would the over-
estimation be.

Problem 6.2

A good approximation of the compressibility factor of hydrogen between pres-
sures p and p0 is

Z = 1 + 0.00063 ·
(

p

p0

)
(10.29)

(verify it with the results of Problem 6.1). With this assumption evaluate
the energy required to compress 1 kg of hydrogen (from 1 bar) to 350bar and
700bar, respectively, at 300K, under the further assumptions of (i) isothermal
compression, (ii) adiabatic compression. Evaluate the result as a percentage
of the energy content of hydrogen.

• Solution

a) Derivation of compression work in isothermal and isentropic case:

(i) Isothermal case
Given the definition of compressibility,

P v = Z Rθ,

where Z = 1+ 0.00063 ×
(

p
p0

)
. After integrating dW = v dp from p0

to p, we get:

Wc =

∫ p

p0

Z R θ

p
dp

= R θ

∫ p

p0

(
1

p

0.00063

+
p0

)
dp

= R θ

[
ln

p

p0
+ 0.00063

p− p0
p0

]

Note that in most cases p0 ≪ p.
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(ii) Isentropic case
For isentropic processes, pvγ = C,

Wc =
Z̄p,p0 Rθ

γ − 1

[(
p

p0

) γ−1
γ

− 1

]

.

where Z̄ denotes the average compressibility factor of the initial and
final state.

b) p = 350 bar, θ = 300 K.

(i) Isothermal case

Wc =
8.314

2× 10−3
×300×[ln(350) + 0.00063× (350− 1)] = 7.580MJ/kg.

(ii) Isentropic case

Wc =
1+1.258

2 × 8.314
2×10−3×300

γ − 1
×
(
350

γ−1
γ − 1

)
= 15.25MJ/kg.

(iii) Comparison with LHV
Since for H2, LHV = 120 MJ/kg, the ratio of isothermal compression
work to LHV is 6.317%, while that of the isentropic compression work
is 12.71%.

c) p = 700 bar, θ = 300 K.

(i) Isothermal case

Wc =
8.314

2× 10−3
×300×[ln(700) + 0.00063× (700− 1)] = 8.719MJ/kg.

(ii) Isentropic case

Wc =
1+1.258

2 × 8.314
2×10−3×300

γ − 1
×
(
700

γ−1
γ − 1

)
= 19.30MJ/kg.

(iii) Comparison with LHV
Since for H2, LHV = 120 MJ/kg, the ratio of isothermal compression
work to LHV is 7.266%, while that of the isentropic compression work
is 16.09%.

Problem 6.3

Typical characteristics of various metal-hydride materials (1–4) for hydrogen
storage are listed in the following table [350]. Evaluate the energy density for
these storage systems.

• Solution
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(1) (2) (3) (4)

Material density (g/cm3) 6.2 1.25 1.26 0.66

Porosity (%) 50 50 50 50

Mass storage capacity (%) 1.8 5.55 6.5 11.5

a) Energy density for storage
For hydrogen storage, the energy density is given by:

Eht

Vht
=

Hh ξ

γht
.

where ξ = P% ·M%:

γht denotes the reciprocal of material density

P% denotes the porosity of material

M% denotes the mass storage capacity

b) Material 1
Eht

Vht
|(1) = 6.2× 50%× 1.8%× 33.33kWh/kg = 1.860 kWh/l

c) Material 2
Eht

Vht
|(2) = 1.25× 50%× 5.55%× 33.33kWh/kg = 1.156 kWh/l

d) Material 3
Eht

Vht
|(3) = 1.26× 50%× 6.5%× 33.33kWh/kg = 1.365 kWh/l

e) Material 4
Eht

Vht
|(4) = 0.66× 50%× 11.5%× 33.33kWh/kg = 1.265 kWh/l

Discussion
Despite an increase in the gravimetric storage capacity, the energy density
still decreases when the material changes from (1) to (4). This is because
the size and porosity of the material also matters a lot. Even the specific
energy may decrease if the necessary system becomes significantly larger
and thus heavier (ancillaries, etc.).

Problem 6.4

Evaluate the increase of energy density obtained with the cryo-compressed
tank (CcH2) concept operated at 77K with respect to conventional, ambient-
temperature pressurized tanks.

• Solution

Assume the energy density is evaluated through the storage capac-
ity(hydrogen density) ρh, using the method of Problem 6.1.

a) Compressed tank: 350 bar, 300 K
Density has been calculated in Problem 6.1, where

ρh = 22.31kg/m3.
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b) Cyro-compressed tank: 350 bar, 77 K
Molar specific volume can be calculated by solving:

350× 105 =
8.314× 77

Ṽ − 1.837× 10−5
−

9.251× 10−5

√
77 · Ṽ (Ṽ + 1.837× 10−5)

Therefore,

Ṽ = 3.666× 10−5m3/mol

ρh =
Mh

Ṽ
=

2× 10−3

3.666× 10−5
= 54.56kg/m3

c) Cyro-compressed tank: 700 bar, 77 K
Molar specific volume can be calculated by solving:

700× 105 =
8.314× 77

Ṽ − 1.837× 10−5
−

9.251× 10−5

√
77 · Ṽ (Ṽ + 1.837× 10−5)

Therefore,

Ṽ = 2.751× 10−5m3/mol

ρh =
Mh

Ṽ
=

2× 10−3

2.751× 10−5
= 72.70kg/m3

d) Liquid cyrogenic tank
Check thermodynamic tables, we find:

ρh = 71kg/m3.

Discussion

• Cyrogenic pressurized tank gives twice the hydrogen storage density if
compared with the normal pressurized tank with ambient temperature.

• Cyrogenic liquidified storage gives comparable result if compared with
the cyro-genic pressurized storage.

Problem 6.5

Explain the different values of γht in Table 6.2.1, for storage tanks pressurized
at 350bar. Note that γht denotes the reciprocal of the material density.

• Solution

a) Calculate thickness of housing:
According to equation (5.33)

w =
p · d
4 · σ

where d is the diameter of the tank shell, while σ is the maximum tensile
stress.
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b) Derive the γht for spherical shape:

mht = ρ π d2ω = ρ · πd2 ·
p d

4 σ

= ρ ·
1

6
π d3 ·

6 p

4 σ

=
3

2
ρV

p

σ

Thus, the reciprocal of density is

γht =
V

mht
=

2 σ

3 ρp

c) Evaluate and explain different γht According to Table 6.2.1, the reciprocal
of density can be calculated for different materials:

Material ρ [kg/l] σ [MPa]

Steel 8.0 460

Aluminum 2.7 210

Magnesium-composite 1.9 1000

γht,steel =
2× 460× 106

3× 8× 350× 105

= 1.095 l/kg.

γht,alu =
2× 210× 106

3× 2.7× 350× 105

= 1.481 l/kg.

γht,composite =
2× 1000× 106

3× 1.9× 350× 105

= 10.03 l/kg.

Discussion

• The differece in γht is caused by differences in tensile strength σ and
material density ρ.

• In the energy density calculation,

Eht

Vht
=

Hh ξ

γht
.

the numerator focuses on the mass fraction of hydrogen that is stored
in the system, while the denominator includes the effect of material
density and geometric shape.
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• As a further step in the future, increasing pressurized level (to-
wards 700bar), or choosing material with higher tensile strength (till
6000MPa) can improve the storage system and will be gradually in-
troduced.

Problem 6.6

Evaluate the storage pressure and the specific strength (ratio of tensile
strength to density) of the tank material that would be necessary to meet
the 2015 DOE targets of Table 6.2.1 with gaseous hydrogen.

• Solution

a) Calculate the 2015 DOE target
⎧
⎪⎨

⎪⎩

Eht

mht
= 3.0 kWh /kg

Eht

Vht
= 2.7 kWh /l

ξht = 9.0%

(10.30)

b) Calculate the pressurized level

{
ρh = Eht

Vht·Hh
= 2.7×103×3.6×106

120×106 = 81kg/m3

Ṽ = Mh

ρh
= 2×10−3

81 = 2.469× 10−5m3/mol
(10.31)

Solving the RK-equation from Problem 6.1,

p =
8.314× 300

Ṽ − 1.837× 10−5
−

9.251× 10−5

√
300× Ṽ (Ṽ + 1.837× 10−5

= 394.6MPa.

c) Calculate tensile specific length of material
Density reciprocal:

γht =
Hl ξht(
Eht

Vht

)

=
33.33kWh/kg× 0.09

2.7kWh/l

= 1.111l/kg.

Therefore, the tensile specific length is:
(
σ

ρ

)
=

3

2
γhtp|p≈395MPa

=
3

2
× 1.111× 10−3 × 395× 106

= 657.1kNm/kg.
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which is larger than that of magnesium-based composite fiber:

(
σ

ρ

)

compsite

=
1000

1.9
= 526.3kNm/kg

Discussion

• As for current technology level, both the pressurized level and the
housing material tensile strength have to be improved a lot to meet
the 2015 DOE requirement.

• Carbon fiber can probably have a specific tensile strength of a few
thousands kNm/kg, which might be a probably candidate.

Problem 6.7

Explain the explicitness of the number of cells N in (6.72).

• Solution

Assume the first approximation in (6.72) holds:

Paux(t) = P0 +N · κaux · Ifc(t)

According to the semi-empirical data, which sugests a linear dependency
between Paux and Pst for first order approximation:

Paux ∝ Pst

Paux = C0 + C1 · Pst

= C0 + C1 · Ufc(t) · Ifc(t) ·N.

As the main component of the auxiliary poewr, Pst contains the number
of cell explicitly.

Problem 6.8

For the fuel cell stack of Fig. 6.11, find (i) the maximum output power
Pfcs,max, (ii) the current Ifc,P at which this power is yielded, and (iii) the
current Ifc,η that maximizes the overall efficiency. Compare the result with
the curves shown in the figure.

• Solution

Assume: According to the fuel cell power & efficiency graph: N =
250, urev = 1.23V, uOC = 0.82V , Afc = 200 cm2, Rfc = 0.0024Ω, P0 =
100W κaux = 0.05V



References 95

a) Find the optimal current Ifc,P
As is known from (6.79), cell power can be described as:

Pfcs = (N · Uoc −N · κaux) Ifc − P0 −N ·Rfc Ifc2(t)

At optimum, set derivative ∂Pfcs

∂Ifc
|Ifc,P

= 0, we have:

N · Uoc −N · κaux = 2N Rfc Ifc,P (t)

Ifc,P = I∗fc =
N Uoc −N κaux

2N Rfc

=
0.82− 0.05V

2× 0.024Ω
= 160.4 A

b) Find the maximum power of one single cell

Pfcs = (N · Uoc −N · κaux) Ifc − P0 −N · Rfc Ifc2(t)

= 250× (0.82− 0.05)× 160.4− 100− 250× 0.0024× 160.42

= 15.34kW

c) Find the optimal current in terms of maximum efficiency
The cell efficiency can be described as:

ηst(Ifc) = ηid
Uoc

Urev

(
1−

Rfc

Ifc
Uoc −

P0

Uoc Ifc N
−
κaux
Uoc

)

As for the same reason, the maximum efficiency is achieved if the deriva-
tive is set to zero. ∂ηst

∂Ifc
|Ifc,η

= 0givesI2fc,η = P0
N Rfc

Thus, the optimal

current in terms of maximum efficiency is:

Ifc,η =

√
P0

N Rfc
=

√
100

250× 0.0024
= 12.91A

Problem 6.9

Calculate the same quantities as in Problem 6.8 for a small fuel cell stack
powering a racing FCHEV (see Sect. 8.6). Use the quadratic expression (6.71)
for Paux and the following data: N · Uoc = 16.8, N ·Rfc = 0.137, P0 = 19.89,
κ1 = 6.6, κ2 = −0.024.

• Solution

Assume: New data and new representation of Pst:

Paux = P0 + κ1 · Ifc(t) + κ2 · Ifc(t).
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where N · Uoc = 16.8, N ·Rfc = 0.137,
P0 = 19.89,κ1 = 6.6,κ2 = −0.024.

a) Find the optimal current Ifc,P
As is known from (6.79), cell power can be described as:

Pfcs = (N · Uoc − κ1) Ifc − P0 − (N · Rfc + κ2)I
2
fc

At optimum, set derivative ∂Pfcs

∂Ifc
|Ifc,P

= 0, we have:

Ifc,P = I∗fc
N · Uoc − κ1

2 · (N · Rfc + κ2)

=
16.8− 6.6

2 (0.137− 0.024)

= 45.13 A

b) Find the maximum power of one single cell

Pfcs = (N · Uoc − κ1) Ifc − P0 − (N ·Rfc + κ2)I
2
fc

= (16.8− 6.6)× 45.13− 19.89− [0.137 + (−0.024)]× 45.132

= 210.3W

c) Find the optimal current in terms of maximum efficiency
The cell efficiency can be described as:

ηst(Ifc) =
Pfcs(Ifc)

N · Uid · Ifc

= ηid
Uoc

Urev

(

1−
P0 + κ1 Ifc + κ2 I2fc

Uoc Ifc N
−

RfcI2fc
Uoc Ifc

)

As for the same reason, the maximum efficiency is achieved if the deriva-
tive is set to zero. ∂ηst

∂Ifc
|Ifc,η

= 0givesI2fc,η = P0
κ2+N Rfc

Thus, the optimal

current in terms of maximum efficiency is:

Ifc,η =

√
P0

κ2 +N Rfc
=

√
19.89

0.1370.024
= 13.25A

Reformers

Problem 6.10

Derive (6.95).

• Solution
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As for a Methanol Reformer, the chemical reactions can be concluded as
follows:

CH3OH +H2O → CO2 + 3H2,∆hR = 58.4kJ/mol

Assume nm, ns, nCO2 , nH2 denotes the number of moles of methanol,
water, carbon-dioxide and hydrogen at time t, respectively.

a) Methanol
Using the extent of reaction:

x =
nm(0)− nm(t)

nm(0)
,

we have:
nm = nm(0) (1− x).

b) Watersteam

ns = ns(0)− (nm(0)− nm(t))

= ns(0)− nm(0) · x
= nm(0)(σ − x)

where σ denotes the ratio of the moles of water to the moles of methanol,
which is the feed-in gas ratio and is assumed to be known at the beginning
of reaction.

c) Hydrogen

nh = 3 · x · nm(0).

d) Carbon-dioxide

n+ CO2 = 1 · x · nm(0).

e) Derivation of the methanol evolution
Substitutes all the molar number into the molar fraction, we have:

Cm(x) =
nm

nm + ns + nh + nCO2

=
nm(0)(1− x)

nm(0)(1− x) + nm(0)(σ − x) + 4 · x · nm(0)

=
1− x

(1 + σ) + 2 x

Given that at the beginning of the reforming process, the feed-in gas ratio
is predefined ns(0)

nm(0) = σ. Thus,

Cm(0) =
nm(0)

nm(0) + ns(0)
=

1

1 + σ

Cm(x) = (1 + σ)
1− x

1 + σ + 2 · x
Cm(0).
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which exactly gives (6.95).

Supervisory Control Algorithms

Driver’s Intepretation

Problem 7.1

An ICE-based powertrain has the following characteristics: γ = {15.0, 8.1, 5.3, 3.9, 3.1, 2.6},
wheel radius rw = 0.32m, rated engine power Pe,max = 92kW at a speed
ωe,max = 524 rad/s, engine braking torque Te,min = 20Nm. Build a driver’s
interpretation map. Then, follow a torque control structure to generate an
engine torque setpoint for a driver pedal request of 50% at a vehicle speed of
100km/h and fourth gear.

• Solution

The curve describing the maximum force available at the wheels consists of
a first part that reproduces the engine maximum torque curve (not known in
this exercise) for the 1st gear, and a second part that is the envelop of the
maximum-power engine points at different gears. The maximum-power engine
point is at ωe = 524 rad/s and Te = 92 · 103/524 = 176Nm.

The vehicle speed at gear i is related to the engine speed by the equation
vi = rw/γi · ωe, for i = 1, . . . , 6. The force at the wheels is Ft,i = γi/rw · Te.
Since v = 100/3.6 = 27.8m/s is greater than v1 = 524 · 0.32/15 = 11.2m/s,
the maximum-power range is active. Therefore, Ft = 92 · 103/V corresponds
to 100% accelerator pedal. The maximum brake power is calculated from the
engine data as 20 · 524 = 10.5kW. Thus Ft = 10.5 · 103/V corresponds to
0% accelerator pedal. At the current speed, the maximum force is 3312N,
the minimum force is 378N. For a pedal depression of 50%, assuming linear
interpolation, we have a force request Ft = −378+(3312+378) ·0.5 = 1467N.
Assuming 4th gear, the engine torque is Te = 0.32/3.9 · 1467 = 120Nm at a
speed ωe = 27.8 · 3.9/0.32 = 339 rad/s = 3235 rpm.

Problem 7.2

Add an electric machine to the powertrain of Problem 7.1, having the
following characteristics: maximum torque Tm,max = 140Nm, base speed
ωb = 300 rad/s, maximum power Pm,max = 42kW. Calculate the total torque
demand for the same driving situation as in Problem 7.1 if power assist is
authorized at each vehicle speed. Assume coupled regenerative braking.

• Solution
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The vehicle speed corresponding to the base speed of the motor is 300 ·
0.32/11 = 8.7m/s = 31.4 km/h, thus lower than v1 (see Problem 7.1). There-
fore, the actual vehicle speed corresponds to the maximum-power range of the
motor. Summing the two powers yields 92+42 = 134kW. The minimum force
at the wheels does not change with respect to the ICE case. The maximum
force is now Ft = 134 · 103/27.8 = 4820N. For a 50% pedal position, the force
demand is Ft = −378 + (4820 + 378) · 0.5 = 2221N, which corresponds to
a total powertrain torque of Tt = 2221 · 0.32 = 711N. In the 4th gear, that
would correspond to an engine torque Te = 711/3.9 = 182Nm, which is very
close to its maximum torque.

Problem 7.3

Propose a driver’s interpretation function for a BEV whose motor and battery
have the same data as in Problem 4.9. Assume a coupled braking circuit.
Calculate the torque setpoint for (i) ωm = 0 rad/s and 0% pedal depression,
(ii) ωm = 100 rad/s and 0% pedal depression, (iii) ωm = 250 rad/s and 50%
pedal depression.

• Solution

The 0% pedal position corresponds to the minimum between Ia,min as calcu-
lated in Problem 4.35 and a negative torque for which the driver has a similar
feeling than with an ICE-based powertrain. Fix this torque to, say, 1/10 of
the maximum torque. Thus

Ia,min =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−κa ·
ωm

2 · Ra
for ωm <

2 · Ra · (0.1 · Imax)

κa
,

−0.1 · Imax for ωm <
Pmax

κa · 0.1 · Imax
,

−
Pmax

κa · ωm
else.

while for 100% acceleration

Ia,max =

⎧
⎪⎨

⎪⎩

Imax for ωm <
Pmax

κa · Imax
,

Pmax

κa · ωm
else.

The curve Ia = f(α,ωm) is obtained by interpolation between these two limits,
Ia = Ia,min + α · (Ia,max − Ia,min).

For the case (i), Ia,min = 0 and Ia = Tm = 0.

For the case (ii), ωm = 100 rad/s and ωm > 2·Ra·(0.1·Imax)
κa

= 2 · 0.05 · (0.1 ·
88)/0.25 = 3.52 rad/s. Thus Ia = Ia,min = −0.1·88 = −8.8A, Tm = −2.2Nm.

For the case (iii), ωm = 250 rad/s and ωm < 4 · 103/(0.25 · 0.1 · 88) =
1818 rad/s. Thus Tm = −2.2 + 0.5 · (22 + 2.2) = 9.9Nm.
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Problem 7.4

Derive a PI model for a human driver of an electric vehicle that tries to
follow a prescribed drive cycle acting on the acceleration pedal. Derive a gain-
scheduling tuning of the PI parameters. Vehicle data: mass mv = 1360kg,
1
2 ·ρa ·Af · cd = 0.25N/(m/s)2. Evaluate the PI coefficients for a vehicle speed
of 20m/s. Assume perfect recuperation (decoupled braking).

• Solution

Vehicle dynamics can be generally written as

dv

dt
=

Ft − c0 − c2 · v2

mv

The driver is sensitive to the difference between v(t) and vs(t). Its action is
on the acceleration and brake pedals. Define the general driver’s output as
the force Ft (positive for traction, negative for braking). Thus

dv

dt
=

u− c0 − c2 · v2

mv
,

u = Kp · (v − vs) +Ki ·
∫
(v − vs) dt.

Linearize around an operating point vs, then define us = c0+c2 ·v2s , z = v−vs,
w = u− us. Then evaluate

dz

dt
=

w − c2 · (v2 − v2s)

mv
≈

w − c2 · 2 · vs · (v − vs)

mv
=

w − 2 · c2 · vs · z
mv

= K·w−a·z,

where K = 1/mv and a = 2 · c2 · vs/mv.
Now close the loop with the driver regulator

w = Kp · z +Ki ·
∫

z dt

Obtain

s2 ·z = K ·Kp ·s ·z+K ·Ki ·z−a ·s ·z → z(s) ·(s2+(a−K ·Kp) ·s−K ·Ki) = 0

By pole-placement, target at

ωn =
√
(−K ·Ki) = 1 rad/s,

and
ζ = (a−K ·Kp)/(2 · ωn) = 0.7

With the numerical values, K = 1/1360 = 7.35 · 10−4, a = 2 · 0.25 ·
vs/1360 = 3.7 · 10−4 · vs, Ki = −1/K = −1360, Kp = (a − 0.7 · 2)/K =
(3.7 · 10−4 · vs − 0.7 · 2)/7.35 · 10−4. For vs = 20m/s obtain Kp = −1898N.
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Regenerative Braking Control

Problem 7.5

Derive an ideal law to split the braking effort between the two axles under
the assumption that the adherence is the same at each wheel.

• Solution

Write force and torque balance equations for a two-wheel equivalent vehicle.
We have four equations in the four unknowns N1, N2 (normal forces), F1, and
F2 (longitudinal forces), where subscript 1 is for front wheels and subscript 2
for rear wheels, while the total required force Ft is known:

F1 + F2 = Ft, (balance of logitudinal forces)

N1 +N2 = N, (balance of normal forces)

N · b = Ft · h+N1 · (a+ b), (balance of momenta)

F1

N1
=

F2

N2
, (equal adherence)

where N = mv · g is the vehicle weight, a and b are the horizontal distances
of the wheel axles from the center of gravity (CoG), and h the height of the
CoG.

By combining these four equations, obtain

N1 =
N · b
a+ b

−
Ft · h
a+ b

N2 = N −N1 =
N · a
a+ b

+
Ft · h
a+ b

During braking, Ft < 0 and the front weight increases. Moreover, the equal
adherence condition reads

F1 ·N2 = F2 ·N1. (10.32)

For a given Ft, obtain the ideal split

F1 ·(N ·a−Ft ·h) = (F −F1) ·(N ·b−Ft ·h) → F1 ·N(a+b) = Ft ·(N ·b−Ft ·h),

or

F1 =
Ft · b
a+ b

−
F 2
t · h

N · (a+ b)
.

In terms of torques

T1 =
Tt · b
a+ b

−
T 2
t · h

N · rw · (a+ b)
,
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T2 =
Tt · a
a+ b

+
T 2
t · h

N · rw · (a+ b)
.

The equal adherence curve T2 = T2(T1) is obtained by manipulating (??)
as

F1 · (N · a+ Ft · h) = F2 · (N · b− Ft · h)
or

T 2
1 · h+ 2 · T1 · T2 · h+ T1 ·N · a · rw − T2 ·N · b · rw + T 2

2 · h = 0 (10.33)

Problem 7.6

Consider a vehicle having an electric powertrain on the rear axle, with
Tm,max = 1540Nm (at the wheels), Pm,max = 42kW, and the following
vehicle characteristics (see Problem 7.5): static weight distribution fraction
s = 0.40, height of CG h = 55cm, wheelbase l = 2.685m, wheel radius
rw = 0.32m, vehicle mass mv = 1932kg. Evaluate the regenerative braking
torque and the frictional braking torque on the front and rear axles for a total
braking torque Tt = −1200Nm, vehicle speed v = 90km/h, under (i) a max-
imum regeneration strategy, (ii) a constant braking distribution between the
axles of 70%–30%, (iii) ideal braking as in the result of Problem 7.5, and (iv)
a modified brake pedal that induces regenerative braking up to a deceleration
of 0.05 g and then frictional braking with a constant braking distribution of
70%–30%.

• Solution

At v = 90km/h the maximum regenerative capability of the electric power-
train is

42 · 103
v
3.6 · 1

0.32

= 537Nm.

The braking power is
90 · 400
3.6 · 0.32

= 31.2 kW.

In the case (i), Trec = −537Nm; T1 = −1200 + 537 = −663Nm, T2 =
0Nm. The braking split ratio is 55%/45%. However, this value is above the
equal-adherence curve, thus it is not admissible. The quantity Trec should be
limited as in the case (iii).

In the case (ii), Trec = −0.30 · 1200 = −360Nm, T1 = −1200 + 360 =
−840Nm, T2 = 0Nm.

In the case (iii), using the formula of Problem 7.5,

Trec = 0.40 · (−1200) +
12002 · 0.55

1932 · 9.81 · 0.32 · 2.685
= −431Nm,

and T1 = −1200+431 = −769Nm, T2 = 0Nm (braking split ratio 64%/36%).
In the case (iv), the threshold torque is mv · a · rw = 1932 · (−0.05) · 9.81 ·

0.32 = −300Nm. Thus Trec = −300Nm, T1 = 0.7 ·(−1200+300) = −630Nm,
T2 = −270Nm.
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Problem 7.7

Consider a conventional (coupled) braking system where T2 = k · T1 (T1 <
0, T2 < 0). Calculate the maximum value of the adherence that can be ob-
tained under the assumption of equal adherence between the axles (ideal dis-
tribution curve) and the corresponding total braking torque. Check what hap-
pens for higher braking torques. Then, calculate the limit value of k that can
be achieved. Use the numerical values of Problem 7.6.

• Solution

The limit of conventional braking systems occurs when the practical braking
split curve meets the ideal split curve. The latter is given by (??), while the
former reads T2 = k · T1. By combining these two equations, obtain

T1 =
−N · rw · (a− k · b)

h · (1 + k)2

and

T2 =
−k ·N · rw · (a− k · b)

h · (1 + k)2
.

Since both T1 and T2 are negative quantities, a condition on k is that
a− k · b) > 0, or

k <
a

b
.

For k = a/b, the braking distribution is such that

T1

Tt
=

1

1 + k
,

T2

Tt
=

k

1 + k
.

The common value of the adherence factor (µ1 = µ2 = µ) is obtained by
calculating N1 and N2. First evaluate

Tt = T1 + T2 = (1 + k) · T1 =
−N · rw · (a− k · b)

h · (1 + k)
.

Then, find

N1 =
N · b− Tt · h · rw

a+ b
=

N · b+N · (a · k − b)

(1 + k) · (a+ b)
, N2 =

N · k
1 + k

and the adherence factor as

µ =
−T1

N1 · rw
=

−T2

N2 · rw
=

a− k · b
h · (1 + k)

.

With the data of Problem 7.6, the limit k = 0.4/0.6 = 0.667. For a value
k = 0.3/0.7 = 0.429, the maximum adherence is 0.488. The limit values
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of T1 and T2 are -2055Nm and -881Nm. The maximum braking torque is
Tt = −2935Nm.

For higher braking torques, e.g., Tt−3500Nm, the braking split ratio would
be 2450/1050Nm. The vertical forces would be N1 = 1932·9.81

1+0.429 = 13632N,
N2 = 1932 · 9.81 − 13632 = 5321N. Thus µ1 = 2450/13632/0.32 = 0.56
while µ2 = 1050/0.32/5321 = 0.62. This circumstance µ2 > µ1 is potentially
dangerous and should be avoided.

Problem 7.8

Derive the ideal braking distribution law as in Problem 7.5 when one axle in
motoring while the other is braking (for instance, battery recharge mode in
an HEV with an engine on the front axle and an electric machine on the rear
axle). For simplicity, assume a = b.

• Solution

As in Problem 7.5,

F1 + F2 = Ft, (balance of logitudinal forces)

N1 +N2 = N, (balance of normal forces)

N · b = Ft · h+N1 · (a+ b), (balance of momenta)

but now
F1

N1
= −

F2

N2
,

the latter being the condition of equal adherence µ1 = −µ2. By combining
these four equations, obtain

N1 =
N · b
a+ b

−
Ft · h
a+ b

N2 = N −N1 =
N · a
a+ b

+
Ft · h
a+ b

F1 ·N2 = −F2 ·N1, (10.34)

from whence

F1·(N ·a+F1·h+F2·h) = −F2·(N ·b−F1·h−F2·h) → F1·N ·a+h·F 2
1 = −N ·b·F2+h·F 2

2 .

There are two solutions to this equation for a = b. One is F2 = F1 + N ·a
h . The

other is F2 = −F1, which does not imply the satisfaction of the total force Ft

but constitutes a limit in the 2nd and 4th quadrant of the plane F1—F2.
From the first solution, find

T1 =
Tt

2
−

N · a · rw
2 · h

, T2 =
Tt

2
+

N · a · rw
2 · h

.
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Dynamic Coordination

Problem 7.9

In a series HEV the supervisory control yields engine torque and speed set-
points Te and ωe. Derive a simple generator controller in order to achieve the
desired speed of the APU.

• Solution

The dynamics of the APU can be described by the simplified equation

Θapu ·
dωe(t)

dt
= Te(t)− Tg(t).

The generator torque open-loop setpoint is Tg,sp = Te,sp. However, in order to
let the generator speed converge toward the value ωe, at least a proportional
correction should be added. Assuming Te(t) = Te,sp(t),

Tg(t) = Te(t) + kp · (ωg(t)− ωe(t)).

The closed-loop dynamics therefore reads

Θapu · s · ω̃ = −Kp · ω̃,

which converges to ω̃ = 0 with a time constant Θapu/kp.

Problem 7.10

Derive the dynamic equations to control the generator torque in a simple PSD-
based system like that of the Toyota Prius. Neglect the generator inertia.

• Solution

Manipulate the dynamic equations (4.163)–(4.164) with Θsun = 0 to obtain

Θcarrier ·
dωe(t)

dt
= Te(t)−

1 + z

z
· Tg(t),

Θring ·
dωf (t)

dt
=

1

z
· Tg(t) + Tm(t)− Tf(t).

where Θcarrier is represented by Θe and Θring by the vehicle inertia.
The resulting dynamics for the engine speed is rather similar to that of

Problem 7.9, except for the 1+z
z factor now multiplying the generator torque.

It is laborious but straightforward to show that the same dynamic equation
for ωe (but not for ωf !) applies also to the case where Θsun is not negligible.
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Problem 7.11

In a post-transmission parallel HEV, in principle it is possible to compensate
the torque gap at the wheels during a gear shift. Evaluate the time elapse after
which the vehicle speed before the shift is recovered (tr, recovery time) and
the necessary electric energy for a downshift from 4th to 3rd gear occurring
during a constant vehicle acceleration. Data: gear ratios including final gear
γ = 5, 4, motor gear ratio = γm = 11, transmission efficiency ηt = 0.97,
motor efficiency ηm = 0.85, wheel radius rw = 0.29m, engine shift speed
ωe = 4500 rpm, shift duration ts = 1 s; acceleration a = 0.5m/s2, vehicle
mass mv = 1360kg, cr = 0.009, cd · Af = 0.5m2.

• Solution

Define the two time points t1 and t2 as the beginning and the end of the gear
shift (t2 − t1 = ts). Evaluate

v1 # v(t1) =
ωe,shift

γ3

rw

=
4500·π

30
5

0.29

= 27m/s = 98 km/h.

Without compensation, the vehicle speed decreases during the shift according
to the law

dv(t)

dt
= −g · cr −

ρa ·Af · cd · v2

2 ·mv
,

or (2.17) with α =
√

0.5·1.2
1360·0.5 = 0.015, β =

√
9.8 · 0.009 = 0.3. The coasting

velocity at t2 is

v2 =
β

α
· tan

(
arctan

(
α

β
· v1
)
− α · β · (t2 − t1)

)

=
0.3

0.015
· tan

(
arctan

(
0.015

0.3
· 27
)
− 0.015 · 0.3 · 1

)

= 26.7m/s = 96 km/h.

After the engine is engaged again, the speed increases according to the linear
law v(t) = v2 + a · t. The recovery time is

t3 =
v1 − v2

a
=

0.3

0.5
= 0.6 s.

Thus the total time lost is tr = ts + t3 = 1 + 0.6 = 1.6 s.
This time can be recuperated if the motor provides the missing torque

during the shift. This torque is

Tm(t) =
Ft(t)
γm

rw

=
mv · a+mv · cr + ρa · cd ·Af · v(t)2

2 · γm

rw

.

The energy provided by the motor is calculated from
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∆Em =

∫
ωm(t) · Tm(t)dt =

1

ηt
·
∫

Ft(t) · v(t)dt =

=
1

ηt
·
(
(mv · a+mv · cr) ·

∫
v(t)dt+

∫
0.5 · ρa · cd · Af · v(t)3dt

)

=
1

ηt
· (mv ·

v22 − v21
2

+
mv · cr
2 · a

· (v22 − v21) + 1.2 · cd · Af · (v42 − v41)/(8 · a)),

where now v2 = v1 + a · ts = 27 + 0.5 · 1 = 27.5m/s. Thus the energy is

∆Em =
1

0.97
·
(
1360 ·

27.52 − 272

2
+

1360 · 0.009
2 · 0.5

· (27.52 − 272)+

+0.5 · 1.2 · 0.5 ·
27.54 − 274

4 · 0.5

)
= 25.7 kJ,

with an average power P̄m = 25.7kW.

Problem 7.12

Consider a parallel HEV with an electric machine mounted on the primary
shaft of the gearbox with a reduction gear ratio γm. During a gear shift, the
inertia of the motor sums up to the inertia of the primary shaft. To reduce the
synchronization lag, the motor in principle could yield a torque to compensate
its own inertia. Model this situation with simple equations. Then calculate the
motor energy consumption for the following data: γm = 3.3, downshift from
4th to 3rd gear with γ3 = 5.5, γ4 = 3.9, vehicle speed v = 60km/h, motor
inertia Θm = 0.07 kg/m2.

• Solution

During synchronization without motor assist, the dynamics of the primary
shaft reads

Θp ·
dωp(t)

dt
= Tm,i(t) · γm + k ·

(
v(t) · γ3

rw
− ωp(t)

)
,

where the second right-hand term simulates the action of the synchronizer
which is proportional to the difference between the secondary speed with the
new gear ratio and the primary speed. The term Tm,i is transmitted from the
motor inertia

Tm,i = −Θm ·
dωm

dt
.

Since ωm = γm · ωp,

(Θp + γ2m ·Θm) ·
dωp(t)

dt
= k ·

(
v(t) · γ3

rw
− ωp(t)

)

and the primary shaft speed increases from the initial value ωp,4 = γ4·v
rw

up to
the new value ωp,3 = v·γ3

rw
. The variation law is (ideally) asymptotic,
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ωp(t) =
γ3 · v(t)

rw
+

(
γ4 · v(t)

rw
−
γ3 · v(t)

rw

)
· exp

(
−
k · t
Θ

)
,

where Θ # Θp + Θm · γ2m. To decrease the motor inertia, one should apply a
torque Tm such that

Θm ·
dωm(t)

dt
= Tm − Tm,i

such that Tm,i = 0, thus

Tm = Θm ·
dωm(t)

dt
= Θm · γm ·

dωp(t)

dt

=
Θm · γm · k ·

(
v(t) · γ4

rw
− ωp(t)

)

Θp
,

where ωp(t) is still calculated with the equation above but with Θp instead of
Θ.

The motor power is

Pm = Tm · ωm =

= Θm · γm ·
dωp

dt
· γm · ωp = Θm · γ2m · ωp ·

dωp

dt
.

The energy consumed results from the integral of Pm or

Em = Θm · γ2m ·
ω2
p,3 − ω2

p,4

2
.

Numerically,

ωp,3 =
70 · 5.5
3.6 · 0.32

= 334 rad/s

ωp,4 =
70 · 3.9
3.6 · 0.32

= 237 rad/s

Em = 0.07 · 3.32 ·
3342 − 2372

2
= 21 kJ

Heuristic Energy Management Strategies

Problem 7.13

Consider a pre-transmission, single-shaft parallel HEV with fixed gear reduc-
tion. System data: gear ratio including final gear ratio γ = 4, engine maximum
torque curve Te,max(ωe) = 50+0.7 ·ωe− 1 · 10−3 ·ω2

e , motor maximum torque
Tm,max = 150Nm, motor maximum power Pm,max = 25kW, vehicle data
cD = 0.33, Af = 2.5m2, cr = 0.013, mv = 1500kg, Θw = 0.25kgm2, rw =
0.25m. Consider the simple, SOC-independent heuristic energy-management
strategy:
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• EV mode if ωe < 1000 rpm or if Te < 40Nm,
• power assist mode if Te > Te,max,
• else, recharge mode if Te > 0
• regenerative braking if Te < 0.

Evaluate the scheduled mode, the engine torque, and the motor torque for
the following driving situations: (i) v = 17km/h, a = 1.37m/s2; (ii) v =
38.76km/h, a = 0.094m/s2; (iii) v = 28.8km/h, a = 1.56m/s2; (iv) v =
95km/h, a = 0.19m/s2.

• Solution

For the case (i) the required propulsion force is

Ft = (mv +
Θw

r2w · γ2
) · a+mv · 9.81 · cr +

1

2
· ρa · cD · Af · v2 =

= 1503 · 1.369 + 191.3 + 0.47 · 4.752 = 2257N.

The engine torque would be Te = Ft · rwγ = 2257·0.25/4 = 141Nm. The engine

speed would be ωe = v · γ
rw

= 75.9 rad/s = 725 rpm. The mode selected would

be the ZEV (ωe < 1000 rpm and Te > 0). The base speed is 25 · 103/150 =
167 rad/s. The motor torque Tm = 141Nm is lower than the motor maximum
torque at 725 rpm, which is 150Nm.

For the case (ii), the required force is 1503 · 0.094 + 191.3 + 0.47 ·
(38.76/3.6)2 = 387Nm. The engine torque would be of 387 ·0.25/4 = 24.2Nm.
The engine speed would be 38.76/0.25 · 4 = 172 rad/s = 1645 rpm. The mode
selected would be again the ZEV (Te < 40Nm with ωe > 1000 rpm). At
1645 rpm (higher than the motor base speed) the motor maximum torque is
25 · 103/172 = 145Nm. Thus the ZEV mode is feasible.

For the case (iii), the required force is 1503·1.56+191.3+0.47·(28.8/3.6)2 =
2535N. The engine torque would be of 160Nm. The engine speed would be of
1230 rpm. The engine max torque at that speed would be Te,max = 50+ 0.7 ·
128 − 1 · 10−3 · 1282 = 123Nm. Thus the mode selected would be the boost
(Te > Te,max and ωe > 1000 rpm). The motor torque would be 160 − 123 =
37Nm, which is lower than the motor max torque.

For the case (iv), the required force is 805N. The engine torque would be
of 50Nm. The engine speed would be 4033 rpm = 422 rad/s. Thus the selected
mode would be the battery recharge (Te > 40Nm and ωe > 1000 rpm). The
maximum generating torque at 422 rad/s is −25 · 103/422 = −59Nm. Thus
the maximum engine torque could be 50+ 59 = 119Nm (feasible because the
maximum engine torque is 167Nm).

Problem 7.14

Consider the following SOC-dependent energy-management heuristic strat-
egy:
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• engine on with Pe = Pt − Pt,b(ξ) if Pt > Pe,start(ξ),
• else, engine off,

with the definitions Pt,b = −Pm,max+2·Pm,max/(ξhi−ξlo)·(ξ−ξlo), Pe,start =
Pm,max/(ξhi − ξlo) · (ξ − ξlo) and the numerical values ξhi = 80%, ξlo = 40%.
Assume a unit-efficiency motor operation. Perform again the calculations of
Problem 7.13, for ξ = {55, 70}%.

• Solution

For the case (ii), engine possible speed and torque ωe = 172 rad/s, Te =
24.2Nm would lead to Pe = 4.16 kW. Since Pm,max = 25kW, Pe,max =
24.2kW, evaluate

Pe,start =
ξ − 40

80− 40
· Pm,max = 9.4 kW for ξ = 55%,

= 18.75 kW for ξ = 70%.

Now, Pe < Pe,start, thus the selected mode is ZEV.
For the case (iii), ωe = 129 rad/s, Te = 160Nm would lead to Pe =

20.6kW. In this case Pm,max = 150 · 129 = 19.3 kW, Pe,max = 15.95kW, thus
Pe,start = {7.2, 14.5} kW for the two SOC values. In both cases, Pe > Pe,start.
Evaluate Pt,b = −19.3 + (ξ − 40)/40 · (19.3 · 2) = {−4.8; 9.7}kW. Therefore,
Pe would be {25.4; 10.9}kW. After saturation, Pe = {15.95; 10.9} and obtain
as a difference Pm = {4.65; 9.7} (boost mode).

Fot the case (iv), ωe = 422 rad/s, Te = 50Nm would lead to Pe =
21kW. Since Pm,max = 25kW and Pe,max = 70.6kW, evaluate Pe,start =
{9.4; 18.75}kW. In both cases, Pe > Pe,start. Evaluate Pt,b = {−0.55; 18.2}kW
and find Pe = {21.55; 2.8}kW. No saturation is needed and Pm = {−0.55, 18.2}
thus the selected mode is recharge, resp., boost.

Problem 7.15

Give an intepretation of the heuristic energy-management strategy of Prob-
lem 7.14 in terms of equivalent “cost” of the battery power with respect to the
fuel power. Assume a Willans-type engine model with constant parameters e
and P0 and a unit-efficiency electric machine.

• Solution

The heuristic rule reads (Pt is the demand power)

Pe = 0 if Pt > Pe,start + Pt,b

Pe = Pt − Pt,b if Pt > Pe,start + Pt,b.

Define an “equivalent” power consumption as H = Pe + s ·Pm, where s is the
equivalence factor. Using a Willans engine model,
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H =
P0

e
· (Pmt > 0) +

Pe

e
+ s · (Pt − Pe).

Note that:

• For Pe = 0, H = s · Pt.
• For Pe = Pt − Pt,b, H = P0

e + Pt−Pt,b

e + s · Pt,b.

The switching condition for which Pe = 0 is preferable is that s · Pt <
P0
e +Pt−Pt,b

e +s·Pt,b, that is, Pt·
(
s− 1

e

)
< P0

e +Pt,b·
(
s− 1

e

)
, or Pt <

P0
e·s−1+Pt,b.

By comparing this switching condition with the heuristic rule, derive
Pe,start as

Pe,start =
P0

e · s− 1
+ Pt,b,

from whence derive

s · e =
1 + P0

Pe,start − Pt,b

as the equivalence rule between the two strategies (i.e., between s and Pe,start).

Optimal Energy Management Strategies

Problem 7.16

Derive the exact formulation of the Euler-Lagrange equation (7.14) if the
equivalent-circuit parameters of the battery are affine functions of SoC as
described by (4.64) and (4.66). Consider the following system and operating
point: battery capacity Qb = 6.5Ah, nominal open-circuit voltage Uoc =
250V, nominal internal resistance Ri = 0.3Ω, electric power Pb = 15kW,
variation of the open-circuit voltage with respect to SOC κ2 = 20V, and
variation of the internal resistance κ4 = −0.1Ω. Evaluate the characteristic
time constant associated with the variation of the Lagrange multiplier and
assess the constant-µ approximation.

• Solution

The Hamiltonian function is

H =
∗
mf +µ · ẋ,

where ẋ = −Ib/Q0. The Euler–Lagrange equation is written as

µ̇ = −
∂H

∂x
=

µ

Q0
·
∂Ib
∂x

For an equivalent circuit model,
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Ib =
Uoc

2 · Ri
−

√
U2
oc

4 ·R2
i

−
Pb

Ri
#

Uoc

2 ·Ri
−A

∂Ib
∂Uoc

=
1

2 · Ri
−

1

2 ·A
·

Uoc

2 · R2
i

∂Ib
∂Ri

= −
Uoc

2 ·R2
i

−
1

2 ·A
·
(
−

U2
oc

2 ·R3
i

+
Pb

R2
i

)

Numerically,

A =

√
2502

(2 · 0.3)2
−

15 · 103
0.3

= 351.58 A

∂Ib
∂Uoc

=
1

2 · 0.3
−

1

2 · 351.58
·

250

2 · 0.32
= −0.31 A/V

∂Ib
∂Ri

= −
250

2 · 0.32
−

1

2 · 351.58
·
(
−

2502

2 · 0.33
+

15 · 103

0.32

)
= 20 A/Ω

∂Ib
∂x

=
∂Ib
∂Uoc

·
∂Uoc

∂x
+
∂Ib
∂Ri

·
∂Ri

∂x
= −0.31 · 20 + 20 · (−0.1) = −8.2 A/-

and finally obtain

µ̇

µ
=
∂Ib
∂x

·
1

Q0
= −

8.1

6.5 · 3600
= −

1

2854 s
.

Problem 4.36

Starting from the results of Problems 7.16, 4.26, find an approximated ex-
pression for the variation of the Lagrange multiplier. Evaluate the error with
respect to the exact solution.

• Solution

Using the result of Problem 4.26,

Ib ≈ Î =
Pb

Uoc
+ 2 ·

Ri

U3
oc

· P 2
b ,

thus

∂Î

∂Uoc
= −

Pb

U2
oc

− 6 ·
Ri

U4
oc

· P 2
b

∂Î

∂Ri
=

2

U3
oc

· P 2
b

With the numerical values of Problem 7.16 compared to the exact solution,
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∂Î

∂Uoc
= −

15 · 103

2502
− 6 ·

0.3

2504
·
(
15 · 103

)2
= −0.34 A/V (10% error)

∂Î

∂Ri
=

2

2503
·
(
15 · 103

)2
= 28.8 A/Ω (50% error)

∂Î

∂x
= −0.34 · 20 + 29 · (−0.1) = −9.7 A (20% error)

Problem 7.18

At low temperature operation, the variation of the internal parameters of a
battery can be significant. Develop a version of the ECMS where variations
of internal resistance, via the parameter κ3 of (4.66), with temperature are
accounted for. Cell data: κ1 = 3.4V, κ2 = 0.5V, κ4 = 0, and

κ3 = 0.015− ϑb ·
0.01

40
,

with ϑb in ◦C. The nominal SOC is ξ = 0.5, temperature ϑ = 25 ◦C, power
Pb = 0.1 · Pb,max, thermal capacitance Ct,b = 300 J/K, thermal conductance
1/Rth = 0.5W/K, and capacity Qb = 6Ah. Evaluate the time constant of the
adjoint states.

• Solution

The quantity to be minimized is still the fuel consumption rate. The SOC
variation is still proportional to the current. However the latter varies as a
function of SOC and temperature. Thus the state equation for the temperature
must be taken into account. The Hamiltonian is

H =
∗
mf +µ ·

∂ξ

∂t
+ ν ·

∂ϑ

∂t
,

where ∂ξ/∂t = −Ib/Q0 and

∂ϑ

∂t
=
∂ϑ̃

∂t
=
(
Ri · I2b − α · ϑ̃

)
·

1

Ct,b
,

where ϑ̃ # ϑ− ϑamb. The Euler–Lagrange equations read

µ̇ = −
∂H

∂ξ
= µ ·

1

Q0
·
∂Ib
∂ξ

ν̇ = −
∂H

∂ϑ
= −ν ·

(
2 · Ri · Ib ·

∂Ib
∂ϑ

− α

)
·

1

Ct,b

The quantity ∂Ib/∂ξ is calculated as

∂Ib
∂ξ

=
∂Ib
∂Uoc

·
∂Uoc

∂ξ
+
∂Ib
∂Ri

·
∂Ri

∂ξ
=

∂Ib
∂Uoc

· κ2 +
∂Ib
∂Ri

· κ4
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while
∂Ib
∂ϑ

=
∂

∂Ri
·
∂Ri

∂ϑ
=
∂Ib
∂Ri

·
∂κ3
∂ϑ

With the numerical values for the open-circuit voltage and the internal resis-
tance are calculated as

Uoc = κ1 + κ2 · q = N · (3.4 + 0.5 · 0.5) = 3.65 ·N V

Ri = κ3 + κ4 · q = N ·
(
0.015− 0.01 ·

25

40

)
= 0.009 ·N Ω,

while the maximum power can be calculated with equation (4.74)

Pb,max =
U2
oc

4 ·Ri
=

3.652 ·N2

4 · 0.09 ·N
= 370 ·N W

Pe = 0.1 · Pb,max = 37 ·N W.

This results in the numerical value for the current

A =

√
U2
oc

4 ·R2
i

−
Pb

Ri
=

√
3.652

4 · 0.0092
−

37

0.009
= 192 A

Ib =
Uoc

2 ·Ri
−

√(
Uoc

2 · Ri

)2

−
Pb

Ri
=

=
3.65

2 · 0.009
−

√(
3.65

2 · 0.009

)2

−
37

0.009
= 10.5 A

The variations in the current relative to vriations in the states {ξ,ϑ} are now

∂Ib
∂Uoc

=
1

2 · Ri
·
(
1−

Uoc

2 · Ri · A

)
=

=
1

2 · 0.009 ·N
·
(
1−

3.65

2 · 0.009 · 192

)
= −

3.12

N
A/V

∂Ib
∂Ri

= −
Uoc

2 ·R2
i

−
1

2 ·A
·
(
Pb

R2
i

−
U2
oc

2 ·R3
i

)
=

= −
3.65

2 · 0.0092
−

1

2 · 192
·
(

37

0.0092
−

3.652

2 · 0.0093

)
=

75.2

N
A/Ω

∂Ib
∂ξ

= −3.12 · 0.5 + 75.2 · 0 = −1.56 A

∂Ib
∂ϑ

= 75.2 ·
−0.01

40
= −0.019 A/K

Following time constants of the lagrange mutlipliers are obtained



References 115

µ̇

µ
=

1

Q0
·
∂Ib
∂ξ

= −
1.56

6 · 3600
= −7.2 · 10−5 1/s

ν̇

ν
= −

2 ·Ri · Ib · ∂Ib
∂ϑ − α

Ct,b
= −

−2 · 0.009 · 10.5 · 0.019− 5 · 10−1

300
= 0.0017 1/s

Problem 7.19

Find the optimal-control formulation (Hamiltonian function and Euler-Lagrange
equation) of the energy management of a hybrid powertrain with an ICE and a
supercapacitor. Find under which approximation the costate is time-invariant.

• Solution

The state equation (4.117) of the supercapacitor reads

d

dt
U2
sc ·
(
1−

Rsc · Psc

U2
sc

)
= −

2 · Psc

Csc
.

Define x # Csc · U2
sc = 2 · Esc as the state variable, then

dx

dt
= −

2 · Psc

1−Rsc · Psc · Csc

x

.

In this way the Hamiltonian can be built in power terms as

H = Pf + s · Pech,

where Pech = dx/dt. The Euler–Lagrange equation reads

ds

dt
= −

∂H

∂x
= −s ·

∂Pech

∂x
,

where
∂Pech

∂x
= −

2 · P 2
sc · Rsc · Csc

(x− Psc · Rsc · Csc)
2 ,

which depends on x, thus is not constant. Only if one neglects the resistance
Rsc, then ∂Pech/∂x is zero.

Problem 7.20

Formulate the energy-optimal energy management in the case of a double-
source electric powertrain, with a battery and a supercapacitor.

• Solution
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In this case the optimization criterion is the minimization of the battery con-
sumption, i.e.,

L = Pech = Uoc · Ib,
while the global constraint is over the supercapacitor SOC or voltage,

x(tf ) =
1

2
· Csc · U2

sc(tf ) = x(0).

Therefore the Hamiltonian reads

H = Uoc · Ib(Pb) + s · Psc,

where Psc =
dx
dt , and the Euler–Lagrange equation is

ds

dt
= −

∂H

∂x
= −s

∂Psc

∂x
,

for whose development see Problem 7.19. The global constraint over the state
x can be used to find the unknown initial value of s. However, the constraints
locally applied to the state x are even more critical in this case.

Problem 7.21

Formulate the optimal energy management for a parallel HEV that includes
engine temperature variations. Assume that the cold-engine fuel consumption
is given by an equation of the type

∗
mf (Te,ωe,ϑe) =

∗
mf,w(Te,ωe) · f(Te,ωe,ϑe),

where ϑe is one engine relevant temperature and
∗
mf,w is the warm-engine fuel

consumption. Moreover, assume an engine temperature dynamic of the type

Ct,e · ϑ̇e = Pheat(Te,ωe,ϑe)− α · (ϑe − ϑamb) .

• Solution

The cost function is L =
∗
mf . There exist two state variables, namely, the SOC

of the battery ξ and the engine temperature ϑe. Thus the Hamiltonian is

H =
∗
mf (Te,ωe,ϑe) + µ ·

dξ

dt
+ ν ·

dϑe
dt

,

where ξ̇ = g(Te, t, ξ) and ϑ̇ is given in the problem text.
The Euler–Lagrange equations read

µ̇ = −
∂H

∂ξ
= −µ ·

∂ξ̇

∂ξ
as usual (see Problem 7.16)

ν̇ = −
∂H

∂ϑe
= −

∂
∗
mf

∂ϑe
− ν ·

∂ϑ̇e
∂ϑe

= − ∗
mf,w ·

∂f

∂ϑe
−

ν

Ct,e
·
(
∂Pheat

∂ϑe
− α

)

Define ν = −ν̄ · Ct,e to have a third term in the Hamiltonian that has the
units of a power. In that case, the state variable would be the thermal energy
accumulated Eth. Since there is no constraint over the state ϑe (or Eth), the
terminal value of the second Lagrange multiplier ν must be ν(T ) = 0.
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Problem 7.22

Evaluate the optimal gear ratio profile during an ICE-based vehicle accelera-
tion from rest to vf on a flat road. Use (i) the acceleration time tf and (ii) the
fuel consumption mf as the performance index. Make the following simplify-
ing assumptions: constant engine parameters Te = Te,max, e, P0, continuously
variable gear ratio, linearized vehicle dynamics

v̇ =
Ft

mv
− b · v,

where Ft = u · Te and u = γ/rw. Verify the solution given by optimal con-
trol theory by analyzing the dependency of the criterion on the gear ratio.
Numerical data: b = 10−2, u = γ/rw ∈ [umin, umax] = [2, 12], mv = 1000kg,
vf = 100km/h, Te = 150Nm, e = 0.4, P0 = 2kW.

• Solution

Fuel power consumption:

Pf =
Te · ωe + P0

e
=

Te · u · v + P0

e
.

Case (i)

J =

∫ tf

0
dt = tf

L = 1

H = 1 + µ ·
(
u · Te

mv
− b · v

)

s =
∂H

∂u
= µ ·

Te

mv

uo =

{
umin if s < 0

umax if s > 0

Euler–Lagrange equation:

µ̇ = −
∂H

∂v
= µ · b,

thus
µ(t) = µ(0) · eb·t

Use the condition that H ≡ 0 for “free final time” problems, to find that µ(0)
must be negative,

µ(0) = −
1

u·Te

mv

,
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since the quantity u · Te/mv is positive. Thus µ(t) is always negative and s(t)
is negative as well. Consequently,

uo(t) = umax.

Intuitively, the longest gear is to accelerate in the least time possible. Of
course, speed limits of the engine force the gear shift as soon as the upper
limit is reached. The criterion J = tf is obtained after having calculated

µ(tf ) = −
1

umax·Te

mv
− b · vf

.

Then

tf =
1

b
· ln
(
µ(tf )

µ(0)

)
=

1

b
· ln
(

1

1− x

)
,

where x = b · vf · mv/(umax · Te). It is easy to verify that tf is a decreasing
function of u. Also verify that

v(t) =
u · Te

mv · b
·
(
1− e−b·t

)

and

v(tf ) = vf ⇒ e−b·tf = 1−
b · vf ·mv

umax · Te
= 1− x ⇒ eb·tf =

1

1− x

as in the previous equation.

Case (ii)

J =

∫ tf

0

Te · u · v + P0

e
dt

L =
Te · u · v

e

H =
Te · u · v

e
+ µ ·

(
u · Te

mv
− b · v

)

s =
∂H

∂u
=

Te · v
e

+ µ ·
Te

mv
=

(
v

e
+

µ

mv

)
· Te ⇒ s =

v

e
+

µ

mv

Euler–Lagrange equation:

µ̇ = −
Te · u
e

+ µ · b

µ(t) =
u · Te

b · e
+

(
µ(0)−

u · Te

b · e

)
· eb·t

Again, the Hamiltonian must be constantly zero for the optimal solution:



References 119

H(0) = µ(0) ·
u · Te

mv
= 0 ⇒ µ(0) = 0

Thus

µ(t) =
u · Te

e · b
·
(
1− eb·t

)
.

Moreover, from the state equation for v and the constancy of the control u
(either umin or umax), obtain

v(t) =
u · Te

b ·mv
·
(
1− e−b·t

)

s(t) =
u · Te

b ·mv · e
·
(
1− e−b·t

)
+

u · Te

b ·mv · e
·
(
1− eb·t

)

Analyze s(t):

s(0) = 0

s(∞) = −∞

ṡ(0) =
u · Te

b ·mv · e
· b+

u · Te

b ·mv · e
· (−b) = 0

Thus s(t) is always negative (except for t = 0). Consequently,

uo(t) = umax.

Verify the criterion

J =

∫
L dt =

u · Te

e
·
∫

u · Te

b ·mv
·
(
1− e−b·t

)
dt =

u2 · T 2
e

e · b ·mv
·
(
tf +

1

b
· e−b·tf −

1

b

)
.

However,

e−b·tf = 1−
vf · b ·mv

u · Te

and thus

J =
u2 · T 2

e

e · b ·mv
·
(
tf +

1

b
−

vf ·mv

u · Te
−

1

b

)
=

u2 · T 2
e

e · b ·mv
· tf −

u · Te · vf
e · b

After inserting the expression for tf , it is easy to see that J is a decreasing
function of u.

ECMS

Problem 7.23

Consider a parallel HEV. The engine is a Willans machine with e = 0.3 and
Pe,0 = 2kW. The electric drivetrain has a constant efficiency ηel = 0.8 and
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a maximum/minimum power Pm,max/min = ±20 kW. Calculate for which
values of the equivalence factor s a purely electric drive and a full recharge,
respectively, are optimal for a power demand Pt = 20 kW.

• Solution

If u = Pe/Pd, i.e., the ratio between the power delivered by the IC engine and
the power demand, then

H(Pt, s, u) =
u · Pt + Pe,0

e
· h(u) + s · (1 − u) · Pt · ηsign(u−1)

el ,

where h(.) is the unit step fuction. Since

∂H

∂u
=

Pt

e
− s · Pt · ηsign(u−1)

el

is piecewise constant, the optimal uo is either at u = 0, u = 1, or at u = umax

(discontinuities). The three values of the Hamiltonian are

H(0) = s ·
Pt

ηel

H(1) =
Pt

e
+

Pe,0

e

H(umax) =
Pt

e
· umax + s · ηel · (1− umax) · Pt +

Pe,0

e
.

The value of umax is such that (1 − umax) · Pt = Pm,min, which leads to
umax = 2. After inspection, the purely electric drive (u = 0) is selected when

H(0) < H(1) ⇒ s <
ηel
e

·
Pt + Pe,0

Pt
=

0.8

0.3
· 1.1 = 2.9

and

H(0) < H(2) ⇒ s <
2 · Pt + Pe,0

Pt
·

1

e ·
(
ηel +

1
ηel

) =
2.1

0.3 ·
(
0.8 + 1

0.8

) = 3.4.

Thus, s must be lower than 2.9 for the purely electric drive to be optimal.
The full recharge is optimal when

H(2) < H(1) ⇒
2 · Pt

e
− s · ηel · Pt <

Pt

e
⇒ s >

1

e · ηel
= 4.2.

and
H(2) < H(0) ⇒ s > 3.4

Thus full recharge is optimal when s > 4.2). For 2.9 < s < 4.2, the purely
ICE operation is optimal.
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Problem 7.24

Derive a look-up table yielding the optimal engine torque Te of a post-
transmission parallel hybrid as a function of ωw, Tt and s. Use the following
engine model,

Pf =

{
Pe,0+Pe

e , for Te > 0

0, for Te > 0

with the following parameters:

1

e
=

{
1.21 · 10−5 · ω2

e − 0.0053 · ωe + 2.94, Te < min(Te,max, Te,turbo)

−1.63 · 1−4 · ω2
e − 0.0876 · ωe − 6.80, Te > Te,turbo

Pe,0

e
=

{
0.166 · ω2

e + 1.174 · ωe + 4.59 · 103, Te < min(Te,max, Te,turbo)

5.19 · ω2
e − 2.83 · 103 · ωe + 2.27 · 105, Te > Te,turbo

with Te,turbo = 200Nm and Te,max = −0.0038 · ω2
e + 2.32 · ωe − 79Nm. Use

the motor model

Pm = ωm · Tm + (0.0012 · ωm + 0.0179) · T 2
m +

(
−0.0002 · ω2

m + 0.789 · ωm + 384
)
=

= ωm · Tm + a(ωm) · T 2
m + c(ωm)

with Pm,max = 42kW and Tm,max = 140Nm, and the battery model of
Problem 4.26 with Ri = 0. Find the optimal Te for Tt = 1000Nm, ωw =
39 rad/s, γm = 11, γ = 8.1 (including the final gear), and s = 2.8.

• Solution

The unconstrained optimum of Problem 7.25 must fulfil the constraints

Tm > Tm,min = −Tm,max and Te < Te,max

Moreover, the coefficient 1/e changes across Te = 200 Nm.
The motor limits at ωm = ωr · γm = 429 rad/s are ±98Nm (both in

motoring and generating). These two values correspond to Te = −10Nm and
Te = 256Nm, respectively. At ωe = ωw · γ = 315 rad/s, the engine maximum
torque is

Te,max = −0.0038 · 3152 + 2.32 · 315− 79 = 274 Nm.

Summarizing, the admissible Te range is between -10 Nm and 256 Nm, with
a discontinuity at 200 Nm.

For the assigned operating point, assume first that the optimal solution
is below the turbocharging limit. Thus 1/e = 2.47 (e = 0.40), a = 0.53.
Consequently, from (??) of Problem 7.25 find

Tm =
315 · 2.47− 8.1

11 · 2.8 · 429
2 · 0.53

= −48.7Nm
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and

Te =
Tt − γm · Tm

γ
= 189.6Nm

which is a point below the turbocharging limit. To confirm this result, test
the other set of Willans parameters. In particular, 1/e = 4.65 (e = 0.21).
Consequently,

Tm =
315 · 4.65− 8.1

11 · 2.8 · 429
2 · 0.53

= 547Nm

which is clearly beyond the motor limit. Thus the optimal point is Te =
190Nm, Tm = −49Nm.

For a further verification, calculate the Hamiltonian for Te = −10Nm,
Te = 0Nm, Te = 190Nm, Te = 200Nm and Te = 256Nm (a = 0.53, c = 686):

For Te = −10,
1

e
=

Pe,0

e
= 0, Tm = 98 ⇒ H = 1.34 · 105

For Te = 0,
1

e
= 2.47,

Pe,0

e
= 21.43 · 103, Tm = 91 ⇒ H = 1.23 · 105

For Te = 190,
1

e
= 2.47,

Pe,0

e
= 21.43 · 103, Tm = −49 ⇒ H = 1.159 · 105

For Te = 200,
1

e
= 2.47,

Pe,0

e
= 21.43 · 103, Tm = −56 ⇒ H = 1.163 · 105

For Te = 256,
1

e
= 4.65,

Pe,0

e
= −1.49 · 105, Tm = −98 ⇒ H = 1.25 · 105

which confirms the bounded optimum at 190Nm.

Problem 7.25

Find the unconstrained optimal engine torque for a post-transmission parallel
hybrid with an engine model of the type

Pf =
Pe,0 + Pe

e
,

an electric machine model of the type

Pm = ωm · Tm + a · T 2
m + c,

and the battery model of Problem 4.26,

Pech = Pb + P 2
b ·

2 · Ri

U2
oc

,

where Pb = Pm. Neglect the SOC influence.

• Solution
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The optimal operating point is the pair (Te, γ). The optimal Te is calculated
for each transmission ratio γ. For each γ the engine speed ωe = γ · ωw and
the motor speed ωm = γm · ωw are fixed (γm is usually a constant). Thus the
coefficients 1/e, Pe,0/e, a, and c are also fixed.

The Hamiltonian is

H = Pf + s · Pech =

=
1

e
· ωe · Te +

Pe,0

e
+

+ s ·
((
ωm · Tm + a · T 2

m + c
)
+

2 · Ri

U2
oc

·
(
ωm · Tm + a · T 2

m + c
)2
)
.

To find the optimal Te, differentiate the Hamiltonian

∂H

∂Te
=
ωe

e
− s ·

(
1 +

2 · Ri

U2
oc

· 2 ·
(
ωm · Tm + a · T 2

m + c
))

· (ωm + 2 · a · Tm) · γ =

= 0

since γm · Tm = Tt − γ · Te and ∂Tm/∂Te = −γ/γm. If one neglects the loss
term in the battery model, the resulting equation is

ωe

e
=

γ

γm
· s · (ωm + 2 · a · Tm)

and the optimal solution would be

Tm =
ωe

e − γ
γm

· s · ωm

2 · a
·
1

s
·
γm
γ

,

from whence

Te =
Tt − γm · Tm

γ
=

Tt

γ
−
(

γ2m
2 · a · e · s · γ

−
γ2m

2 · a · γ

)
· ωw.

Problem 7.26

Use the result of Problem 4.21 and a simplified battery model Pech = Pb to
derive an analytical solution of the optimal energy management of a series hy-
brid. Following Problem 4.21, consider the engine Willans parameter varying
as

1

e
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for Pg = 0

4.01 for 0 < Pg ≤ 14 · 0.92 · 103

3.36 for 14 · 0.92 · 103 < Pg ≤ 62 · 0.92 · 103

3.89 for 62 · 0.92 · 103 < Pg ≤ 68 · 0.92 · 103,

and ηg = 0.92.
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• Solution

The Hamiltonian is

H = Pf + s · Pech =
P0

e
+

Pg

ηg · e
+ s · (Pm − Pg).

This function is affine in Pg, and

∂H

∂Pg
=

1

ηg · e
− s

However, the coefficient 1/e changes with Pg: Now, the possible solutions are
at the discontinuity points. For low s, the optimum is at Pg = 0− andH(0−) =
s · Pm. For increasing s, the optimum switches toward Pg = P1 · ηg = 57 kW,
where P1 is the engine power at ωe = 1000 rpm. The switching value of s is
calculated by equating

s · Pm = 214.8 · 103 + s ·
(
Pm − 62 · 103 · ηg

)
⇒ s = 3.76

For s > 3.95, the optimum shifts to Pg = Pmax · ηg = 62.8 kW.

Problem 7.27

Derive equations (7.24) – (7.25) from PMP.

• Solution

For a parallel hybrid with constant efficiencies ηf and ηe, the Hamiltonian is

H(s, Pe) =

{
Pe

ηf
+ s · Pt−Pe

ηe
, for 0 < Pe < Pt

Pe

ηf
+ s · ηe · (Pt − Pe) , for Pt < Pe < Pmax

that is, the dependency H(Pe) is piecewise affine and consists of two segments.
For small values of s, ∂H/∂Pe is always positive, thus the optimal value is
Pe = 0.

The value of s for which ∂H/∂Pe = 0 in the first segment is s1 = ηe/ηf .
Beyond this value, the first segment is increasing and the second is decreasing,
thus the optimal control is Pe = Pt.

The value of s for which ∂H/∂Pe = 0 in the second segment is s2 =
1/(ηe · ηf ). For higher values of s, the second segment is decreasing, thus the
optimal control is Pe = Pmax.

Summarizing, one recovers that s = s1 or lower values lead to a battery
discharge; s = s2 or higher values lead to a battery recharge, while any value
between s1 and s2 leads to pure ICE operation, thus charge-sustained opera-
tion (but no hybrid operation).
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Problem 7.28

For the simple parallel HEVmodel of Problem 7.23, with e = 0.4, Pe,0 = 3kW,
ηel = 0.9, find the conditions on Pt for which the ZEV mode, the ICE mode
or the battery recharge with Pb = −2 · Pt are optimal, respectively.

• Solution

As opposed to the results of Problem 7.23 the solution is now to be found as
a function of s. After inspection, three possibilities arise:

• If s < s1 = ηel

e = 3, then only the purely electric mode (Pe = 0) could be
optimal.

• If s1 < s < s2 = 1
ηel·e

= 3.7, then the optimum is either the purely electric
mode or the purely ICE operation. The switch is when

Pt =
ηel · Pe,0

s · e − ηel
=

27 kW

4 · s− 9
,

thus below which ZEV mode, above which ICE mode are optimal.
• If s > s2, then again two possibilities arise, namely, the ZEV or the

recharge mode. The switch is for

Pt =
ηel · Pe,0

s · e− 2 · ηel + s · η2el · e
=

2700 kW

724 · s− 1800
.

Problem 7.29

Use the result of Problem 7.28 to evaluate s over a drive cycle with the fol-
lowing characteristics: Ētrac − Ērec = ∆Ē = 0.183 MJ, Ētrac = 0.670 MJ,
Pmax = 18.9 kW. Assume a linear relationship between cumulative energy
and power demand. Then perform again the calculations for the data of Prob-
lem 7.23.

• Solution

The condition for s to be optimal is that the electrical energy is balanced over
the cycle, thus

ηel ·
(
∆Ē + Ēchg

)
=

Ēzev

ηel

where Ēchg is the mechanical energy demand during the recharge phase (the
same quantity is sent from the engine to the generator because u = 2) and
Ēzev is the mechanical energy demand during the ZEV phase.

Assume first that s > s2. Then two phases exist, ZEV or recharge. The
switch power is

Plim =
ηel · Pe,0

s · e− 2 · ηel + s · η2el · e
and this relationship will be used to calculate s once Plim has been found.
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To calculate Plim, observe that Ēzev is the energy for power demand lower
than Plim. Since a linear relationship between energy and power demand is
assumed,

E(Pt) =
Ētrac

Pmax
· Pt,

then

Ēzev =
Ētrac

Pmax
· Plim.

Consequently, Ēchg = Ētrac − Ēzev . Using these equations, obtain

ηel ·∆Ē + ηel · Ētrac − ηel ·
Ētrac

Pmax
· Plim =

Ētrac

Pmax · ηel
· Plim

⇒ Plim =
η2el

1 + η2el
·
Ētrac +∆Ē

Ētrac
· Pmax = 10.8 kW,

from whence, calculate the charge-sustaining and optimal value of s as

s =
2 · Plim + Pe,0

e ·
(

Plim

ηel
+ ηel · Plim

) = 2.83.

To verify the initial assumption,

s2 =
1

ηel · e
= 2.78 < s.

So the assumption was correct and the result is valid.
For the data of Problem 7.23, e = 0.3, Pe,0 = 2 kW, ηel = 0.8, one would

obtain s1 = 2.67, s2 = 4.17. Assuming s > s2 would lead to Plim,a = 9.41 kW
and sa = 3.60 which is not greater than s2.

Assuming instead that s1 < s < s2, there is a switch between ZEV and
ICE modes. Thus the energy balance is

ηel ·∆Ē =
Ēzev

ηel
, or Plim,b =

η2el ·∆Ē · Pmax

Ētrac
= 3.3 kW.

This switch power corresponds to

sb =
Plim,b + Pe,0

Plim,b
·
ηel
e

= 4.28,

which is not lower than s2 as assumed.
Finally the only possible result could be s = s2, so that the recharge and

the ICE mode are equally optimal. A switch will be added in order to balance
the battery energy. For s = s2, the limit power for the ZEV mode is

η2el
1− η2el

· Pe,0 = 3.56 kW.
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The corresponding ZEV energy is 0.126 MJ. To be balanced, a recharge energy

Ēchg =
Ēzev

η2el
−∆Ē = 13.3 kJ

is needed. Thus a further power limit

Pmax ·
(
1−

Ēchg

Ētrac

)
= 15.4 kW

can be taken, above which the recharge mode is selected and below which the
ZEV mode is selected.

Implementation Issues

Problem 7.30

Consider a post-transmission parallel HEV with the following simplified
data: motor transmission ratio γm = 11, wheel radius rw = 0.317m, en-
gine transmission ratio γ = {15.02, 8.09, 5.33, 3.93, 3.13, 2.59}, transmission
efficiency ηt = 0.95. Consider the following driving situation: torque de-
mand at the wheels Tt = 378Nm, vehicle speed v = 69.25km/h, engine
on, electric consumers off, 4th gear. In this situation, Tm,max = 140Nm,
Pm,max = 42kW, Ub,min = 300V, Ub,max = 420V, Pe,start = 3kW, Pm =
0.9345 ·T 2

m+673.97 ·Tm+127.44, Uoc = 381.12V, Ri = 0.3648Ω (discharge),
Ri = 0.3264Ω (charge), Coulombic efficiency ηc = 0.95, Te,max = 269.7Nm,
Te,min = −20Nm, fuel consumption

∗
mf = (Te − Te,min) ·

(
2.9 · 10−8 · Te + 1.112 · 10−5

)
=

= 2.9 · 10−8 · T 2
e + 1.17 · 10−5 · Te + 2.225 · 10−4

Find the engine and motor torque calculated by the ECMS. The current
estimation of the equivalence factor is s = 3.

• Solution

Calculate first the electric-mode Hamiltonian Hev:

ωm =
vv
rw

· γm = 667 rad/s, ωb =
42 · 103

140
= 300 rad/s

Tm(0) =
Tt

γm
= 34.4 Nm, Tm,max =

Pm,max

ωm
= 63 Nm

The motor speed ωm is above the base speed ωb, further the motor torque is
smaller than the maximum possible motor torque. The eletrical power of the
motor is calculated with the given relationship

Pm(0) = 0.9345 · 34.42 + 673.97 · 34.4 + 127.44 = 24.4 kW = Pb(0).
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The battery power is limited by

Pb,max = min

(
U2
oc

4 ·Ri
,

∣∣∣∣
Uoc · Ub,min − Ub,min2

Ri

∣∣∣∣

)
= 66.7 kW,

Pb,min = −
U2
b,max − Uoc · Ub,max

Ri
= −50.0 kW.

Thus the condition Pb,min < Pb < Pb,max is fulfilled. Evaluate

Ib(0) =
Uoc

2 · Ri
−
√

U2
oc −Ri · 4 · Pb

4 · Ri2
= 68.5 A,

Pech(0) = Uoc · Ib(0) = 26.1 kW.

Thus the hamiltionian for the ZEV case is

Hev = s · Pech = 3 · 26.1 = 79.2 kW.

Now calculate hybrid Hamiltonians. For simplicity take only three candidate
values:

Te(1) = Te,max, Te(2) =
Tt

γe · ηt
= 101.2 Nm, Te(3) = Te,min

The corrseponding fuel consumptions are

∗
mf (1) = (269.7 + 20) · (2.9 · 10−8 · 269.7 + 1.112 · 10−5) = 5.49 g/s
∗
mf (2) = (101.2 + 20) · (2.9 · 10−8 · 101.2 + 1.112 · 10−5) = 1.70 g/s
∗
mf (3) = 0 g/s

The electric motor has to provide the folowing torque (note the role of the
transmission efficiency):

Tm(1) =
Tt − γe · Te,max · ηt

γm
= −57.2 Nm,

Tm(2) = 0 Nm,

Tm(3) =
Tt − γe·Te,min

ηt

γm
= 41.9 Nm.

All three absolute values are lower than 63Nm, so the constraints are not
violated. Calculate the electric power

Pm(1) = 0.9345 · 57.22 − 673.97 · 57.2 + 127.44 = −35.37 kW = Pb(1),

Pm(2) = 0.13 kW = Pb(2),

Pm(3) = 0.9345 · 41.92 + 673.97 · 41.9 + 127.44 = 30 kW = Pb(3).
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All three values are between -50 kW and 66.7 kW, so the battery limit is not
overstepped. Again, the battery current is derived with the same formula as
above as

Ib(1) =
381.12

2 · 0.3264
−
√

381.122 + 0.3264 · 4 · 35.37 · 103
4 · 0.32642

= −86.4 A,

Ib(2) =
381.12

2 · 0.3648
−
√

381.122 − 0.3648 · 4 · 127
4 · 0.36482

= 0.33 A,

Ib(3) =
381.12

2 · 0.3648
−
√

381.122 − 0.3648 · 4 · 30 · 103
4 · 0.36482

= 85.8 A,

which results in electrochemical power consumptions

Pech(1) = −381.12 · 86.4 · 0.95 = −31.28 kW,

Pech(2) = 381.12 · 0.33 = 0.13 kW,

Pech(3) = 381.12 · 85.8 = 32.7 kW.

Combining these results leads to

Hhyb = 42.6 · 106 · {5.49, 1.705, 0} · 10−3 + 3 · {−31.28, 0.13, 32.7} · 103 =

= {140, 73, 98} kW.

Finally, the chosen operating point will be the pure ICE operation. Thus the
engine will continue to stay on.

Problem 7.31

Solve again Problem 7.30 for the situation in which the engine is turned off.

• Solution

Nothing changes up to the calculation of Pb(1, . . . , 3). In order to account for
the engine turning on phases, add Pe,start = 3kW to the battery power:

Pb(1) = −35.37 + 3 = −32.37 kW,

Pb(2) = 0.13 + 3 = 3.13 kW,

Pb(3) = 30 + 3 = 33 kW.

All three values are still admissible. Again the battery currents are calculated
as

Ib(1) =
381.12

2 · 0.3264
−
√

381.122 + 0.3264 · 4 · 32.37 · 103
4 · 0.32642

= −79.5 A,

Ib(2) =
381.12

2 · 0.3648
−
√

381.122 − 0.3648 · 4 · 3.13
4 · 0.36482

= 8.27 A,

Ib(3) =
381.12

2 · 0.3648
−
√

381.122 − 0.3648 · 4 · 33 · 103
4 · 0.36482

= 95.3 A,
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which results in electrochemical power consumptions

Pech(1) = −381.12 · 79.5 · 0.95 = −28.79 kW,

Pech(2) = 381.12 · 8.27 = 3.15 kW,

Pech(3) = 381.12 · 94.2 = 36.3 kW.

Combining these results leads to

Hhyb = 42.6 · 106 · {5.49, 1.705, 0} · 10−3 + 3 · {−28.79, 3.15, 36.3} · 103 =

= {147.5, 82, 109} kW

In this case Hev ≤ min(Hhyb) and it is more convenient to keep the engine off
and use the ZEV mode.

Problem 7.32

Consider an ECMS with a stop-start strategy implementation based on hys-
teresis thresholds. In order to start the engine, Hhev (see Problem 7.30) must
fulfill the condition

Hhev < xon ·Hev.

At the previous calculation step, the lower Hamiltonian value was Hev, thus
the engine is off. At the current time step, the power demand is Pt = 13.28kW.
The equivalence factor estimation is s = 3.2813. Calculate the mode selected
for a hysteresis threshold xon of (i) 95% and (ii) 90%, respectively. Use the fol-
lowing data and models: post-transmission parallel HEV architecture, trans-
mission efficiency, ηt = 0.95, fuel consumption Pf = 2.5446 · Pe + 9.6525 · 103
if Pe > 0, electrochemical power

Pech =

{
1.2707 · Pm + 2.7703 · 103 − 2.014 · 103, if Pm > −595 W

0.7397 · Pm + 2.4544 · 103 − 2.014 · 103, if Pm < −595 W.

The cost of engine start is Pe,start = 2.014 kW (in electrochemical power
units).

• Solution

The Hamiltonian function is bilinear. Thus the optimum combination can be
either at Pe = 0W (ZEV mode), at Pm = −595W (discontinuity), or at
Pe = Pe,max. The engine power at the discontinuity is

Pe,dis =
13.282 · 103 + 595

0.95
= 14.607 kW.

However, a simple inspection of equations above shows that

∂H

∂Pe
=

{
−1.1465, for 0 < Pe < 14.607 · 103 W

0.2388, for Pe > 14.607 · 103

Thus the minimum of H is either at the discontinuity point or at the ZEV
mode:
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• for Pe = 0, Pm = 13.282kW and Pech = 19.648− 2.014kW, thus

Hev = 57.86 kW;

• for Pe = 14.607kW, Pf = 46.821kW, Pm = −595W, Pech = 2.014kW,
the engine must be started and

Hhyb = 53.4295 kW.

In order to choose between Hev and Hhyb the hysteresis threshold xon must
be considered:

• for (i) xon = 95%, the engine will be turned on if 53.43 ≤ 0.95 · 57.86 =
54.97, which is true.

• for (ii) xon = 90%, the engine should be turned on if 53.43 ≤ 0.90 ·57.86 =
52.07, which is not true.

Thus in this case the engine should be kept off.

Problem 7.33

Consider an HEV under several repetitions of an elementary driving cycle.
An ECMS has a PI adaptation of s as a function of SoC that yields a new
estimation every cycle repetition. Assume that the overall behavior of the
system on a cycle-by-cycle basis depends on s as follows:

∆ξ(n) = ξ(n)− ξ(n− 1) = Ks · (s (n)− s0) ,

where ξ(n) is the SoC at the end of the n-th repetition, s0 is the optimal value
of s, s(n) is the value adopted during the n-th cycle, and Ks > 0 is a constant
depending on the particular system. Evaluate the stability and the dynamic
characteristics of the controlled system on a cycle-by-cycle basis. Evaluate the
influence of the integral term in the PI controller.

• Solution

Let ∆ξ(n) be the variation of SOC on the n-th cycle, i.e., in a first approxima-
tion, a quantity proportional to the electrochemical energy consumption of the
cycle. The cycle-by-cycle dependency between SOC and s can be linearized
as

∆ξ(n) = ξ(n)− ξ(n− 1) = Ks · (s (n)− s0) ,

where s0 is the optimal theoretical value of s, s(n) is the value adopted during
the n-th cycle, and Ks > 0 is a constant depending on the particular system.
Correspondingly, the adaptation rule for s(n) reads

s(n) = sp − kp · ξ(n− 1)− ki ·
n−1∑

i=0

ξ(i),
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where ∆ξ(0) = 0 by definition, kp > 0, ki ≥ 0 and sp initial value of s. By
shifting from the discrete time to the continuous time, and by combining the
two equations, one obtains

d2s

dt2
= −kp ·Ks ·

ds

dt
− ki ·Ks · (s− s0).

This dynamics is stable. The factor s converges to s0 (unknown) as prescribed.
Thus the quantity ∆x converges to 0. The true SOC error, the integral of ∆ξ,
converges to zero as well (the prescribed value). The integral of the SOC error
converges to the value (sp − s0)/ki.

If ki = 0, the SOC error does not vanish but it tends to (sp − s0)/kp.

Problem 7.34

Compare (7.22) with (7.27) – (7.31). Under which assumptions are they equiv-
alent?

• Solution

Combining (7.27) – (7.31), obtain

s(t) = schg + (sdis − schg) · p(t) # schg + (sdis − schg) · (p0 + p1(t) ·Eech(t)) .

In the assumption that the difference Eh − Eh(t) # ∆Eh is kept constant
(sliding horizon), the coefficient p1 is constant as well and

s(t) = schg + (sdis − schg) · p0 + (sdis − schg) · p1 · Ee(t).

The term Eech(t) is the electrochemical energy consumed. In terms of SOC,

Eech(t) = Q0 · (ξ(0)− ξ(t)) · Uoc(t)

and, assuming an averagely constant open-circuit voltage,

Eech(t) = K · (ξ(0)− ξ(t)) .

If ξ(0) = ξt, obtain (7.22) with

st = schg + (sdis − schg) · p0,
kp = (sdis − schg) · p1 ·K.

Now give a closer look to p0 and p1. To simplify the analysis, assume ur =
ul = 1 and neglect λ. Thus,

p0 =
1
ηe

1
ηe

+ ηe
and p1 =

1(
1
ηe

+ ηe
)
·∆Eh

.
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Further impose (7.26)

1

ηe
= sdis · ηf , ηe = schg · ηf

to find

p0 =
sdis

sdis + schg

p1 =
1

(sdis + schg) · ηf ·∆Em

st = schg + (sdis − schg) ·
sdis

sdis + schg
=

s2chg + s2dis
sdis + schg

.

It is easy to show that under the aforementioned assumptions schg < st < sdis,
thus st plays the role of the constant optimal equivalence factor s0.

Problem 7.35

Express s0 as a function of ur, ul, sdis, and schg. Evaluate s0 for smax = 5,
smin = 2, knowing from a cycle analysis that ur/ηe = 1.2 and ul · ηe = 1.8.

• Solution

Using the method of Problem 7.34, but with ur ≠ ul, obtain

s0 =
ul · s2c + ur · s2d
ur · sd + ul · sc

.

For the numerical case (smax = sd and smin = sc.

ηe =

√
sc
sd

= 0.63

ur = 0.76

ul = 2.85

s0 =
2.85 · 22 + 0.76 · 52

0.76 · 5 + 2.85 · 2
= 3.2.

Remark: the value of ur found shows that pure ZEV would not be allowed in
this case.


