Problem Solutions

Vehicle Energy and Fuel Consumption

Vehicle Energy Losses and Performance Analysis
Problem 2.1

For a vehicle with m, = 1500 kg, Af-cq = 0.7m?, ¢, = 0.012, a vehicle speed
v = 120km/h and an acceleration a = 0.027 g, calculate the traction torque
required at the wheels and the corresponding rotational speed level (tires
195/65/15T). Calculate the road slope that is equivalent to that acceleration.

e Solution

Assume p, = 1.20kg/m?>, g = 9.81m /s>
a) Traction torque required at wheels:

Fy=my-c,-g+1/2:pg-Af-ca-v*+my-a=

1 120\ 2
=1500-0.012-9.81 + > -1.2-0.7- <3—§) + 1500 0.027 - 9.81 = 1041 N

The information about the tires is explained by

newline
195 / 65 / 15 T
=~ ~~ —~ ~~
width of the ratio of sidewall wheel diameter  max. 190 [km/h]
tire in [cm] height to tire in [inch]

width in [%]

Thus
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Ay 157 0.0254
Tw = = + hew = > +0.65-0.195 =15 - — +0.65-0.195 = 0.317 m

T =7y - Fy =0.317- 1041 = 330 Nm

b) Rotational speed level:

v 120/3.6

Yo = = 0317

-0.317 = 105.2 rad /s = 1004 rpm
¢) Acceleration-equivalent road slope:

= 0.027) rad

a = arcsin((

Q|

—~

g, = 100 - tan(0.027) = 100 - 0.027 = 2.7 %

For the requested velocity, a traction torque of 330 Nm at a rotational speed
of 1004 rpm is required. This is equivalent to the acceleration caused by a
slope of 2.7%.

Problem 2.2

Find the road slope « that is equivalent to a step of height h for a car with
(a rigid) wheel radius r,, on a flat terrain. Calculate the result for h/2r,, =
{0.01,0.02,0.05,0.1,0.2}.

e Solution

i) \
T B
a.'r/ tset [' 6 1:79 t}q
() \
G v [m/s]

Fig. 10.7. Force and torque balance of the problem.

Assume the weight of vehicle distributed uniformly along the wheel base
b, and the reaction force of the front wheel is from the contact point to
the centre of the wheel.
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Force balance

When in contact with the step, the car wheel will rotate around the contact
point. Thus the front wheel’s reaction force R; will be directed from the
contact point to the wheel center (neglect slip here) and the reaction force
at the contact point on the terrain becomes null. Front wheel reaction force
Ry is balanced by the weight G, back wheel reaction force R; and the
traction force Fj, all of which have to be calculated. One can write two
equations for force balance and one equation for torque balance.

z: Fy = Ry sin0
y: myg=Rscosl+ Ry

b
z: th(rw—h)—i-beb:mvng

In order to solve the traction force and therefore the traction torque, we
substitute unknowns Ry and R, with Fy:

F,— (myg— Rp)-tanf =0
Ry =my,g— F; -cotf

Further substituting R, with F}, we get:

b
Fy(ry —h)+ (my g — F; cot@)-b:mvgi
1
__ 2Mwg
Ft T rw—h _ ru—h’
a b

From the geometry of the plot, we can see

Tw —h

)

cotf =
a

where a denotes the characterization distance from the front wheel centre
to the step. Therefore, the traction torque is:

Ty = Fy X (ry — h) = —02—

Calculate the equivalent gradability
In order to calculate the road slope, the traction torque equates that of
overcoming a step with height h:

T, = Fy X (T — h) = my gsina X ry,.

Solving the road slope, we have the exact result for rigid wheels:
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. Fy (ry — h) 1 ab
sinog = ———> = ——
My § T 27w b—a
arcsi ab
o = arcsin (| —————
27y (b—a)
B 1
207 — %)

c¢) Explore a representation of first approximation
If a < b, the solution is no longer correlated with the wheelbase b, which
gives:

.a
Q= arcsin ——
Tw

Discussion

e Other ways of calculation
From the geometry, it can be seen that

a> =12 —(ro —h)>=h- (27, — h).

Thus, the approximated calculation correlates only one geometric pa-

rameter z = T
o

o = arcsin

) Qﬁw'(1_2ﬁw) . ( Z(l—z))
= arcsin v fTw’ ) — aresin —

Correspondingly, the exact solution correlates the relative height z =
h/r. and the relative wheelbase z, = b/7,:

-
2( —)

2( -1 1
22z(1—z) 2b

e Maximum height of the step that can be overcome
Note that the height of the step cannot be larger than the wheel size
z = % < %, otherwise the rotation around the contact point may
not be achieved.

e Comparison between the approximated and exact solution:
Assume the relative wheelbase b/r,, = 6.67, and different relative

step heights as in the Table 77.

Q
Il
[ °'|E
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Table 10.1. Different results with different geometric parameters.

z [m]  Qapproe [rad]  Qegact [rad]

020  0.2867 (29%) 0.3090 ( 32 %)
0.10  0.2137 (22%) 0.2265 ( 23 %)
0.05  0.1547 (16 %) 0.1615 ( 16 %)
0.02  0.0991 (10%) 0.1020 ( 10 %)
001  0.0704 (7 %) 0.0718 ( 7 %)

Problem 2.3

Find an equation to evaluate the speed profile of an ICE vehicle under
maximum engine torque. Assume a maximum torque curve of the type
T.=a- wg + b - we 4 c. Include the engine inertia and a traction efficiency ;.

e Solution

a) Solve theoretically the speed response subject to engine torque
According the vehicle dynamics, the speed dynamics of the vechicle can
be described as follows:

. 1
mv,eqU:_'ntTe_mv'g'Cr__pa'Ade'v2u (*)
Tw 2
2
where My eq = My + O, - (Tl) T = f(we) in some cases.
Assume T, is substituted as a function of vehicle speed v = TT“J - We, and
then sorted Equation (??) with descending order of power, we have the
representation of elementary vehicle speed as follows:
() dv = dt (**)
Av2+Bv+C

Integrating the elementary speed from the initial state, we have:

'U(t) 1 t
- )dv= dt
LO (A’U2—|—B’U—|—C) v /to

d’UZt—tQ

/U(t)
Vo

Solving the equation subject to different values of A = B2 —4 AC:
(i) fA>0
Equation (?7?) gives:

B B2—4AC
A(’U+ —)2 - T 74A

v(t)
1

I 2Av+ B —sgn(A)-vB2—4AC
sgn(A)WB? -4 AC

2Av+ B+ sgn(A)-vB2—-4AC

Vo

=t

to
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Let
S, =sqrtB*> —4AC
S, =sgn(A) - sqrtB> —4AC

_ 2Avg+B—sgn(A)- VB2 —4AC _2Avw+B-S,
2Avy+ B+ sgn(A)- VB2 —4AC 2Avy+B+ S,

then, the vehicle speed v can be represented as a explicit function of
time ¢, when the vehicle starts are v[, _, = vo:

2A’U + B — S’A+ - 2AUO + B — SA+ .e[SA+(t—to)]

+ = . — Ky-elS+t—to)]
2Av+B+S+ 2Avww+ B+ 54

K(t) =

Equivalently, it can also be represented as
S+ 1+ K (t) B
2 A 1— (t) 24

S +K(t)] B[l - K()]

Al = K(1)]
(i) fA<0
Equation (?7?) gives:
2 |: ¢ 2Av+ B

arctan

sgn(A) - v4AC — B? sgn(A)vV4 AC — B?

arcta 24w + B } t

— arctan =t—
sgn(A)vV4AC — B? 0

Let

S_=+V4AC - B?
S_ =sgn(A)-\/A4AC — B2,

then, the vehicle speed v can be represented as a explicit function of
time ¢, when the vehicle starts are v|, _, = vo:

arctan L — arctan w _ 5 (t —to).
S S 2

Equivalently, it can also be represented as

S_ - tan 7&(’;—“) + arctan 24%+EB Ag"*B - B

2A

v =



References 7

b) Specific case of maximum torque input
Given that T, = a - w? + b - we + ¢, the corresponding A, B and C in
Equation (??) can be calculated as follows:

1 7\? 1
A:(__'pa'Af'cd—’—(_) .fr]t.a>.
2 T My, eq

2 1
B = (l) 0 b-
Tw My, eq

1
C:(_g.mv.cr+1.m.0>.
T

w My eq

Finally, substituting these parameters into A and switch to the corre-
sponding equations, we can evaluate the speed profile of an ICE vehicle
under maximum engine torque.
Discussion
e Note that v/r,, generally varies along the acceleration, so a solution
must be obtained step by step.
e Specific cases of parameters
(i) Decided by normal shape of maximum torque curve
Given the fact that typical maximum torque curve can be emulated
by a downward parabolar, which means:

a<0,b>0,c>0.

This parameter set gives both possibilities for A to be positive or
negative.

(ii) Decided by different accerleration of vehicle
When B =0 and C < 0 (coasting), then D < 0 and one finds back
(2.18) for the coasting velocity.

Problem 2.4

Evaluate the 0-100 km/h time precisely using the result of Problem 2.3. Use
the following data: engine launch speed = 2500 rpm, engine upshift speed
We,maz = 6500rpm, v/r, = {46.48,29.13,20.39,15.04,11.39}, a = —4.38 -
107*Nms?, b = 0.3514Nms, ¢ = 80Nm, and the following vehicle data:
my = 1240 kg, Ay - cq = 0.65 m?, ¢, = 0.009, 1 = 0.9. Further assume that a
slipping clutch transmits all the torque. The momentum of inertia ©, = 0.128
kg-m?.

e Solution

a) Estimate gear # at the end of acceleration
Since A, B, and C depend on «, which changes along the speed trajectory,
the calculation of v(t) must be separated in segments according to the
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gear and the clutch status. The target speed will be reached in the gear
# whose /1, is immediately lower than

We,maz  6500[rpm] - (2 - 7/60)

v 100km/h/3.6

Thus the target speed is reached in the third gear. Four segments (includ-
ing takeoff) must be considered.
Vehicle mass and inertia
As for the rolling friction, the orignal vehicle mass is used for reaction
force calculation:

m, = 1240kg.

As for the dynamic force, the equivalent mass with engine inertia is con-
sidered for each gear #:

2
My,eq = My + @e : <l)

Tw

1%t segment: takeoff, vy =0, tg = 0

Although the vehicle is at standstill, the engine is operating at the idle
speed. Using the result of Problem 2.6, we get w. = 2500 rpm; and sub-
stituting torque parameters, we further have:

T.=a -w?+b-w, +c=142.0 Nm

as a constant torque during slipping-clutch segment.

2
My,eq = My + Op - (l> = 1240 4 0.128 - 46.48% = 1517 kg
1 1 1 1.2-0.65
A=——-pa-As-cq- = . =" — _2571x107*
g Pt T T T 51y *
B=0
( o)
C= _g'mv'cr+_'nt'Te . —
Tw m'u,eq
—9.81-1240-0.009 + 46.48 - 0.9 - 142

= 517 = 3.844

A=—-4.A.-C>0
Sy =sgn(A)-V—4-A-C=—-1-1/4-2571 x 10-* - 3.844 = —0.06287

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of first
segment.

To be more specific, the synchronization time between the engine and the
vehicle (clutch closed) is when
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. We [rpm] 'ST/3O) w5633 m/s = 20.28 km/h,

thus the final state constraint of the first segment appears to be:

2-A-w—S8 2-(—2571)-10"*-5.633 + 0.06287
S 2-A-v+ S 2-(—2571)-1074-5.633 — 0.06287

K (to) —0.9119

Because the evolution of K (t) satisfies K (t) = K- eS+(t=10)] | the synchro-
nize time is thus

Sy = sgn(A) - VA= —0.06287, Ky = —1

K(to) _
. ln( A ) . In(=0:0119) s
g, 006287

d) 2" segment, 1% gear, vy = 5.633 m/s, tg = 1.467 s

Here ~/ry, = 46.48, thus

2
Myeq = Moy + O - (l> = 1240 + 0.128 - 46.48% = 1517 kg
Tw
3
1 ol 1
A=|—=p, A B R I
< 5 p f Cd+(7’w> Mt a) —
(=119 065 46.48%-0.9-4.38- 1074 ) - —— — —0.02635
=(-5-12-0 : 9-4. === 0.
2
1 46.482 - 0.9 - 0.3514
B=<l> 0 b- - — 0.4504
Tw m'u7eq 1517
1
c— <_g.mv.cr+1.m.c>.
Tw My, eq
—9.81 - 1240 - 0.009 + 46.48 - 0.9 - 80
= e = 2.134

A=DB?—4-A-C=0.45042+4-0.02635- 2.134 = 0.4278 > 0
Sy = sgn(A) - VA= —0.6541

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of second
segment.

2- A ) + B — SAJF

2-A-vg+B+ Sy

~ —2-0.02635 - 5.633 + 0.4504 + 0.6541
~ —2.0.02635 - 5.633 4 0.4504 — 0.6541
= —1.613

K(to) =
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This phase ends when we = we maz, thus when

We, mazx * (77/30) Tw 65002 -7
M ~ 60-46.48

v =

= 14.64 m/s = 52.70 km/h.

and the final state constraint gives:

_2-A-v+B- S, —2-0.02635- 14.64 + 0.4504 + 0.6541 B

K(ty) = + — _0.3414
(1) 2 A vt B+S, —2-0.02635-14.64+ 0.4504 — 0.6541
thus at time
Kt)\ 1 —0.3414 1
t = to+] = 146741 : — 1.467+2.374 = 3.841
1= totin <K(t0)> S, n ( ~1.613 > ~0.6541 + °

e) 3" segment, 2™ gear, vy = 14.64 m/s, ty = 3.841 s
Here /1y, = 29.13

2
Myeq = My + Oe - (l) = 1240+ 0.128 - 29.13% = 1349 kg

w

1 7\? 1
A:<__'Pa'Af'Cd+(_> .nt.a>.
2 T My eq

1 1
=(-=-12.065-29.132-0.9-4.38-107* ) — = —0. 12
( 5 0.65 —29.13%-.0.9-4.38 - 10 >1349 0.0075
2 2
v 1 29.132-0.9-0.3514
B=(-L-) n-b- = =0.1
(rw> Mt My eq 1349 0.1989
1
C— (_g.mv.wl.m.c).
Tw mv,eq
—9.81-1240-0.009 + 29.13-0.9 - 80
= 310 =1.474

A =0.1989% 4 4-0.007512 - 1.474 = 0.08385 > 0

Sy = —sgn(A) - VA= -0.2896

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of third
segment.

2-A-v;+B- 5,
2-A-vi+B+S,
—2-0.007512 - 14.64 + 0.1989 + 0.2896

= = —0.8645
—2-0.007512 - 14.64 + 0.1989 — 0.2896

K1) =

This phase ends when we = wWe maz, thus when
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We mazx * (77/30) Tw 6500 -2 -7
7 ~60-29.13

v =

=23.37 m/s = 84.1 km/h

and

K(ty) = 2-A-02+B—S:+
2-A-v+B+ Sy
~—2-0.007512 - 23.37 + 0.1989 + 0.2896
~ —2.0.007512-23.37 + 0.1989 — 0.2896

—0.3110

thus at time

=3.841+3.530 ="7.371 s

by = ty0n (K02 L
2= ~0.8645 ) —0.2896

— = 3.841+In
K(t) (

—O.3110> 1
S,

f) 4th segment, grd gear, vy = 23.37 m/s, to = 7.371 s
Here /7y = 20.39 < 24.5 = Lemas

Umax

2
Myeq = My + O - (l) = 1240 + 0.128 - 20.39% = 1293 kg

Tw

1 7\? 1
A: <__.pa.Af.Cd+<_> .nt.a>.
2 Tw My, eq

1
=(-2-12-0.65—20.392-0.9-4.38-107* ) —— = —0.002886
( 2 )1293
2 2
v 1 20.39%2-0.9-0.3514
B=(-L) n-b- = =0.1017
(rw> "t My eq 1293
1
C= (_g.mv.cr+l.m.0>.
Tw mv,eq

= (—9.81-1240-0.009 + 20.39- 0.9 - 80)/1293 = 1.0507
A=DB?—-4AC=0.1017* 4 4-0.002886 - 1.0507 = 0.2247 > 0

Sy = sgn(A) - VA= —-0.1499

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of fourth
segment.

2-A-vg+B— Sy
2-A-vy+B+ Sy
~ —2-0.002886 - 23.37 + 0.1017 4 0.1499 0.6374

© —2.0.002886 - 23.37 + 0.1017 + 0.1499
We want to calculate the time to reach v = 100 km/h = 27.78 m/s that
will take place in this segment. Thus, this phase ends when v = V44,
thus when

K(t2) =
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- 2~A-UQ+B—;§+
2. A-w+B+Sy
~ —2-0.002886 - 27.78 + 0.1017 — 0.1499
~ —2-0.002886 - 27.78 + 0.1017 + 0.1499

—0.4376

thus at time

K(tz)) 1 1 (_8'2352)
ts = to+1 2} =73t 737142, 509 = 9.88
3 2+D<K(t1)> S, 01499 i ®

Problem 2.5

Consider again Problem 2.4 for an engine with negligible inertia ©.. Compare
the result with (2.16).

e Solution

a) 1%t segment: takeoff, vg =0, to = 0
Although the vehicle is at standstill, the engine is operating at the idle
speed. Using the result of Problem 2.6, we get w, = 2500 rpm; and sub-
stituting torque parameters, we further have:

T. za-wg—i-b-we—i—c: 142.0 Nm
as a constant torque during slipping-clutch segment.

My, eq = My = 1240 kg

1 1 1 1.2-0.65
A== po-As-cq- = - T = 3145 x 1077
g Pa A T T2 T 1240 8

B=0
(omeas7omm)
C= _g'mv'cr+_'nt'T€ : =
Tw My,eq
_ —981-1240-0.009 + 46.48-09-142 _ -
1240

A=—4-A-C=5915x10"3>0
Sy =sgn(A)-V—4-A-C=—1-1/4-3.145 x 10-*- 4.702 = —0.07691

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of first

segment.
To be more specific, the synchronization time between the engine and the

vehicle (clutch closed) is when
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. We [rpm] 'ST/3O) w5633 m/s = 20.28 km/h,

thus the final state constraint of the first segment appears to be:

K (to) = —0.9119

(—3.145) - 10-*- 5.633 — 0.07691

2-A-v—S  2-(-3.145)-107*-5.633 + 0.07691
2. Av+ S 2.

Because the evolution of K (t) satisfies K (t) = K-S+t~ the synchro-
nize time is thus

S, = sgn(A) - VA =—-0.07691, Ko = —1

. In (%‘?)) In(=0:0119) 100
= = = = 1. S
g, —0.07691

b) 2" segment, 1°t gear, vy = 5.633 m/s, to = 1.199 s
Here ~/r,, = 46.48, thus

My,eq = My = 1240 kg

1 vy 3 1
A: <__.pa.Af.Cd+<_> .nt.a> .
2 Tw My, eq

1 1
=(-=-12-0.65—46.48%-0.9-4.38-107%) - —— = —0.03224
( 2 ) 1240
2 2
y 1 46.482-0.9-0.3514

B=(-L) nb- = = 0.5510

<rw> T i e 1240

1
C— (_g.mv.CT+1.m.C> .
Tw mv,eq
—9.81-1240-0.009 + 46.48 - 0.9 - 80

= = 2.611
1240 0

A=B?—4-A-C=05510%+4-0.03224- 2.611 = 0.6403 > 0
Sy = sgn(A) - VA= —0.8002

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of second
segment.

2- A ) + B — SAJF

2-A-vg+B+ Sy

~ —2-0.03224 - 5.633 + 0.5510 + 0.8002
"~ —2.0.03224 - 5.633 4+ 0.5510 — 0.8002
= —1.613

K(to) =
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This phase ends when we = we maz, thus when

We,mazx * (77/30) Tw 6500-2 -7
=— = = 14.64 = 52.70 km/h.
! " 60 - 46.48 m/s m/

and the final state constraint gives:

K(t) = 2-A-v+B-8,  —2-0.03224-14.644 05510+ 0.8002 _ 03413
2. A-v+B+S, —2-0.03224-14.64 + 0.5510 — 0.8002 '

thus at time

K(t)\ 1 ~0.3413 1
t = to+1 = 119941 - — 1.19941.941 = 3.140
L= lotn (K(to) S, 1613 ) Z0.8002 + ®

c) 8" segment, 2" gear, vy = 14.64 m/s, to = 3.140 s
Here ~/r, = 29.13

1 7\? 1
A: __'pa'Aj"Cd+ _ .nt.a .
2 Tw My, eq
1
=(-2-12-0.65—29.132-0.9-4.38-107* )| —— = —0.008173
( 2 > 1240
2 2
7y 1 29.132-.0.9-0.3514
B=(2Y) .o .p. — =0.2164
(rw ) T eeq 1240
1
C= (_g.mv.cr+1.m.0> .
Tw mv,eq

~ —9.81-1240-0.009 + 29.13- 0.9 - 80
a 1240
A =0.2164%2+4-0.008173 - 1.603 = 0.09923 > 0

Sy = —sgn(A) - VA =—-0.3150

= 1.603

Substituting unknowns in the result of Problem 2.6 and solve the equations
subject to initial and final conditions of velocity, we find the time of third
segment.

2-A-v1+B—- S,
2-A v +B+S,
~ —2.0.008173 - 14.64 + 0.2164 + 0.3150
~ —2.0.008173 - 14.64 4 0.2164 — 0.3150

K(t) =

= —0.8644

This phase ends when we = wWe maz, thus when

We,mazx * (77/30) *Tw 65002 -7
=— = =23.37 =84.1 kmm/h
! T 60 - 29.13 m/s m/
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and

2-A-vy+B-S,

2-A-vy+ B+ S,

~ —2-0.008173 - 23.37 + 0.2164 + 0.3150

K(t2) =

— = —0.3108
—2.0.008173 - 23.37 + 0.2164 — 0.3150
thus at time
K(ts)\ 1 ~0.3108 1
ty = t1+1 = 3.841+] : = 3.140+3.247 = 6.387
2= hthn <K(t1)> S, +n (—0.8644> ~0.3150 + ®
d) 4™ segment, 3™ gear, vy = 23.37 m/s, to = 6.387 s
Here /1y, = 20.39 < 24.5 = Znmes
My,eq = My = 1240 kg
1 3 1
A_<__.,,G_Af.cd+(1> n)
2 Tw My, eq
(-1 1.2-0.65 —20.39%-0.9-4.38 - 10~* L 0.003009
=(-5-12-0. . 9-4. 5 = 0
2 2
v 1 20.392 0.9 - 0.3514
B=(21) ., .p. _ = 0.1060
(rw ) T eeq 1240
1
C= (_g.mv.cr+1.m.0> .
Tw My, eq

= (—9.81-1240-0.009 + 20.39- 0.9 - 80)/1240 = 1.0956
A=B?—-4AC =0.1060% 4 4 - 0.003009 - 1.0956 = 0.2242 > 0
Sy =sgn(A) - VA= —0.1563
Substituting unknowns in the result of Problem 2.6 and solve the equations

subject to initial and final conditions of velocity, we find the time of fourth
segment.
2-A-va+B—S,
2-A-vy+B+ Sy

_—2-0.003009 - 23.37 4 0.1060 + 0.1563 06372

~ —2-0.003009 - 23.37 + 0.1060 + 0.1563
We want to calculate the time to reach v = 100 km/h = 27.78 m/s that
will take place in this segment. Thus, this phase ends when v = V44,
thus when

K(t2) =

2-A-v9+B— §+
2-A-vy+B+S,
—2-0.003009 - 27.78 4+ 0.1060 — 0.1563 04374
—2-0.003009 - 27.78 4+ 0.1060 + 0.1563

K(ts) =
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thus at time

K(t2)\ 1 In (—0,0.4374)
—0.6372
t3 = to+1 2 ). =6.387+——— "/ — 6.387+2.404 = 8.791
8= fthn (K(t1)> S, T 01563 + °
Discussion

In reality, usually the acceleration time is calculated without accounting
for the engine inertia, and is usually based on a simplified estimation.
According to the given parameters, the maximum power is achieved when
derivative of power is set to 0:

i(We : Te) =

™ » (aw? +bw? +cw.) =0,

which gives w? = 631.3 rad/s = 6028 rpm, and Py,
the minimum power:

we = 80.35 kW. And

Pe,min = We,launch * Te,launch = 2500 - 37T_O <142 = 37.18 kW

With these values, there are two basic ways of estimation:
e Using the maximum engine power

v?om,  27.8%2-1240

Pormas  80.35 x 10° >

which means an over-estimation of 35%.
e Using the corrected engine power

Pn;a;ﬂ 5 Pe max Pe min
5_ Pemas + Pe

2 2

The corrected maximum power is therefore:

Poaw =2- P =117.5 kW,
and the corresponding acceleration time is:

2 2.
4 v ~mv _ 27.78% - 1240 814,
117.5

Pe,maz

which gives an underestimation of 7.4%.

Problem 2.6

Find an equation to calculate the takeoff time (=time to synchronise the speed
before and after the clutch) as a function of engine launch speed and torque.
Assume that the clutch is slipping but transmitting the whole engine torque.
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e Solution

Assume the ratio of gear-ratio to wheel diameter is kept at gear 1 during
the take-off time; and the engine torque is kept constant while engine
speed w, and wheel speed v are therefore decoupled.

a) Check Delta of the motion
Given the constant torque as input, the law of motion of the type v =
A-v? + C, where

A:—l'pa'Af'Cd' 1 C—<—g-mv~cr+l-nt-Te)~ 1
Tw My, eq
Given the fact that A < 0,B = 0, we have A = —4AC > 0, then
S, =sgnA-VA=—VA,
b) Solve the motion law with final condition
Given that tg = 0,v9 = 0, then

2A’UQ+B—S’A+
K():—A
2Avy+ B+ 5,

and the synchronized speed of the wheel should balance the idel speed of
the engine:
Tw
Vf = Weidle * ——

then R .
- 2A’Uf+B_S+ o 2A’Uf—S+

K(ty) = . -
(ts) 2Av;+B+S,  2Avs+ S,

Since K(tf) = Kq - e5+(tr=10)  we have

2Avy -S4
2Avs+S.
In %
ty = =
Sy
Therefore,
, In(—K)
takeof f — =
S,
Problem 2.7

Evaluate the coasting speed and the roll-out time without acting on the brakes
for a vehicle with an initial speed vy = 50 km/h and m, = 1200 kg, Ay -cq =
0.65m?, ¢, = 0.009. Assume the clutch open (no engine friction).

e Solution
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Assume the coasting speed is defined when the engine is disengaged and
the resistence loss of the vehicle matches exactly the decrease of its kinetic
energy:

d 1
—ve(t) = — pady - Cavl(t) — gC,
dtv() S Pes Cave(t) —gC
and we let:
o2 PacAsCa-ve(t)
2 1My
ﬂzngT:_C

a) Check Delta of the motion
Given the zero torque as input(engine disengaged), the law of motion of
the type v = A - v2 + C, where

A=— ! -paAf-Cd Cz—gCr
2my ’

Given the fact that A < 0,B = 0,C < 0, we have A = —4AC < 0,
therefore we have equation (2.18).

b) Calculate coasting speed
The coasting speed as a function of time (2.18) is

v(t) = g - tan {arctan (% -’U0> —a-p- t}

where

1 pa-Af-cq \/1 1.2-0.65
@ \/2 My 2 1200

B =+/g-¢ =V9.81-0.009 = 0.2971

c¢) Calculate the roll-off time
The braking time at which v = 0 is calculated by solving:

0= ﬁ tan {arctan (gv0> —ap- t}
o B

1 «
Lrollout = a—ﬁ - arctan B * Vo
1

= 0.018-0.297

0.018 50
-arctan (m . %) =130.75 s

Discussion
Take care of the radians calculation in the function arctan.



References 19
Mechanical Energy Demand in Driving Cycles
Problem 2.8

Evaluate the traction energy and the recuperation energy for the MVEG—95

for the vehicle examples of Fig. 2.8, left and right, assuming perfect recuper-
ation.

e Solution
Assume the time intervals in traction mode are not subject ot change dur-

ing artificial cycles like MVEG-95, so the equations used in this problem

is only valid if this assumption holds; and the track length of MVEG-95
is 0.114 km.

a) Left graph configuration (Af - C4 = 0.7 m?,m, = 1500 kg, C,. = 0.012)

(i) The traction energy is given by (2.31), assuming no recuperation.
E = Ejiss + Ecire = [1.9 x 10* - A;Cy + 8.4 x 10* - m, Cp + 10 - my] - 40r
= (0.7-1.9- 10" + 1500 - 0.012 - 8.4 - 10> + 1500 - 10)
= 43.42 MJ/100 km - Tyor = 43.42-0.114 = 4.950 M.J.
(ii) The total energy is given by (2.35), assuming perfect recuperation.
Bree = Baiss = [22 x 10* - A;Cy + 9.8 x 10% - m,, Cr] - 40t
= (0.7-2.2-10* + 1500 0.012- 9.81 - 10%) =
= 33.04 MJ/100 km - 2401 = 3.767 MJ.
(iii) The energy that can be recuperated:
AE=F — Ep.. = 1.183MJ  (24.75% of )E.
b) Right graph configuration (As - C4 = 0.4 m?,m, = 750 kg, C,. = 0.008)

(i) The traction energy is given by (2.31), assuming no recuperation.
E = Egiss + Ecire = [1.9 x 10* - A;Cyq + 8.4 x 10% - my, Cp + 10 - my] - T40r
= (0.4-1.9-10" + 1500 - 0.008 - 8.4 - 10> + 750 - 10)
=20.14 MJ/100 km - T = 20.14 - 0.114 = 2.296 MJ.
(ii) The total energy is given by (2.35), assuming perfect recuperation.
Eree = Egiss = [2.2 x 10 Ay Cy + 9.8 x 10% - my, Cr] - 2401
= (0.4 -2.2-10* + 750 - 0.008 - 9.81 - 102) =
= 14.68 MJ/100 km - Ty = 1.674 MJ.
(iii) The energy that can be recuperated:
AE = E — By = 0.622 MJ (27.09% of )E.

The potential of regenerative braking is more important for the smaller vehi-
cle, with smaller front area, vehicle mass and rolling friction coefficient.
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Problem 2.9

Calculate the mean force and fuel consumption data shown in Fig. 2.8 left.

e Solution

Assume left graph configuration (Ay - Cq = 0.7 m?, m, = 1500 kg, C) =
0.012)

a) Case 1: No recuperation
Reading constants from (2.30), we get the weights during traction modes
of the cycle MVEG-95:

— 1 1
Firac,a = 3 Pa-Af-cq-319 = 3 1.2.0.7-319 =134.0 N

Firacr =my - g-c.-0.856 = 1500 - 9.81-0.012 - 0.856 = 151.2 N
Firac.m = my -0.101 = 1500 - 0.101 = 151.5 N

The mechanical energy per 100 km that corresponds to 1N is
dmy =1 N-10° m =10° J =10°/3600 = 27.78 Wh.

And according to the caption of Figure 2.8, Diesel’s LHV is 10*W h/I,
which gives:

1 N =27.78 Wh/100km = 2.778 x 1072 1/100km

Therefore, for no-recuperation,

V= Firac x dmy = 436.6 x 2.778 x 10~% = 1.213 1/100km

b) Case 2: Perfect recuperation
Reading constants from (2.34), we get the weights for perfect recupera-
tion over the cycle MVEG-95:

_ 1 1
FazE-pa-Af-cd-363=5-1.2-0.7-3632152.5N

F.=my-g-c.-1=1500-9.81-0.012-1=176.6 N
Therefore, for perfect-recuperation,

V=F x dm; = 329.1 x 2.778 x 1073 = 0.9142 1/100km

Discussion
(i) Evaluation of the differences in mean force

Fonr = 152.5 4+ 176.6 — (134.0 + 151.2) = 43.9 N
Frnp = 436.6 — 329.1 = 107.5 N
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where me denotes the mean force that is used to overcome the driving
resistance in the non-traction phases; while F,, , denotes the part of
mean force that is later dissipated by heat with the brakes.
Explanatory comments on calculating mean force with/without recu-
peration

When no recuperation is done, Fy,q. overcomes aerodynamic drag,
rolling friction drag and acceleration requirement when ‘trac”
mode is on; while during coasting, non of them is of the concern of
energy consumption, since the kinetic energy at high vehicle speed
apparently cost more energy and cannot be recuperated

When perfect recuperation is done, Fi.q. overcomes aerodynamic
drag, rolling friction drag and acceleration requirement all through
the cycle. Especially during coasting, braking or not braking is still
of the energy concern since the kinetic energy at high speed can
be later recuperated, if the speed profile can be satisfied with the
help of “recuperative brake”. If it is not the case, mechanical brake
has to intervene, so as to dissipate the remaining part of energy
and satisfy speed profile.

Problem 2.10

Calculate the data in Fig. 2.9, left and right.

e Solution

a) Full-sized vehicle ((A4f-Cyq=0.7 m? m, = 1500 kg, C,. = 0.012))
The cycle energy assuming no recuperation is given by (2.31),

thus

E=1[1.9x10* A;Cy+8.4 x 10% - my, Cp. 4+ 10 - 1] - Ttot
=0.7-1.9-10* + 1500 - 0.012 - 8.4 - 10% + 1500 - 10
=43 -10% kJ/100 km,
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s = 5o Ty o
_ %0;'30-7 ~ 0.3046
Sler) = 3?5) ' E(CCT»)
1500 84.;: Jltgz 0012 a463
Sy — B _mn

8(mv) . E(mv)

~(0.012-8.4-10% + 10) - 1500
= B0 = 0.6899

b) Light-weight vehicle ((A;-Cy= 0.4 m2,m, = 750 kg, C,. = 0.008))

E=[1.9x10* A;Cy+ 8.4 x 10% - my, O + 10 - my] - T0r
=0.4-1.9-10*+750-0.008 - 8.4 - 102 + 750 - 10
=20 -10% kJ/100 km

thus

OF As-Cy
Ar ) — .

Sy -ca) d(Ay-Ca) E(Af-Ca)
1.9-10%-0.4

T T 0.3774

OF C,
a(C,) E(C,)

750 - 8.4 - 10% - 0.008
20-103 0250

OF My
d(my)  E(my)
(0.008 - 8.4 - 102 + 10) - 750

= SIS = 0.6226

S(er) =

S(mv) =

Discussion
From the result we can conclude, with an advanced vehicle concept (usu-
ally light-weight and smaller rolling friction):
e relative dominance of the vehicle mass on the energy consumption is
unchanged around a level of 60% to 70%, which makes kinetic energy
recuperation an interesting choice.
e Relative influence of the rolling fricition becomes less than that of
Ay - Cy (coefficient of aerodynamic force.)



References 23

Problem 2.11

Calculate which constant vehicle speed on a flat road is responsible for the
same energy demand at the wheels along a MVEG-95 cycle, in the case of
no recuperation and of perfect recuperation, respectively. Assume the light-
weight vehicle data of Fig. 2.8, right side of Figure: {A; - cq,my,cr} =
{0.4 m?, 750 kg, 0.008}.

e Solution

a) No recuperation B
The cycle energy is calculated in Problem 2.8 and it is £ = 20.14 -
103 ¥J/100 km. The mean traction force is

F= =201.4 N

100 km
To have the same F, find v such that
1

S p Apcav?tmy e = F

Ftrac_mv'g'cr
v=4/2-
Pa-Af-ca
. \/2 201.4 — 750 - 9.81 - 0.008
B 1.2-0.4
b) Perfect recuperation
Here, E = 14.68 - 10° ¥J/100 km, thus
F =146.8 N
v=19.5m/s =70 km/h
To have the same F, find v such that
1

S peAp i tmygoc = F

Ftrac_mv'g'cr
v=4/2-
Pa - Af - Ca
B \/2 146.8 — 750 - 9.81 - 0.008
v 12-04

= 24.35 m/s = 87.67 km/h

=19.14 m/s = 68.9 km/h

Discussion

e Note that the mechanical mean force is not accounted for, because the
problem assumes instantaneous energy consumption during flat road
constant speed cruising.

e Note that for artificial driving cycles like MVEG-95, the equivalent
speed can also be calculated by equating mean force representation
with (2.31) or (2.35), respectively.



24 References
Problem 2.12

Calculate the maximum mass allowed for a recuperation system with 7., =
40%. Use the vehicle parameters of Fig. 2.12: {Af-cq, my, ¢, } = {0.7 m?, 1500 kg, 0.012}.

e Solution

a) Deriving the energy demand with a real recuperation device
Using the equations (2.31),(2.35),(2.39),(2.40):

Eaiss + Eeire = [1.9 x 10* - A;Cy + 8.4 x 10* - m,, C\. +10 - m,]
Egiss = [2.2 x 10* - A;Cy + 9.8 x 10% - m,, C, ]

E(nrecv mrec) = Ediss (mrec) + (1 - nrec) Ecirc(mrec)
Et;irc - E - E(;iss

we get:

E(nrec: mrec)
= [22000 — 3000(1 — Mrec)] Af - Cqg + [980 — 140(1 — nec)] Cr (Mg + Mipee + 10 (1 — ree) - (Mg + M
— (22000 — 3000) x 0.6 % 0.7 + [980 — 140 X 0.6] x 0.012 (1500 + 12yec) + 10 X 0.6 (1500 + mrec)

¢) Equate the energy demand and get the maximum mass of recuperation
device
When we have the maximum weight of recuperation device, the mean
energy demand must equal E, which has been calculated in Problem 2.8
as 43.4 - 103 kJ/100 km. Thus

_ (434-14.1)- 10
v = = 1 k
m 16.75 750 ke

14140 4 16.752 X (1500 + myee) = 43.66 x 10
Myee = 262.2 ke,

The maximum weight is the one that leads to an energy demand equal to the
energy demand without recuperation. Thus, from (2.41)
E(Nrec; Myee) = 0.7+ (2.2-10* = 0.6 - 3- 10%)+
+0.012 - 17, - (9.8 -10% — 0.6 - 1.4 - 10%)+
+0.6-10-m, =
=14.1-10% + (10.75 4+ 6) - 172,, (x/100 km)

where M, = My, + Myec.
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IC-Engine-Based Propulsion Systems

Gear-box Models
Problem 3.1

Improve (3.9) in order to take into account the engine inertia and the trans-
mission efficiency.

e Solution

Assume the largest gear ratio (the smallest gear in a manual gear box)
is often chosen according to the towing requirement at constant vehicle
speed vy,.

a) Calculate moment of inertia
Including the engine inertia

My,eq = My + Me eq
v 2

ma =00 (L)
w

b) List the power balance
Equating the traction power with the towing requirement, we have:

2
Y . v )
Ptrac = |:mv + 9e _21:| gSln(amam) U = T&mam(_w : 71) = Y1
T'w Tw Tw

Thus, after rewriting the equation, we have:

(l)Q_Te'nt./Y_l_’_mU:O’

Tw O.-a Ty 6.

where the towing acceleration a = g sin(®maz)-

This is a quadratic equation in 7. 71 can be evaluated by imposing that
a4 = Umaz. With ©, =0 and 7 = 1, obtain back equation (3.9).
Discussion

Since the maximum engine torque depends on the vehicle speed and first
gear’s ratio, iterations may be necessary to come up with 7. and ~v; values
that both fit.

Problem 3.2

Dimension the first gear of an ICE-based powertrain not based on a given
gradability as in (3.9) but in order to obtain a given acceleration at vehicle
take-off. Do the calculations according to Problem 3.1, using the following
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data: m, = 1100kg, payload m, = 100kg, equivalent mass of the wheels
My = 1/30 of my, ¢, = 0.009, transmission efficiency 7, = 0.9, T, = 142 Nm
at Weakeof f, desired acceleration a = 4m/s2, engine inertia @, = 0.128 kgm2,

Tw

= 30 cm. Compare with the approximate solution of (3.9).

Solution

Theoretical grounds

From the result of Problem 3.1, 71 can be dimensioned through the towing
requirement at take-off speed.

7 Vuw Vuw
Ptrac: mv+@e_2 amaz'vw:Te-,max(_'”)/l)'_'”yl'nt
Tw w Tw
2 T. - m
(7_1) _ T omo e *)
Tw @e *Omax  Tw @e

Solving Equation (??) with the flat-road desired acceleration,

My,eq = My + Mwheel + Mpayload = 1100 (1 =+ 1/30) + 100

7\? 1420x09 y L 1100 (1+1/30)+100 _ o
T 0.128 x 4 7y, 0.128 B

Let z = 2>, we have

22 —249.61 x4 9661 = 0

Solving the quadratic equation, we have:

n 249.61+153.82 | 201.7
T o 2 47.89

Amax

We take the smaller root as the solution ; = 47.89, for the sake of fuel
economy, gearbox sizing and drivability.

Solving Equation (??) assuming a maximum gradability of 27.64° at take-
off speed,

My.cq = My + Muheel + Mpayioad = 1100 (14 1/30) 4 100
(l)z 142.0 x 0.9 i, 1100(1+1/30) +100

Tw

T 0.128 x 9.81 x sin(27.64°) 1, 0.128

Let z = >, we have

Tw

22 —224.65x 4 9661 = 0
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Solving the quadratic equation, we have:

e _224.65+£108.74 | 166.7
B ] 57.96

Tw 2

Amax

We take the smaller root as the solution vy, = 57.96, for the sake of fuel
economy, gearbox sizing and drivability.

¢) Calculate the approximate solutions with Equation (3.9)
Accroding to (3.9), we have:

My Tw * Gmax

= Te,mam(we) ’

where a4, denotes the desired acceleration or gradability ¢ - sin(amaz)-
Therefore, the approximated solutions are:

[1100 (1 + 1/30) + 100] x 0.30 x 4
142.0
for desired acceleration of 4 m/s*
[1100 (1 + 1/30) + 100] x 0.30 x 9.81 x sin(27.64°)
142.0
for desired gradability of 27.64°

= 34.83,

Y1,acer =

Y1,grad = = 3871,

d) Comparison of Problem 3.2 with approximated equation (3.9)
The results of the four cases are listed in the table: From the results, we

Table 10.2. Comparison of first gear with different ways of calculation.

Results o V1|rp=0.31
Exact with afia¢ 47.89 14.367
Approx with ayfa: 34.83 10.449
Exact with agrea 57.96 17.388
Approx with agrad 38.71 11.613

could conclude that

e Including more types of losses (e.g. rotational moment of inertia/
transmission efficiency) would increase the gear ratio 7.

e Increasing the requirement of gradability or acceleration capability
would decrease the 1% order term of the quadratic equation (?7?), which
indirectly increases the gear ratio v;.

Discussion

The multiple roots of quadratic equation adds to complexity of the first

gear dimensionization. However, usually only the smaller positive root

makes sense for the following reasons:
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(i) Since the resistence curve of the vehicle correlates the reciprocal of
gear ratio, a too large gear ratio may lead to a resistence curve lying
in an area of low fuel efficiency, as is shown in Figure ?7.

Prhot, {baﬁ];inc)

)max

CURY k]

[m/s]

Fig. 10.8. Resistence curves with different gear ratios.

(ii) The 5" out of 6-speed gearbox is usually defined to locate a resistence
curve in the best fuel economy area. If too large gear ratio is chosen,
the resistance curves of gear #1 and gear #5 could be too far away,
which will cause bad sizing and a huge gearbox in the end.

(iii) Since the range of engine speed is set to be around 1000rpm to
6000 rpm for gasoline engine (for diesel engine even narrower), too
large 1 means a small range of speed increase in the first gear. Thus
the increasing requirement of gear shifts will be detrimental to driv-
ability. For example, for a 30 cm wheel with ~; = 201.7, 1000 — 6000
rpm range means a speed increase from 1.80 km/h to 11.21 km/h,
which is far from acceptable drivability.

Problem 3.3

Dimension the fifth gear in a six-gear transmission for maximum power using
(3.10) for a vehicle with the following characteristics: curb m, = 1100kg,
performance mass = 100kg, ¢, = 0.009, As - ¢4 = 0.65m?, r,, = 30cm,
transmission efficiency = 0.9, P 40 = 80.4kW at 6032 rpm.

e Solution

Assume the maximum speed v,,q, is achieved at gear #5, and with the
maximum engine power at its corresponding engine speed.
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a) Maximum traction power at wheel
Having the engine power and transmission efficiency, we have:

Ptrac,maw = Pe,mam -y = 72.36 kW.
b) Solving equation (3.10), and find maximum speed:

Ptrac,maac = 'maz " Umazx

1
= Umaz * |TMv g OT Umaz + Epa Afcd v?nam:|

gear=>5

By solving the equation
—72.36 x 10 + 105.95 Vnaz + 0.39 Vppazs = 0,
we have the only solution of real number

Umaz| goqr—s = 5545 m/s = 199.6 km/h

c¢) Calculate the gear ratio
With the maximum speed achieved with maximum engine power,

E _ l % welpmam
Tw 30 Umaa
w6032
=P 11392
30 55.45
s = 3.418.

where a common wheel radius of 30 cm is used for calculation.

Problem 3.4

29

Consider again the system of Problems 3.2-3.3. Calculate the vehicle speed

values, v; at which the engine is at its maximum speed, for all the gears j.

Solution

Assume only the 2" to 4'" gear can be chosen according to a fixed law,
while the 15¢,5'" and 6'" are chosen with towing requirement, maximum

power and fuel efficiency, respectively.

a) Using geometric law

(i) Calculate the common ratio

47.9
1/4 _ 1
STW
_2 3 a1
Yoo oM B K

1
K
gt =B _ 1
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(ii) Find corresponding gear ratios

b) Using arithmetic law

Y2
Tw
V3
Tw
Y4
Tw
Vs
Tw

" 47.89
— K =

-2 T = 33443,

4789

= k= s = 23850
s 47.89

=B = 2% 16.309
e T 14323 ’

11.392 (fixed and confirmed).

(i) Calculate the common difference

R=—.

(ii) Find corresponding gear ratios

oE)
Tw
3
Tw
b}
Tw
b3
Tw

1 (T_w _Tw )
E-\v vk
1 1 1
—— — ——— | - — = 0.0167.
(11.392 47.89> 1
1 1
= — 26.609,
AR 400167
1 1
= — 18.422,
iR o 1 0.0167
1 1
= — 14.088,
S T 15453 + 0.0167

11.392 (fixed and confirmed).

c¢) Validate the shifting speeds
The shifting speeds denotes the vehicle speeds at the maximum engine
speed we, g5 = 6032 rpm.

T+ We,gs

Uk = 3o
Tw

thus the values in the following table.

Problem 3.5

Calculate the approximate efficiency of a clutch during a vehicle takeoff ma-

neuver.
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Table 10.3. the maximum speed in each gear #.

Geometric Arithmetic
U1 13.19 m/s = 47.48 km/h
vy 18.89 m/s= 68.00 km/h  23.74 m/s= 85.46 km/h
vy 27.05 m/s= 97.37 km/h  34.29 m/s=123.4 km/h
vy 38.73 m/s=139.4 km/h 44.84 m/s=161.3 km/h
Us 55.45 m/s = 199.6 km/h

Solution

Assume

e In a first approximation, the transmitted torque could be considered
as equal to the engine torque while the clutch is slipping.

e The engine speed is approximately constant at the launch value we.

o The final condition of the launching maneuver is wg(tf) = we.

Derive first approximation of launching dynamics

The speed downstream of the clutch is given by the differential equation

dwgb

@ .
9P T

= Te - ﬂossa

with @4, = 6, /4%, which can be approximated by neglecting the losses.

Thus
T,

Oy
Solve the dynamics subject to final state constraint wg(t;) = we.

Given that the launch maneuver ends when wg,(tf) = we. The launch
time is therefore

wgb(t) = - t.

Oy
tf:we'Tg.
e

The energy provided by the engine during this time is
ty
E. :/ Te - wedt =T, - we -ty = Oy ~wg.
0

The energy transferred to the vehicle is the kinetic energy at the end of
launch, which is

2
w,0’

E, = w

.@U.
2
-ng-we.

N — N~

since wy, 0 = we/v and Oy, = O, /2. Therefore, the efficiency is E,/E, =
0.5.
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Discussion
The corresponding synchronization speed is

We
V= -

Tw

Thus the energy lost is £, — E, = % - Oy - w? which coincides with (3.16),

1
EC == 5 '@'U 'w7211,0'

Fuel Consumption of IC Engine Powertrains
Problem 3.6

Find the CO2 emission factor (g/km) as a function of the fuel consumption
rate (1/100km) for gasoline and diesel fuels. Use these average fuels (gaso-

line, diesel) data: density p = {0.745,0.832} kg/1, carbon dioxide to fuel mass
fraction m = {3.17,3.16}.

e Solution

Assume

Consider the stoichiometric fuel burning reaction, with a fuel of the molar
composition CH,:

CH, + (1 n %) 0y = CO, + (g) H,0

a) Find the factor a from COz to mass fraction

The mol CO2/mol emission factor is 1. The kg CO2/kg emission factor is
thus
_— Mco, 12+2-16 44

My 12+a  12+a

Table 10.4. Factor a of Diesel and Gasoline.

Variables Gasoline Diesel
m 3.17 3.16
a 1.880 1.924

b) Mass of C'Oq per litre of fuel
The kg/1 factor is m - p, where p (kg/1) is the fuel density.
where the fuel consumption of some engine is niy = C'1/100km,
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Table 10.5. C'O> emission factor of Diesel and Gasoline.

Variables Gasoline Diesel
m - p [gCO2/]] 2.362 2.629
COs factor [gCO2/km]  23.62- C  26.29- C

Problem 3.7

Calculate the fuel consumption and the COs emission rate for the MVEG-95
cycle for a vehicle having the following characteristics: m, = 1100kg, payload
= 100kg, cq - Af = 0.7, ¢, = 0.013, eg, = 0.98, Py g = 3%, Pyuz = 250W,
Vigunch = 3m/s, e = 0.4, Poo = 1.26kW, P, 10, = 66kW, diesel fuel (Hy =
43.1MJ/kg, ps = 832g/1), idle consumption I;f,idlez 150 g/h. The declared
CO3 emission rate for this car is 99 g/km.

Solution

Assume the parameters of the driving cycle MVEG-95:

Launch event happens every 105 s.

Idling time is around 300 s.

The track length of the cycle is 11.4 km.

e The fraction of time during traction mode is trac = 0.6.

Calculate mean force:

Assuming no recuperation, negligible engine inertia, the mean force of
cycle MVEG-95 can be calculated as follows:

F = Ftrac,r + Ftrac,a + Ftrac,m

! {vagcrﬁi~h+Z%paAdeUi3-h+z mvdi-ﬁi-h}

€T
tot trac trac trac

1
= 1200 x 9.81 x 0.013 x 0.856 + 3 x 1.2 x 0.7 x 319 + 1200 x 0.101
= 386.2 N = 38.62 x 10 kJ/100km

Traction power considering different loads

Just like the calculation from (3.23) to (3.32), we further assume

e launch event happens every 105 s, this part of energy is accounted for
with average power.

e during the calculation of engine load, only traction mode is considered,
and thus the power need to be compensated with a coefficienct of trlac

First, we calculate the equivalent engine power considering the traction
mode and transmission loss:
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T.
trac
~ 386.2x9.5
N 0.6

Ngb
(1+3%) x (6.114 x 103)

0.98 0426 kW

<

Ptrac,@wheel =

= 6.114kW

Ptrac,@gb -

Then, we list the main component of engine power:

Traction power
Prrac.aeng = 6.426 kW

Launch power

% O, w?

2 707w0 5143 W

Haunch,@eng = m
launch

Auxiliary power

Pauw,@eng =250 W

So the total engine power is evaluated as:

Pe,@eng - Ptrac,@eng + Baunch,@eng + Paum,@eng
= 6.426 + 0.05143 + 0.250
=6.727 kW

¢) Calculate average fuel power

Using Willan’s approach and compensating back the non-traction time
intervals, we have:

e- P,
pe + PO,e
_0.4x6.727
6727+ 1.26

33.69%.

P,
Py trac = trac- —
Ne

= 11.98kW.

Ne =

d) Calculate the fuel consumption in category
The fuel consumption from traction force is:

. Pfirac 11.98 x 103 J /s
~ Hp-pp 431 x 10 J/kg x 0.832 kg/1

=334 x 1074 1/s.
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In order to switch the unit to the fuel consumption per unit distance, in-
stead of per second, the average cycle speed is used for the approximation:

v =295m/s=9.5x 10°[100km/s].

Therefore, the traction fuel consumption with the unit 1/100km given an
approximated average speed is:

. 71

334 %107

T 9.5%x10-5

— 3517 1/100km.

Additionally, during the standstill time intervals, the idling fuel consump-
tion should also be calculated from the given idle consumption:

* ‘;f.idle g/s tidie
idie 1/100km = - .

Viyiae 1/ m p g/l Lirack [100km]
150

_ 3600 | 300
832 0.114

= 0.1318 1/100km.

Consequently, the total fuel consumption of running MVEG-95 is 1; »=
3.517 + 0.1318 = 3.649 1/100km.

Switch to the C'O5 emission

Using diesel’s emission factor calculated from Problem 3.6,

mco, = 26.29 - C gCO,/km,
where C' denotes the fuel consumption in 100 km.
meo, = 26.29 x 3.649 = 95.93 gCO, /km.

Comparison with the declared value 99 gCO_2/km

The additional CO5 not taken into account in this method amounts to

3.07 gCO4 /km(env.3.1%). The probable reason is the way of averaging

velocity profile in traction fuel consumption calculation and approximat-

ing idling time in the idle consumption.

Discussion

Take care of the simplified ways of fuel consumption calculation:

e As for the idling consumption, the total time interval of idling and the
length of track are used for the approximation.

e As for the launch event compensation, the frequency of launch event is
used to calculate the average power, and therefore the equivalent fuel
consumption.
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e As for the traction fuel consumption, the average cycle cpeed and the
length of track are used to switch the unit from fuel power to distance-
specifc fuel consumption.

Problem 3.8

Evaluate in a first approximation the contribution of stop-and-start, regenera-
tive braking (myec = 20% - My, Nree = 0.5) and optimization of power flows in
reducing the fuel consumption when the system of Problem 3.7 is hybridized.
Assume an 80% charge-discharge efficiency for the reversible storage system.

e Solution

From the result of Problem 3.7,
‘;idle/ Viot = 4%

Now consider regenerative braking. Redo calculations of Problem 3.7 with
m, = 1100 - 1.2 = 1320 kg.

Firae,r =1320-9.81-0.013-0.856 = 144 N
Firaca = % +1.2-0.7-319=134 N

Firaem = 1420-0.101 = 142 N
Firae = 144+ 134 4+ 142 = 420 N

For ideal regenerative braking,

F‘tmc,r =1320-9.81-0.013-1 =168 N
- 1
Ftrac,a = 5 -1.2-0.7-363 =152 N

Ftrac,m =0N
Firge =168 +152 =320 N

For n,.¢. = 0.5, the traction force is
Firae = 320 + (1 — 0.5) - (420 — 320) = 370 N

Thus the potential gain due to regenerative braking seems rather limited,
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- 370-9.5

e = ——" = 5.8 kW
t 0.6
_ 5.8-.10%3-1.03
P = s =61 kW
_ 1 1200 32
Pstart — 5 . 7105 =51 kW
P.=6.1-10>+0.25+ 0.05 = 6.4 kW
e- P, 0.4-6.4
e — = = = 033
T B .  64+1.26
_ 6-P,
Py = 0-6 =11.6 kW
Ne
* 11.6-103 _
Viree = 31100 gsz ~ 02 107 s =
~32.107*

oF 10° /100 km = 3.4 1/100 km

In summary we have 3.6 1/100 km w.r.t. 3.4 /100 km. The benefit due to regen-
erative braking is equal to the benefit due to idle consumption suppression
and they amount to 3%. To evaluate the potential benefit of engine oper-
ating point shifting, assume that the engine could be able to work always
at its maximum efficiency point, thus at P ez = 66 kW. The efficiency is
Ne = 0.4 - 66/(66 + 1.26) = 0.39. Moreover, during a time ¢;, the engine de-
livers its surplus power to the battery, to be reused later. An energy balance
across the traction phase yields P, - 0.6 = P.nax - t1 + (Peomaz — Pe) -1 Nace,
where 74 is the efficiency of the accumulation system (to be charged and
then discharged). Assuming 7,.. = 0.8, from the latter one calculates

6.4-0.6
b= =0.034
' 66+ (66— 6.4)-0.8 ’
thus
_ 0.034- 66 - 103
Py = 2200 Y g W
f 0.39
y 5.7-10°
e = —— L —16-10-41/s =
Vi 43.1-16-0.832 /s
1.6-1074
=5 10° /100 km = 1.7 /100 km

Ideal gain due to optimization of power flows = (3.4 — 1.7)/3.6 = 47%.
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Electric and Hybrid-Electric Propulsion Systems

Electric Propulsion Systems
Problem 4.1

Design an electric powertrain for a small city car having the following char-
acteristics: curb mass = 840kg, payload = 2 - 75kg, tires: 155/65/14T,
ca- Ay = 1.85m?, rolling resistance coefficient = 0.009, to meet the following
performance criteria: (i) max speed = 65km/h, (ii) max grade = 16%, (iii)
100km range. Assume perfect recuperation, overall efficiency of 0.6, and 85%
SoC window. Choose motor size in a class with a maximum speed of 6000 rpm
and the number of battery modules having a capacity of 1.2kWh each.

e Solution

For vyq. = 65 km/h = 18.1 m/s, the required power is
Prax :mv-g~cr-vmaz+0.5-1.2-cd~Af-v;9’mI =8 kW.

The max speed of the motor is Wi maz = Umaz - 7/Tw where v is the
reduction ratio and r,, is the wheel radius. The wheel radius is obtained from
the tire specifications (see Problem 2.1) as

147 14 -0.0254
+0.65-0.155 m = %

If one fixes Wi, maz = 6000 rpm = 628 rad/s, then v = 628/18.05-0.28 = 9.7.
The max torque is

T maz = Tw/7Y - My - g - sin(a) = 0.28/9.7 - (840 + 150) - 9.8 - 0.16 = 45 Nm.

Thus the base speed is P, maz/Tm,maz = 8000/45 = 178 rad/s = 1700 rpm.
The base to max speed ratio is 1:3.5, which is a reasonable design choice.

Assuming an efficiency 7 = 0.6 and perfect recuperation, the mean traction
force for an ECE drive cycle is (see (2.34))

+0.65-0.155 = 0.28 m.

1
F:mv-g~cr+§-1.2-Af~cd-100+840~0.14:303N.

Thus the energy required is 303/0.6 - 100 - 103 = 50.5 MJ = 14 kWh. Add an
unused 15% range and obtain 16.1 kWh. Using 6V /200 Ah (1.2kWh) modules,
14 modules would be needed for a stored energy of 16.8 kWh.

Problem 4.2

Find an equation for the AER D., of a full electric vehicle as a function of its
vehicle parameters, battery capacity and powertrain efficiency. Then evaluate
the D., for a bus with the following characteristics: nyec = 100%, Nsys =
0.45 (including unused SoC), ¢, = 0.006, Ay - cq = 6.8 - 0.62, Qpar = 89 A,
Upat = 600V, m,, = 14.6 t, without payload and with a load of 60 passengers,
respectively. Assume a MVEG-type speed profile.
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e Solution

Equation (2.30) is used for the energy at the wheels. To have energy de-
mand in Wh/km, divide the outcome of (2.30) by the factor 100 - 3.6. Now, if
the battery capacity is expressed in Ah,

Qbat . Ubat
Eree, MVEG—95
T00-3.6-7/ay=

De’u =

For the numerical case without payload,

E=6.8-0.62-2.2-10" 4 14620 - 0.006 - 9.81 - 100 = 1.8 - 10° kJ/100km =

= 500 Wh/km,
89 - 600
Dev = 500 =48 km.
0.45

For a payload of 60 - 75 kg = 4500 kg,

E=6.8-0.62-2.2-10" +19120-0.006 - 9.81 - 100 = 2.05 - 10° kJ/ km =

=570 Wh/km,
89 - 600
Dey = —55— = 42 km.
0.45
Problem 4.3

The 2011 Nissan Leaf electric vehicle has been rated by the EPA as achieving
99 mpg equivalent or 34 kWh /100 miles. Justify this rating.

e Solution

Just consider that the energy content of one U.S. liquid gallon of gasoline
is 33.41kWh. Then
EWh 1 gal kW h

3Bld— ———-100=34 ———.
gal 99 miles 100 miles

Hybrid-Electric Propulsion Systems
Problem 4.4

Classify the five different parallel hybrid architectures, (1) single-shaft with
single clutch between engine and electric machine (E-c-M-T-V), (2) single-
shaft with single clutch between engine—electric machine and transmission
(E-M-c-T-V) or (M-E-c-T-V), (3) two-clutches single-shaft (E-c-M-c-T-V),
(4) double-shaft (E-c-T-M-V), (5) double-drive, with respect to the following
features:
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regenerative braking: optimized (without unnecessary losses) / not opti-
mized

ZEV mode: optimized (without unnecessary losses) / not optimized
stop-and-start: optimized (independent from vehicle motion) / not opti-
mized / not possible

battery recharge at vehicle stop: possible / not possible

gear synchronization: optimized (no additional inertia on the primary
shaft) / not optimized

compensation of the torque “holes” during gear changes: possible / not
possible

active dampening of engine idle speed oscillations: possible / not possible

Solution

Architecture (1):

compensation of the torque "holes” during gear changes not possible

reg. braking ideal

ZEV mode ideal

stop/start compromised

battery recharge at vehicle stop impossible

gear synchronization compromised (but compensation through the electric
machine itself possible)

active dampening impossible

Architecture (2), e.g., an Honda IMA-type system (E-M-c-T-V), or a belt
starter-alternator case (M-E-c-T-V):

reg. braking compromised

ZEV mode compromised

stop/start ideal

active dampening possible

battery recharge at vehicle stop possible
gear synchronization ideal

Architecture (3):

reg. braking ideal

ZEV mode ideal

stop/start ideal

active dampening possible

battery recharge at vehicle stop possible
gear synchronization ideal

Architecture (4):

reg. braking compromised
ZEV mode compromised
stop/start compromised
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- active dampening impossible

- battery recharge at vehicle stop impossible

- gear synchronization ideal

- compensation of the torque "holes” during gear changes possible

Architecture (5):

- reg. braking ideal

- ZEV mode not ideal

- stop/start impossible (would need an additional starter machine)
- active dampening impossible (see stop/start)

- battery recharge at vehicle stop impossible

- gear synchronization ideal

- compensation of the torque "holes” during gear changes possible

Find a summary of these features in the table below.

E-c-M-T-V E-M-c-T-V E-c-M-c-T-V E-c-T-M-V E-c-T-V-M

RB

7ZEV

S/S

rech. at stop

X v

gear sync.
comp. holes

X X X X X NN
SNSRI NN
AN NENENENEN
X NN X X S
XN N X X NS

act. dmp.

Problem 4.5

Determine the overall degrees of freedom u in modeling (i) a parallel hybrid,
(ii) a series hybrid, (iii) a combined hybrid, with the quasistatic approach.
For (ii) and (iii) use both the generator causality depicted in Figs. 4.11 —4.13
and the alternative causality introduced in Sect. 4.4.

e Solution
Parallel hybrid There are 6 blocks {V, T, E, M, P, B} and 7 relationships:

fV(’U,Ft) = 0

fra(Fe,Te, Tp,v) =0

Jra(v,we,7) =0

Jr3(v,wm,y) =0

fE(te, Te,we) =0 (u, is the engine control vector)
fIL{(Tmawm;Pm) =0

Fp(Pons ) = 0

N otk W
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between the 10 variables v, Fy, Te, Ty, wWe, Ue, Wi, Vs Py Py. Consider ~ as
fixed. Thus there are two independent variables. In the quasistatic approach,
v is known, thus the remaining degree of freedom is, e.g., the torque split ratio
at the torque coupler u (needed to solve the fr 1 equation).

Series hybrid There are 7 blocks and relationships

1. fV(’U,Ft) = O
Jra(Fy, Trn) =0
fre(v,wn) =0
fM(Tmuwmupm) =0
fP(Pm, Py, Py) =0
fe(Pg,wg,Ty) =0
7. fe(ue, Te,we) =0

between the 10 variables v, Fy, Ty, wm, P, Py, Py, Tg = Te,wg = wWe, Ue. Thus
there are three independent variables. In the quasistatic approach, v is known,
thus the remaining degrees of freedom are the power split ratio u (needed to
solve the fp equation) and the generator speed w, (needed to solve the fg
equation). In the alternative causality of the generator block, generator speed
and torque Ty are used to solve the fg equation.

Combined hybrid There are 8 blocks and 11 relationships

fv(’U, Ft) =0

Jra(Fy, Ty) =0

fT,Q(vvwf) =0

fPspa(wy,wg,we) =0

frsp2(wf, wg,wm) =0

frsp3(Ty, Ty, Te) =0

frspa(Ty, Ty, Trn) =0

fM(Tm, W, Pm) =0

fe(Pm, Py, Py) =0

10. fa(Py,wqe,Ty) =0

11. fE(ue, Te,we) =0

between the 14 variables v, Fy,wy, T¢, Ty, wm, P, Ty, wg, Py, Py, Te, we, te. Thus
there are three independent variables. The degrees of freedom are the same
as for the series hybrid case.

S G N

@O NG

©

Problem 4.6

Perform the same analysis as in Problem 4.5 with the dynamic approach.
Calculate the number n, of variables in the flowcharts of Figs. 4.11 — 4.13.
Then calculate the number n, of the equations available using the simple
models presented in this chapter. Finally evaluate the manipulated variables
that are necessary to realize the degrees of freedom (DOF) determined in
Problem 4.5.

e Solution
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Parallel hybrid There are 6 blocks and n. = 10 relationships:

fv(’U, Ft) =0

Jr1(F,Te, Tp,v) =0

fT,Q('(),we,'Y) =0

fT,3(’vama7) =0

fM,l(Tm;Im) =0

Faa2(Wims Uy ) = 0 (y, is the motor control vector)
fP1(Un,Up) =0

fro(Im, 1) =0

fe(ue, Te,we) =0

10. f5(I,Up) = 0

P NSO

©

between the n, = 10 variables represented in the figure. If ~ is fixed, the
control inputs u., u,, determine the vehicle speed and the torque split ratio.

Series hybrid There are 6 blocks and n. = 12 relationships:

1. fV(’U,Ft) =0

2. fra(Fe,Tr) =0

3. frs(v,wm) =0

4 fui1(Tm, Im) =0

5. fM)g(wm, Um,um) =0
6. fp1(Un,Up,Uy) =0
7. fra(Im,Ip) =0

8. frs(Im,Iy) =0

9. faa(Ty,1y) =0
10. fgo2(wg,Ug,ug) = 0 (ug is the generator control vector)
11. fe(ue, Te,we) =0
12. f5(Iy,Uy) = 0

between the n, = 12 variables represented in the figure. The control inputs
Ue, Um, and u, determine the vehicle speed, the power split ratio, and the
generator speed.

Combined hybrid There are 8 blocks and n. = 16 relationships:

fv(’U,Ft) =0
fra(F,Ty) =0
fT,Q(vvwf) =0
fpspi(wr,wg,we) =0
frsp2(wf, wg,wm) =0
frsp3(Ty, Ty, Te) =0
frspa(Ty, Ty, Tin) =0
fM,l(Tm;Im) =0

9. far2(Wm, Unyti) =0
10. fp1(Unm, Uy, Ug) =0
11. fp)g([m,lb) =0

12. fpﬁg([m,lg) =0

PN O WD
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13. fgﬁl(Tg,Ig) =0

14. fgﬁg(wg, Ug,ug) =0

15. fE(ue, Te,we) = 0 (ue is the engine control vector)
16. fe(Iy,Up) =0

between the n, = 16 variables represented in the figure. The control inputs
Ue, Um, and ug determine the vehicle speed, the power split ratio, and the
generator speed.

Problem 77

Perform the same analysis as in Problems 4.5 — 4.6 for an electric powertrain
powered by a battery and a supercapacitor.

e Solution

Quasistatic approach There are 6 blocks {V, T, M, P, B, SC} and 5 relation-
ships:

1. fv(’U,Ft) =0

. fT,l(Fthm) = O

- fre(v,wn) =0

. fM(Tm,wm,Pm) = 0
. fP(Pm7Pb7PSC):O

U W N

between the 7 variables v, Fy, Ty, Wi, Py Py, Pse. Thus there are two indepen-
dent variables. In the quasistatic approach, v is known, thus the remaining
degree of freedom is, e.g., the power split ratio at the DC link u (needed to
solve the fp equation).

Dynamic approach There are 6 blocks and n. = 10 relationships

1. fv(’U,Ft) =0

2. fra(Fe, 1) =0

3. fT)g(’U,wm) =0

4. frur(Tom, In) =0

5. f]wﬁg(wm, Um,um) = 0
6. fPp1(Un,Up,Use) =0
7. fpaIm,Ip) =0

8. fP,3(Im7]sc) =0

9. fe(lp,Uy) =0

10. fSC(Ism Usc) =0

between the n, = 10 variables. If there is only one control input u,, the power
split ratio cannot be chosen. Thus a second controllable component is needed,
typically a DC-DC converter on either the supercapacitor or the battery side.
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Problem 4.8

For a plug-in hybrid, the fuel consumption according to UN/ECE regulation
[91] is
o D, -Ci 4 Dgy - Co

De + Da'u ,
where C is the fuel consumption in charge-depleting mode, C5 is the con-
sumption in charge-sustaining mode, D, is the electric range, and Dy, is
25km, the assumed average distance between two battery recharges. Esti-
mate the fuel consumption of the electric system of Problem 4.1 equipped
with a range extender having a max power of 5kW and an efficiency of 0.4.

e Solution
D, = 100 km, C7; = 0, D, = 25 km. To evaluate the fuel consumption

in charge-sustaining mode, divide the cycle into two phases, with (i) APU on,
and (ii) APU off. The mean force is the same. During phase (i),

Eyoy = —Fp - ey Top,

where F,. is the mean traction force to recharge the battery, e, = /e is the
battery efficiency, and z,, is the distance covered during the phase (i). During
phase (ii)
F
Ebat - z : (xtot - Ion)-
By equalizing these two energy terms (charge sustaining),

Tior - I
Ton = 5 0~ -~
F+F.-e e
The APU mean power during phase (i) is

< F) ton  F4Fn- e
Papu:

v
'ttot_F""Fr'e'\/E'%

F. 4+ —
e

and the average fuel power is
Papu

Zon

Py =

e .
APU w401

Numerically,
Papu,mam F . 5 - 103 303

FT:T—%—W—ﬁzl%Nm
Fapu = 30::))0;:) 2—3;?50:6% ' 5(% S AW
P; = %iog =10.4 kW
V= % =32-107"1/s = 3'2'71074-1-105=3.4 1/100 km = Cy

9.5
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Thus the combined fuel consumption is

 D.-Ci+Dyy-Cy  100-0+25-3.4

¢ D. + D, - 125

= 0.68 /100 km

Motor and Motor Controller
Problem 4.9

Consider a separately-excited DC motor having the following characteristics:
R, = 0.059Q, battery voltage = 50V (neglect battery resistance), rated power
= 4kW, nominal torque constant xk, = k; = 0.25 Wb, aimed at propelling
a small city vehicle. Calculate the motor voltage and current limits, then
the flux weakening region limit (maximum torque and base speed). Calculate
the step-down chopper duty-cycle a for the following operating points: (i)
W, = 100rad/s and Ty, = 15 Nm; (ii) wy,, = 300rad/s and T, = 8 Nm.

e Solution

The maximum voltage is U,,q = 50 V. The maximum admissible current is
calculated by forcing U, = U,paz and wy, Ty, = Prge- The following quadratic
equation is obtained,

Umax . Imam = Ra . Ifnam + Pmazv or
0.05 2-12 . —50V - Lnes + 4000 W =0,

max

whose solution is 1,4, = 88 A. Thus the maximum torque is 88-0.25 = 22 Nm.
The flux weakening region limit occurs when U, = U4, thus

R, - T
Ka
0.2 T}y +0.25 - wy, = 50,

+ Rq - Wm = Umaz; or

extending from T,, = 250 Nm on the torque axis to w,, = 200rad/s on the
speed axis. The base speed is wy, = 4000/22 = 182rad/s. For the first operating
point,
T 15
Ia = — = = 60 A
Kqe  0.25
Us,=Ry Io+ Kq wm=0.05-60+40.25-100=3+25 =28 V.

Both current and voltage limits are respected. The chopper duty-cycle is a =
28/50 = 56%. The second operating point belongs to the flux weakening
region. In fact, if one were to calculate the current and voltage with the above
equations, I, = 8/0.25 = 32 A would be obtained, but U, = 0.05-32 + 0.25 -
300 = 77V that is beyond the admissible voltage. Thus x, must be reduced.
To find k, such that U, =50V (a = 100%), the following equation is used
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R, - Ty,

Ra

Umaz =

“l"ia'wma

which leads to k, = 0.16 Wh. An approximated value is obtained by neglecting
the resistance as kg, = Unaz/wm = 50/300 = 0.17 Wh.

Problem 4.10

For the DC motor of Problem 4.9, evaluate the approximation of mirroring the
efficiency from the first to the fourth quadrant, for the two operating points
(i) wy = 50rad/s and T, = 22 Nm; (ii) w,, = 300rad/s, T), = 8 Nm. Assume
further that P, = 0.

e Solution

From (4.14), for T, > 0

1 Ry - T
— =1+= 7
Tim Rg * Wm
R, T2
P = 2
For T,, <0
R, T,
Nm =1+ — =0.88.
K2 W
For the point (i)
1
0.252-50
0.05- 22
m(50,—22) =1 — ——"== — (.65,
1 (50, =22) 025750 0
22 \?
P, =0.05- (ﬁ) = 387 W.
In the field weakening region, for the point (ii),
Nm (300,8) = ——555— = 0.98,
1+ 52577300
0.05-8
(300, -8) =1 — ——2"°_ .98,
i ) 0.252 - 300
8 \2
P=005-{— | =51 W.
! <o.25)

For the given values, the approximation of mirroring the efficiency is better
as the losses decrease.
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Problem 4.11

Using the PMSM model 4.40—4.43 calculate a static control law, i.e., a selection
of reference values /4, I, as a function of torque and speed, such that the stator
current intensity is minimized. Do the calculation in the case (i) Iy < Lnaz,
Us < Unaz = mU,, (maximum torque region) and (ii) when the voltage
constraint is active (flux weakening region). Neglect the stator resistance R
and consider a machine with p = 1. The stator current and voltage intensities
are defined as
I2=12+1], U2=U;+Uj.

Evaluate the base speed.
e Solution
If R, is neglected, the static counterparts of (4.26)-(4.28) are

Ug = wm - (Spm + L - Iy),
Uaq

—wm - Ls - I,
2
Ty = 3Tm = om 1o

To obtain the desired torque, set I, = T, /¢m,. To minimize I, without con-
straints, Iy = 0. Under these conditions, I, = I, =T}, /¢om and

LT\ ?
ngwi.<¢$n+(7m>>.
Pm

Such a situation is valid in (i), i.e., if Iy < I, i.e., if T/, < o, + Ipaz, and if

. / 2
0Pt <<p,2n+ <L¢7Tm> ) vz

The base speed is obtained from the intersection of the latter limits, i.e., for

Umam
wp = .
\/Sﬁgn + (Ls : Imaz)2

If a negative Iy is allowed, points above the base speed are obtained. In case
(ii), Us = Umae and T}, = o, -1 and I is calculated (a second-order equation

is obtained) as
Unae \* _ (T _ ¢m
=) - (B) -2
Lswm ©m L
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Problem 4.12

Evaluate the torque limit curve for a PMSM both (i) in the maximum torque
region and (ii) in the flux weakening region, see Problem 4.11, assuming Ry =
0. Evaluate the transition curve between these two regions. Assume that ¢,, >
Lg@a: (why is that important?).

e Solution

The torque limit in the maximum torque region is simply 7, .. = @mlmaz-
In the flux weakening region, the torque limit is generally lower than ¢, s
and is calculated using a graphical construction. The maximum current (“I”)
curve is a circle in the Iq—I, plane, with center at the origin and radius Ipqz-
The maximum voltage (“U”) curve is a circle with center [—,,/Ls,0] and
radius Upaz /(wimLs). Under the assumption that ¢, > Lglna., the center of
U-curve is found outside the I-curve.

Thus the largest value of I, that fulfills both constraints is where the two
curves | and U intersect. In this case, the coordinates of the intersection are

(55)2_@2_L§'172nam
2 om - Ly ’

2
1 Unaz ?
Iq = Irznam - 4. s02 L L2 (( w ) - 907271 - (Ls . Imam)2> 5

from whence T}, .. (wm) = ©m - Iy(wm).
The maximum speed at which the maximum torque is null is

Iy =

Umaz

Wmae — ——————.
©m — Ls : Ima;ﬂ

The transition curve is the locus of the torque points that can be still
achieved with I; = 0. It is given by the intersection of U-curve with the

[ s U max
g : (12 ( ) 903717
Wm

that is the transition curve sought with T, = ¢,,I,. In particular, for I, =
Inaz, Obtain the base speed as

2
w2 o Umam
b 2 2. 72
P T Ls : Ima;ﬂ

Problem 4.13

Using the same assumptions as in Problem 4.11, evaluate the maximim power
curve as a function of speed.
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e Solution

The general expression for the maximum power is
Pmam = Wm * Tmaz-

Let us calculate the maximum of Py,qz.

dPax 0=T + ATz 0
= mazx W~ =
dwm dwm

But Thae = m - I; and Ig = f(X) as given by Problem 4.11, where X =
Umnaz/wm. Consequently, the maximum condition is given by

g My X A X

dom ~ dX @ T A

After having calculated the derivative df /dX, obtain a 2nd-order equation in
the variable X, whose solution is X2 = @2 — L2]2 . from whence

Uma;ﬂ

V (pfzn _Lz .’[72710.1'

wp =

For this speed,
Umaz

m

F=4 L3 T (9 = L5 Igy) =4+ L3 Ipgn (—25)%,

max max

U -1,
2 __ 2 2 — Ymaz " tmax
II=f/4 ¢ 'Ls)éjq_mv

and finally T, = Ymastmas op P00 = Upas  Iinaa-
m

Problem 4.14

Equation 4.42 is only valid when Lgy = Ly = L. In the general case in which
Lq # L, the correct equation is

Tm: g 'p'Iq'((pm_p'(Lq_Ld)'Id)-
Consider again Problem 4.11 and derive a static control law I, I, that mini-
mizes the current intensity (MTPA), assuming that the constraints over cur-
rent and voltage are not active, for a motor where p = 4, R, = 0.07€,
L,=54- 1073H, Ly = 1.9-1072H, ¢,, = 0.185 Wb and T = 50 Nm. Then
compare the result with that obtained for AL = L, — Lq = 0.

e Solution
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To evaluate I;, a procedure similar to that of Problem 4.11 is used. Now
minimize I3 4 I7, subject to the condition

om - Iy— AL - Iy I, =T,

This is a parameter optimization problem in the two parameters I, I,. Build
the Hamiltonian

H=I+1]+p(pm-Ig— AL-1q- I, — T},).

Pontryagin’s Minimum Principle reads

dH

— =2-I;—p-AL- 1, =

dId d M q 07

dH
—=2-Ig+p-om—p-AL-I; =0,
dl,

from whence

AL -1} =@ -Ig— AL - I} =0,

that is, a quadratic equation is found. Now combine this equation with the
torque equation to have I; and I, as a function of T},

AL (Tp,)? = (AL - 13 = m - 1a) - (o — AL - 13)* =
=ALY - I; =3 - AL* I3 4+3- 02 - AL -1 — @3 - 1=
=1Iq- (AL Iq = ¢m)®
For the numerical case, AL = 3.5-1073H, T, = 50/(3/2-4) = 8.33Nm, thus

0=(35-10"%)° . 14 —3.0.185- (3.5-107%) . I3+
+3-0.185%-3.5-1072 - I3 — 0.185% - I;—
+3.5-1072.8.332 = I;=—1T7A,
0=35-10""-17*+0.185-17—-3.5-10* - I7 = I;= 34A
Verify that

3
Tn=4-5-34. (0.185+3.5-1072-17) = 50 Nm.

With AL = 0, one would have obtained I; = 0 and
I, =50/4/(3/2)/0.185 = 45 A.

Problem 4.15

Calculate the torque characteristic curve T}, (wy,, Us) of a PMSM having the
following characteristics: Ry = 0.2, L = 0.003H, %g@m = 0.89 Wh, p = 1,
for a voltage intensity (see definition in Problem 4.11) Us; = 30V. Derive
an affine approximation of the DC-motor type, Ty, 1in(wm, Us). Evaluate the

torque error (wy,) = U2(Ty,) — U2(Ty.1in) and calculate its maximum value.
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e Solution

If Ly = L, the MTPA (maximum torque per ampere) control is (see Prob-
lem 4.11) I; =0, I, = T}, /¢om. Consequently, the voltage is

R, T
Uq: wm'@m‘FRs'Iq:wm'(/)m"’uv
Pm
L, T/
Ug= —wn - Ly Iy = —tw, - =
Pm

The torque characteristic curve T7,, = T} (wm, Us) for a given Uy = | /UZ + Uq2
is given by

R2.(T')? 2. (T )2
s (Qm) +2mequln+w72n s (2m)

m m

(¢m - U5)2 _w72n : Spfn = (Tyln)Q : ((wm'LS)2+R§) +2-R; 'Wm'@im .T7ITL'

For w,, = 0, the breakaway torque is

Us- o
T, = =21
br Rs
The zero torque speed is
Us
wo = .
Pm

The affine approximation of the characteristic curve is

ot

awm W, =0

ﬂlin (wm? US) = Tl;r +

s Wm

where T, = T/ (w, Us) is derived from the equation above. From a comparison
with the DC-motor characteristic curve, one can make the equivalence k, =
©m, and

2
¥ ¥
Ty (win, Us) = Rn: Us — Rn: F W
At w,;, = wp the approximated torque is
Pm Pm
T4 = -Us — -Us = 0.
0 Rs s Rs s

Thus, at w0 the error is zero with respect to the nonlinear characteristic curve.
To generally evaluate this error, calculate Us(T),) from the nonlinear curve
and Us (T, 1in) from the affine curve. One obtains

U?(Tm) - U?(Tm,lm) =e(wm)-

This term can be calculated using the results above, such that
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2 m
m

T 2
s(wm)z(Rg—i—wfn-Lg)-( m) +2 Wy R T —
¥
2

2'L
+(1+me2 )'(Us_Wm'@m)2_2'wm'90m'(Us_wm'spm)
R2'TI2 2'L2'T/2
_ ' (Qm) +wm 52(m) +W72n(P72n+2mesT7In_U52_
Pm Pm
m'Ls ?

W+ Lg 2
:_< R ) '(Us_wm'spm)Qu

which is zero for w,, = 0 and w,, = wy. Define

E(wm) = wfn (Us — wip - gom)Q.

The maximum value for E(wy,) is obtained by differentiating w.r.t. wyy,:
dE
d— :2'wm'(Us_Wm'(pm)2+2'wq2n'(Us_wm'spm)' (_(pm):O
Wi
= Us_wm'@m:wm'<ﬂm
Us wWo

= mazx,E — =
Hmar S o 2

The maximum error is

L 2
_ l72 . S
E(Wmaz,E) — < sy, ] RS> .

In relative terms

E(Wmam,E) o Us : Ls ?
U2 4@ - Ry ’

With the numerical data &(wqaz, ) = 14.4 V2 or in relative terms 14.4/30% =

1.6%.

Problem 4.16

A simple thermal model of an electric machine reads

d T (t) — Vg
Com - in(t) = Bi(t) - P =Y
th

dt
where C; ,, is an equivalent thermal capacity, Ry, is an equivalent thermal
resistance, 9,,(t) is the relevant motor temperature, and 9, is the external
temperature. Derive the current limitation to I, from thermal considera-
tions using the models of Sect. 4.3.3 (DC motor). How would the result change
if other losses of the type 8 - wy, (iron losses, mechanical losses) were taken
into account?
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million cars
800
all countries
400 +
USA
1980 2000  year

Fig. 10.9. Schematic representation of the development of the number of passenger
cars operated worldwide.

e Solution

Behind the limitation I, = Ipnq, leading to Ty, = Thnas (for wy, < wp) there
is a temperature limitation ¥, = Y;q2. Consider the DC motor model. Here
the only loss is due to ohmic losses

P =R, 1%

The motor (windings) temperature varies according to this power dissipated
into heat and according to heat exchange to the ambient, so

did,, U — Ve O — Vg
Com - —p—tm—Ya _p .2 m—Ta
Ry,

— 10.24
me T (10.24)

To guarantee that 9, < U4z, it should be
Ra . Is < a- (ﬁmaw - 19(1)7

or
ﬁmam - 'ﬂa

RthRa
If other losses of the type 8- w,, are considered (the factor 8 could in turn be
dependent on w,,), the condition on temperature reads
s
R

1, < = const. = I42.

Ry - I2+ B -wy <

from whence

19ma;n _ﬁa_ﬁ'wm
Ia = Ima;ﬂ m)-
- \/ RunRa (om)

Thus the maximum torque for w,, < wp, would decrease with w,,.
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Problem 4.17

Derive a (simplified) rule to express peak torque limits of an electric machine
as a function of application time. Use the result of Problem 4.16.

e Solution

Relax the condition on stationary temperature. The solution to the ODE (?7?)
is then
0m(t) = 19(1 + (19stat - 1911) . (1 - 6_;),

where Ustat = 04 + RinRy - 12, and 7 = Cy 1, Ryp. Impose that 9(t) = 900
and obtain I, as a function of time,

Al

Omaz — Vo = RinRa - 12, (t) - (1 —e
(ﬁmam - 1911)
Rin R, - (1 _ e*%)

= Tmaz (t) = Ra Imaz (t)

= Inaa(t) =

For t — oo, one finds

ﬁmam - ﬁamb
Rth Ra ,

Tmam = Kq *

which is the result of Problem 4.16.

Problem 4.18

One PMSM has the following design parameter: external diameter d; =
0.145m, weight m; = 14kg, length /3 = 0.06 m. At 5500rpm it delivers
a maximum torque 77 = 12Nm. Predict the power P, and the weight my
for a similarly designed machine with a diameter do = 0.2m and a length
I3 = 0.2m. Compare the cases in which the design is made (i) on the basis of
constant tangential stress and peripheral speed, or (ii) of constant speed.

e Solution
Case (i). The power of machine 1 is

5500 7

P,
! 30

<12 =6.9 kW.

The mean rotor speed is

w1q - d1 5500 -7 0.145
= = : =41. .
¢ 5 30 5 8 m/s

The mean pressure is
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T 12
pme = ) = 7T~O.1452 = 6 kPa
2. 2. (—4 - 0.06)
Indeed, Py =7 -dy 11 - Pme - Cp = 7-0.145-0.06 - 6 - 103 - 41.8 = 6.9 kW. For
machine 2,

P,=7-0.2-02-6-10%-41.8 = 31.5 kW,

)\ Iy 0.2 \? 0.2
—m-(—=) - Z=14-(——) == =89k
2= <d1> I 0.145) 0.06 &

assuming constant density.
Case (ii). What changes now is that

d2
P=w-ppe -7 — L.
w-p T
For machine 2,
7 - 5500 0.22
Py = 6-10% -7 —.0.2 =43 kW
D) 30 6-10° -7 5 0 3 ,

while ms is unchanged. The specific power is the same for machine one and

two,

6.9-10° 43-10°
14 89

= 0.49 kW /kg,

Problem 4.19

Evaluate the specific power of a motor and inverter assembly, knowing that
(£),0t0r = 1.2kW/kg and (£ = 11kW/kg.

m m)inverter
e Solution
The specific power of the motor system is simply

P 1 1
(_> = - —1.08kW/kg
+ ( 12t 11

E)
™ /Jinverter

Range extenders
Problem 4.20

Consider an APU for a series hybrid. Given the engine model

P.+ P,
P; = ﬂj

e
1
— = 507-0.0117 - w. +1.50- 1077 - w? = a1 + by - we + ¢1 - W2
&
P
2= 122103 4317 we + 0421 - w2 = ag + by - we + €3 - WP
e

Tomaz = 96.9+1.35-w, —0.0031 - w? =h-w?+¢g-we + f,
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and a generator model with constant efficiency n, = 0.92, derive an OOL
structure &(P,). Then calculate the operating points for (i) P, = 10kW, (ii)
P, =40kW, and (iii) P, = 60kW.

e Solution

The problem is finding w, for each P, = 7, - P. such that P; is minimized.
By differentiating P; with respect to w. = wy one obtains

dP
—f:b2+2'02'wq+bl-P€+2-Cl'wq'PEZO,

thus
bi- P, + b2

2'(01'P8—|—02) '

For the case (i), @ = 81.7rad/s, which is below the minimum APU speed,
therefore & = 1000 rpm = 104.7rad/s.

For the case (ii), @ = 222rad/s. The torque is T; = 196 Nm, which is below
the maximum torque at the speed @. Thus the operating point is admissible.

For the case (iii), @ would be equal to 261rad/s and the torque would be
250 Nm, while the maximum torque at that speed is 239 Nm. Thus a different
calculation should be used: find & such that

(10.25)

w=—

60 - 103
0.92 -

(96.9 + 1.35 - & — 0.0031 - &%) - & =
The solution is @ = 279rad/s.
million cars
800 t
all countries

400 +

/USA

1980 2000  year

Fig. 10.10. Schematic representation of the development of the number of passen-
ger cars operated worldwide.
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Problem 4.21

For the APU model of Problem 4.20, find a piecewise affine approximation
Pf = a+b- P,. Evaluate the error with respect to the nonlinear model, for
(i) P, = 10kW, (ii) P, = 40kW, and (iii) P, = 60 kW.

e Solution

Three discontinuity points are identified: P, = 0, P. = P; such that @ =
1000rpm, P, = P» such that the engine torque limitation is active, and P, =

Pruae. The value Pj is calculated as the root of the equation

1000 - 7
30

@(P)=1000rpm = by Py 4+by=-2 (e1+ Pr+c2)

= P =14kW.
The value P, is calculated as the root of the equation
Py = (I)(PQ) 'Tmam(d)(Pg)) = P, =62 kW .

The value of Py, is given by finding the stationary point of

dpP

=3-h-w+2.g-w.+f=0,
dw,

Plwe) = (h-wi +g we+ f) we =

which gives © = w. = 324 rad/s and P,,4. = 68.3 kW.
The value of Py at P, =0 is

1000 - 7\ 2 1000 -
ﬁ) T by T gy =6.7TkW .

Pr(0F) = ¢y -
f(O)CQ(?,o 30

The value of Py at P, = P is

2

1000 -
(01'14-103+02)'( 30 ﬂ—)
1000 - =

20 +ap-14-10% + ap = 62.9 kW .

+ (b1 - 14-10% + by) -

The value of Py at P, = P, is calculated after having calculated the

bl'P2+b2
e=——t 2T 2 956 1ad/s,
YT T (e Pt o) rad/s
with b = —694 and ¢ = 1.35 (and @ = 3.13 - 10°). Then
Pr=c-w2+b-w.+a=2244kW.

The value of P at P. = Py,q, is calculated with a = 3.45 - 10°, b = —767,
¢ = 1.45. The value is Py = 248.7 kW. The piecewise affine model is therefore
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P;=0, P.=0 (P,=0)

62.9 — 6.7 P
Pr=67-10°+ =" " .p, fi <14
= 6.7-10% + 7 , 0r0<103<
224.4 — 62.9 P
— .103 o= e _ .103 —€
Py =62.9-10° + —=— (P. —14-10%), for 14 < o5 < 62
248.7 — 224.2 P
Pr=2244-102+ ——— """ . (P, —62-10° for 62 € < 68.3
f t—3-62 ), for62< g <

The engine power can be replaced by P. = Py,/n, to get the affine relationship
between fuel power and APU power.

For the operating point (i), P, = 10 kW and P. = 10.9 kW. The exact Py
is 50.3 kW. The approximated value is

62.9 -6.7

-10.9-10% = 50.5 kW
14 ’

6.7-10° +
with a 2% error.
For the operating point (ii), P, = 40 kW and P. = 43 kW, the exact
Py =166.4 kW. The approximated value is

224.4 —62.9

62.9-103
T -1

- (43-10% — 14-10%) = 162.2 kW,
with a 2.5% error.

For the operating point (iii), P; = 60 kW and P. = 65.2 kW, the exact
Py =234.7T kW. The approximated value is

248.7 —224.2

224.4-10°
t 683 - 62

- (65.2-10° — 62 - 10°) = 236.8 kW,
with a 1% error.

Problem 77

Propose an algorithm to calculate the OOL of an engine for a combined hybrid
from the data w4x (APU speed breakpoint vector), T4x (APU torque break-
point vector), Tmax (w4x) (APU maximum torque), and mfuel (wdx,T4x) (en-
gine consumption map).

e Solution

FOR P = 0 TO max(w4x * Tmax)
WHILE w = w4x AND P/w < Tmax(w)
Pf(w) = Hl*mfuel(w,T);
h(w) = P/Pf(w);
END
wopt (P) = arg min(h(w));
END
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Problem 4.23

Find an optimal design for a range extender working at a stationary operating
point, i.e., select optimal values for the displacement volume V,; and the speed
we of the engine, neglecting stop-and-start effects and making the following
approximations. The IC engine is modeled with a Willans line

Pme = € Pmf — (pmeO + Pme2 * W?)

with e = 0.4, Peo = 1.5 - 10° Pa, pes = 1.4Pa-s?. The generator is a DC
machine with constant armature resistance R, = 0.2 and k, = 0.5. The
battery is modeled as an internal voltage source U,. = 180V with an internal
resistance R, = 0.3 ). The overall system efficiency

o Uoc 'Ia
Tlov = %
mpg - Hl

should be optimal. The nominal power P, of the range extender should be
greater than 30 kW and the brake mean effective pressure of the engine smaller
than 9 bar. The design parameters can be chosen between the following bound-
aries: Vy € [0.5,2]1, we € [Upe/Ka, 600] rad/s.

e Solution
The generator current is

Te Rg * We — Uoc

e
Ka R
where R = R, + Rp. The fuel consumption rate is
* We - Te  we Va
CHy = Z  (pme me2 - W2) - ——
my - Hy T (Pmeo + Pmea - W7) T

Thus the overall efficiency is

e Uoc : (’ia cWe — Uoc)

’ia'we'(Ka'we_Uoc)"'we'(pmeO +pme2'wg)' 4‘_/_'; ‘R

Nov = - T]O’U(wev Vd)

The power is also expressed as a function of w. and Vj as

(’ia cWe — Uoc) *Rq - We

Pe:Ia'Ua:Ia' a *We =
K w R

while the brake m.e.p. is

AT, 4-m-Rg - (Ko we — Use)
7 Vi R '

Pme

It can be seen by inspection that the efficiency decreases for increasing values
of V;. The lower Vj is obtained at the intersection of the two conditions on
P, and pye. The former gives
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K2 w2 —kg Upe we—R-P;=0 = w,=484rad/s.
The latter condition gives

4.7 9 4.7
= . *We — a'Uoc = = ~ 2~
Rp War@e=FaUoe) = 503

Va (0.5%-484—0.5-180) = 0.87 1.

At this speed, the current is (0.5 - 484 — 180)/0.5 = 124 A, the torque is
0.5-124 = 62 Nm, the engine power is thus 484 - 62 = 30 kW, the fuel power

is
30-10% 484 0.87-1073
—— + — (1.5-10° + 1.4 - 484%) - ————
0.4 * 0.4 ( + ) 4-7
(engine efficiency 26%), the armature voltage is 0.5 - 484 — 0.2 - 124 = 217 V,
the battery power is 217-124 = 26.9 kW (generator efficiency 26.9/30 = 90%),
the battery internal power is 180 - 124 = 22.3 kW (battery internal efficiency
83%), the overall efficiency is 19%, as it can be verified using the expression

calculated for 1,y (we, Va).

=115 kW,

Problem 77

In Problem 4.23, set the engine displacement volume to V; = 1.61 and find the
optimal operating speed that maximizes the overall efficiency while respecting
the two constraints on P. and pje.-

e Solution

The overall efficiency as a function of w is given by

e Uy (kg - we — U,
Tov = e ( 2 - OC) v, :nov(we)'

’{a'we'(Ha'we_Uoc)‘Fwe'(pmeO +pm82'wg)' I ‘R

To find the maximum efficiency, differentiate with respect to we,

Rq * (Ha'we'(’{a'we_Uoc)‘i‘we' (pmeO +pme2'wg)'a) -
(fia'we_Uoc)'(3'a'pme2'W§+2'Ki'We_ﬁa'Uoc"i_a'pmeO)u

where a = V; - R/4/7 is a constant. By manipulating the expression above,
obtain the third-order equation

2'/€a'Q'pme2'wg+(/§3—3'a'pme2'UOC)'wg_

+2"‘€§'Uoc'we+("$a'Ugc_a'Uoc'pmeO):07

whose solution is w, = 503 rad/s for V; = 1.6 - 1073, a = 6.37-75.

At this speed, the current is (0.5 - 503 — 180)/0.5 = 143 A, the torque
is 0.5+ 143 = 71.5 Nm, the py,e is 4 -7 - 71.5/1.6 - 1073 = 5.6 bar (thus the
constraint is not violated), the engine power is thus 503 - 71.5 = 36 kW, the
fuel power is
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36-10% 503 1.6-1073
2 .(1.5-10°+1.4-503%) - ———— =171 kW
04 04 ( + ) 4.7

(engine efficiency 21%), the armature voltage is 0.5 - 503 — 0.2 - 143 = 223 V|
the battery power is 223-143 = 31.8 kW and thus also the second constraint is
not violated (generator efficiency 31.8/36 = 88%), the battery internal power
is 180 - 143 = 25.7 kW (battery internal efficiency 81%), the overall efficiency
is 15%, as it can be verified using the expression calculated for 7y, (we). Thus
the choice of a non-optimal value for the displacement volume leads to a
substantial loss in the overall efficiency.

Batteries
Problem 4.25

For a battery pack having the following characteristics: Qceyp = 5 Ah, Ueeyp =
3.1441.10-& (V), Reenr = 0.005 —0.0016 - £ (2) under discharge and Ry =
0.0020 - €2 — 0.0020 - £ + 0.0041 () under charge, N = 96, calculate the
electrochemical power P,., for an electric power demand of 15kW in charge
and discharge, respectively, and for 20% and 90% state of charge.

e Solution

Use U2 P,
Pt = Upe - Iy with I = -
g bV Ty R VTR TR

For (i) P, = 15kW and ¢ = 0.2,
Upe = (3.14+ 1.10- 0.2) - 96 = 323 V,
R; = Ry = (0.005 - 0.0016 - 0.2) - 96 = 0.45 £2,
323 \/ 3232 15103
T 2.045 V40452 0.45

15
P.cp, =323-50 = 16.1 kW (efﬁciency =T61= 93%) )

I

=50 A,

For (ii) P, = 15kW and ¢ = 0.9,
Upe = (3.14 4+ 1.10-0.9) - 96 = 396 V,
R; = Rq = (0.005 — 0.0016 - 0.9) - 96 = 0.3412,

396 _\/ 3962 15-10°
©2-0.34 4-0.342  0.34

I =39 A,

15
P..n =396 -39 = 15.4 kW (eﬁiciency kT Vi 97%) )

For (i) P, = -15kW and ¢ = 0.2,
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Uoe = 323V,
R; = R. = (0.0020 - 0.04 — 0.0020 - 0.2 + 0.0041) - 96 = 0.362,
_ 323 \/ 328 15-10°
T 2.036 V40362 0.36

14.
Poep, =323 - (—44) = —14.3 kW <efﬁciency = 1—53 = 95%> .

Iy

= 44 A,

For (iv) P, = -15kW and ¢ = 0.9,
Upe = 396 V,
R; = R. = (0.0020 - 0.81 — 0.0020 - 0.9 + 0.0041) - 96 = 0.3842,
_ 396 \/ 3962 15-10°
© 2038 4-0.382 0.38

14.7
P.cp, =396-37 = —14.7 kW (efﬁcieney =T = 98%) )

= 37 A,

I

Problem 4.26

Find a quadratic approximation for the relationship between battery power
P, and electrochemical power P..,. Compare the results with those of Prob-
lem 4.25.

e Solution

The relationship between power and current is

Uose U2

ocC P
:2'Ri_ 2-R-2_EZ: or Iy=c—+\/c?2—a-Pb,.

1

By expanding this function as a Taylor series, one obtains

1,(0) =0,
dly B a 1
dp, P02V —a Bylp_g Uoc
@ B a? 24 Ry
dP? P,—0 4-(c2—a- Py)3/2 Py—0 U3 -
Thus
I = [Z’C +2. 53 - P2,

For the cases of Problem 4.25 and the approximation we get
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Pb (kW) q Uoc (V) R; (Q) Ib (A) Pech (kW)

15 0.2 323 0.45 50 16.1
15 0.9 396 0.34 39 15.4
15 0.2 323 0.36 -44 -14.3
15 0.9 369 0.38 -37 -14.7

Iy (A) P, (kW)  error (%)

52.4 16.9 5
40.3 16.0 4
-41.6 -13.4 6
-35.1 -13.9 5

Problem 4.27

One couple of electrodes for a lithium cell has the following characteris-
tics: Negative electrode (graphite): capacity ¢rey,n, = 340mAh/g, potential
U, = 0.25V, density p, = 2.2g/cm?, thickness s, < 80 um. Positive elec-
trode (LiCoO3): capacity greysp = 140mAh/g, potential U, = 3.85V, density
pp = 4g/cm?, thickness s, < 80um. Separator, collector: surface density
0.047 g/cm?. Calculate the cell voltage and the cell specific energy.

e Solution
Ueet =Up —U, =385-025=36V.
If Q = Qn = Qp, then

rev,n " Yrev 1 .
Qrev = drevn " drevp T — =99 mAh/g  (theoretical),
Qrevn + Qrev,p 50 T 1o
E
(—) = Qrev - Ucett =99 - 3.6 = 356 Wh/kg (theoretical).
m rev

To add the masses of the collector and separator, the surface density L, of the
active mass must be calculated. To do that, consider the maximum electrode
thickness. Since the surface is the same for the anode and the cathode,

Qn:QP — Sn'Qn'pn'SZSp'qp'pp'S
Sn_ dpPp _ 140 -4
Sp Qn-pn  340-2.2

=0.75, thus s, < s,

Assume s, = 80 pym, then s, = 60 pm.

On _ 9 _ 9 _gy.107. 1404 mAh/cm® = 4.48 mAh/cm®,
Sp S, S
1 4.48
Lot = % : o =99 g/cm2 = 0.045 g/cm2 (active mass).
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Add the mass of the separator to obtain
L = Laet + Laep = 0.045 +0.047 = 0.092 g/cm”.

The practical specific capacity qee;; is thus

1 4.48
Qcell = % : Z = m =49 mAh/g (practical),

or approximatly 50% of the theoretical capacity. The practical energy density
e is

E
(E) =3.6-49 =176 Wh/kg (practical).
cell

The pack specific energy will be even lower.

Problem 4.28

Develop an equation for the battery apparent capacity as a function of the
current for constant current discharge using the battery modeling equations of
Section 4.5.2. Then evaluate the apparent capacity of a battery with nominal
capacity Qo = 72 Ah, k4 = —0.005, ko = 1.22, at C'/10, C1, and C¢ discharge.

e Solution

Uy=Use —R;i - Iy = (k1 + K2 &) — (ks + kg - &) - I, with kg <0
. I,
é.:__*v

0
thus

: I I?
Ub:—/<;/2._b+l€4._b—_c,

Q3 Q-
Uy(t) = Up(0) — ¢ - t, where Up(0) = k1 + Ko.

The discharge ends when Uy(ts) = Uecys, thus for

o Ub(O) - Ucut
tp= L et
c
The capacity or Ah rate is

Ub (O) - Ucut

QO b f QO H2—I€4'Ib,

which is dependent on I;,. To calculate Qo(lp)/Qo(I;), define Ko = 1—k4/ko-
1. One finds that

QO _ Kc

Q5 1+ (K.—1)- 4

b
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that is (4.58) with n = 2.
The nominal capacity must be retrieved for very slow currents, ideally
when Ij =0, as

ut *Q* 51+’€2_Ucut
=Qyg——,

K2

U, - U,
Q5 = @y - 20 = e

from whence it must be U,y = k1. The dependency Qo(I) can be rewritten

as
o |Fia
I)=—"— h =—.
QO( b) 1 te- Ib’ where e o
In the numerical case, e = 0.005/1.22 = 0.0041 The C/10 current is 72/10 =

7.2 A. For this current, the capacity Qo is

2
QO = m = 70 Ah (97% Of the nominal Capacity)
and the discharge time ¢y is
70
tr = =—=9.7h.
)

For a Cy current = 72 A,

72
Qo = 17000473 = 56 Ah (77% of the nominal capacity),
56 .
ly = = 0.78 h = 46 min.
For a Cyg current = 720 A,
Qo = S 18 Ah (25% of the nominal capacity)
* T T+00041-720 ’ paciiy),
1
ty = ﬁSO =0.025 h = 1.5 min.

Problem 4.29

Verify that the round-trip efficiency of a battery under constant current
discharge-charge and for varying parameters U,., R; as described in Sec-
tion 4.5.2 has the same form as (4.82) but with U,. and R; calculated for
£=10.5.

e Solution

The energy discharged Ej is

ty
Eg=1,- /0 Upe(§) — Ri(&) - I, dt =

ty
:Ib'/ (k1 +k2-&) — (k3 +ra &Iy dt.
0
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Since £(t) =1 — I,/Qo - t under constant current discharge,

Ib-t? Ib-t?
Ed:Ib~ Ii1~tf+1£2' tf—2 Q —Ii3~tf-Ib—I£4~Ib~ tf—2 Q .
Y0 Y0

Since tr = Qo/I,
tr tr
Eg=1y- |k -ty + Ko - tf_? —k3-ty-Iy—kRa-Ip- (1 —? =

K 1
:Ib'tf'|:51+?2—H3'Ib_"€4'§b:|7

which is equal to
Ed = Ib ’ tf ’ (UOQ% o RZ)% ' Ib)

Similarly for E.,
E.=|I|- ty- (UOC)% + Ri,% . |Ib|) )

and thus

Supercapacitors
Problem 4.31

Derive Equation (4.117).
e Solution
P, is considered as a constant. By differentiating (4.116) one obtains

d Isc QSC d _
2.USC.EUSC+O_SC.USC_CSC.EUSC_()’
where the second of (4.115) has been used. By solving (4.116) for Qs., one

obtains

C

Qsc = Usc

(}%C'}QC*‘UiJa

thus

d Psc d Rsc
2. sc® 7, Vsc ~ = 5, YUsc® Psc'— sc | -
Use: qgUse + = = U ( 7o+ )

Since 2 - U - dUs./dt = d/dt(U2), one obtains

drr2 drr2
dya P P Ru 4UL UL

i <" O, 2 U2 2 7 @2 G, 2. U2

from whence (4.117) follows. For R,. = 0 it is found that dEs./dt = d/dt(Cs. -
U2./2) = —Ps. (Ps. positive during discharge).

iUgc Psc_Psc'Rsc'%Uz_O
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Problem 4.32

Derive an analytical solution for the discharge of a supercapacitor with max-
imum power. Then verify the solution with the data of Figure 4.42.

e Solution

At max power

2
Psc - $a
4- Ry - C2,
then from (4.118)
Qsc
Usc = ’
2- Osc

from (4.115)
. & _ QSC . QSC

Rsc : Isc — -
Csc 2. Csc 2. Osc
and
dQsc _ Qsc
dt 2R  Cye’
Thus

-t
Qsc(t) = QO ©€ 2CscRsc,

e
Uuelt) = 5 20— - &~ Fstms,

2
Psc(t) - 4};2706,2 . e_m.

Fort=2s, Csc =125 F, R, = 0.08(2, and Qo = 800 C, find

Qsc(t) = 800 . e_m — 294 C,

Isc(t) = % . eim — 147 A,
Use(t) = 5 8(1)(2) : e~ TTEEOOS — 19 v,

2
Psc(t) = % . e_m — 17 kW

Problem 4.33
Yet another definition of supercapacitor efficiency that is sometimes found
(e.g., in [222]) is

T
Nsc,d = 1- 2_7
ty
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during discharge at constant current, and

1

14+2L%7

Nsc,c =

<

during charge at constant current, where 7 = C,. - Rsc and t; has the same
meaning as in the text. Explain this definition.

e Solution

The energy amount that can be obtained from a fully-charged supercapacitor
with constant-current discharge in the ideal case of negligible resistance is
obtained from (4.119) as

Q%
2. Cs’
which coincides with the maximum stored energy defined in (4.129). By defin-
ing the efficiency as

Eqia =

Eq
Eaia’

find the value in the problem statement.
For charge, define the efficiency as

Nsc,d =

|Ec,id|
|Ec|

Nsc,c =

and find the value in the problem statement with |E. ;4| = Eq id-

Electric Power Links
Problem 4.3

Consider again Problem 4.9 and account for a battery internal resistance of
0.0259Q.

e Solution

Combine DC motor equations and battery equations with U, = U,, and
I, = I,,. The relationship linking the motor torque, speed, and the DC-DC
converter duty cycle is

(Ra —I—OZQ Rb) o

Ka

a- Uy —

— K- Wy = 0.

The flux weakening region limit is obtained for o = 1 as 0.3 - T}, + 0.25 -
wm, = 50V (axis intercepts at 200rad/s and 167 Nm). The current limit is
obtained by setting av = 1 and wy, - Ty, = Py mae- The result is the same as
in Problem 4.9 but now R, should be replaced by R, + R, = 0.075. The
new solution is I, maz = 93 A (increase).
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In the case (i) only the calculation of o changes, since U, = 28V and
1, = 60 A are still admissible values. Knowing that

Up =Us. — Ry - I,
W Ue_ D
N Ub B Ia7
one obtains

2
Ua: oc'a_Rb'Ia'av

from whence o = 57% (increase) and correspondingly U, = 49V, I, = 34 A
(increase). Alternatively, o can be directly calculated from the general equa-
tion above.

For the case (ii) again R, is replaced by the sum of the two resistances. The
duty cycle is still fixed at a = 100% and the flux is now x; = Kk, = 0.14 Wh.
Thus the flux weakening increases.

Problem 4.35

For an electric drive including a battery, a step-down DC-DC converter (chop-
per), and a DC motor, calculate the duty cycle that maximizes the regenerated
power during braking. Calculate the corresponding motor current, using the
data presented in Problem 4.9.

e Solution

The limitation is imposed by the step-down converter for which R = U, /U, =
1 — «. Evaluate R as a function of w,, and I,:

R-Uy.—Ry-R>I,—R,-1,— ki w=0.

For R =0,

but I, = R- I, = 0 (no recuperation). For R = k; - wy, /U, I, =0 and I, = 0
(again no recuperation). Thus there must be a value R > 0 that maximizes
the recuperated power. The power is

Po=Py=1, - (Ry-Io+ ki wn)=Ra I*+ ki wm I,
dpP, Wm

dIa:2'Ra'Ia+fii'wm:O = Ia:_l{i'2.Ra:Ia,min'

For this value of current

R
R-Ujp+—2 piow,, B>

=0 Roin.
2 R, 2 =

And inserting the data of Problem 4.9,



References 71

Ki - W, 0.25-100 — 950 A,

Ia min — = -
’ 2 R, 2-0.05
R2 . (Rb . Ia,min) —U- Uoc + Ra . Ia,min +Ri-w= 0 = Rmzn = 24%

Problem 4.36

Consider an electric drive including a battery, a boost DC-DC converter and a
motor. Derive a relationship between the maximum torque curve of the motor
and the converter ratio, assuming that for w,, > wp, Pnar ~ Unaz * Imaz-
Conceive a strategy to perform quasistatic simulations in this case.

e Solution

A simplified expression for the motor maximum torque is
Tmam - mln{k . Imazv Pmam/wm}

where the constant & is given by k, in DC motors and by 3/2-p-p,,, in PMSMs.
The maximum power is Pz = Imaz - Umaz Where Up,q, is the voltage at the
DC side of the motor. One obtains

Pmaz: mam'Imam: mam'R'(Uoc_Rb'R'Imam):f(R)

In backward modeling, the required torque 7;, has to be saturated by the
maximum value 7},,,. However, this value depends on R. Physically, there is
one value of R that realizes the desired speed and torque (see a similar situa-
tion in Problem 4.34). For simulation purposes, one could map the conversion
ratio as a function of motor speed and torque and then feed the maximum
torque map. Alternatively, T;,q, could be mapped as a function of speed and
voltage Upq, and the latter calculated as Uy - I/ I naq-

Problem 4.37

Consider a semi-active power link with a battery, a supercapacitor, an elec-
tric motor, and a DC-DC converter on the supercapacitor branch. Derive an
analytical relationship between the control factor u (4.132) and the DC-DC
converter voltage ratio R. Calculate the values of R to obtain a pure bat-
tery supply (u = 0) or a pure supercapacitor supply (u = 1). Describe the
supercapacitor on a quasistatic basis, i.e.,

o, o= Use

-
where 7 is the time step.

e Solution
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The battery equation is Uy = U,. — R} - Iy. The DC link equations are U,, =
R - Us. = U,. Additionally, I, + I,./R = I,,. The supercapacitor equation is
given in the problem formulation. There are five equations in the six variables
Up, Iy, Use, Lsc, Um, Ip,. However, in dynamic modeling I,,, is given from the
downstream powertrain. Thus all the other quantities can be calculated as a
function of R. The result is

%_’_QUW_I
m
Um:Ub: Rb T R

1 C ’

R T TR

from whence Uy, 5., and I}, are calculated as well. The supercapacitor power
Py is

UnC

Psc = UscIsc = 75
R T

(USO - Usc)

and the control ratio u is

U Cc U
i_i__ sO_Im
Psc_ 1 (CUSO_ C Ry T R )ZU(R,Im)

1 2 1 C
P, I,\ TR TR 7 T e

u =

To find v = 0, the DC-DC converter must be regulated such as

Uoc - Rb Im
USO '

To obtain v = 1, the DC-DC converter must be regulated such as R is the
solution of the quadratic equation

R =

71 R* — CUy R + CU,. = 0.
The condition to have a solution is
(CU)? — 471,,CUpe > 0.
Therefore, pure supercapacitor operation is allowed for
47U,

Torque Couplers
Problem 4.38

Consider a through-the-road parallel hybrid. The torque coupling has the fol-
lowing characteristics: transmission ratio between the rear-axle motor and the
wheels 7,, = 11, transmission ratios between the front-axle engine and the
wheels 7. = {15.02,8.09,5.33,3.93,3.13,2.59}, wheel radius r,, = 31.7cm.
Moreover, Ty, maz = —Tm,min = 140NmM, Py oz = —Ppmin = 42kW, en-
gine speed limited to we maer = 4500rpm, engine maximum torque Te mee =
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1.34 - 107° - w2 — 0.0149 - w? + 4.945 - w. — 243 (Nm), engine minimum
torque T min = —20Nm. For a driving situation with V' = 30m/s and
Twn = 675Nm, determine the limits imposed by the motor operation on the
engine operation.

e Solution

The engine speed for various gears is

1
We =t = {947,510, 336, 248, 197, 163} rad/s.

Since we,mazr = 471rad/s only the third to sixth gears are admissible. The
engine maximum torque T 4, for the four admissible speeds is

Te maz = {242,270,255,225} Nm.
However, the torque coupling equation reads
Te Ve +Tm - Ym = Twh-
Since Th, > Lo min, consequently,

Twh — Ym Tm,min
Ve

T, <

= {259, 351,441,533},

In all cases, the motor imposed limits overshadow the engine physical limits
during generating operation. For motoring operation,
Twh — TYm " T

Te > AT — {1.6,2.1,2.7,3.2}.
Ye

that prevents, e.g., purely electric operation (T, = 0).

Power Split Devices
Problem 4.39

Consider a power-split combined hybrid powertrain with a planetary gear set
linking the engine, the generator, and the output shafts with the following
Willis relation

wg = 3.6 -we —2.6-wy.

The second electric machine is mounted directly on the output shaft with-
out any reduction gear. The generator has the following characteristics (both
in motor and in generator modes): maximum torque =160 Nm, maximum
power = 25 kW, maximum speed = 1200rad/s. The motor has the following
characteristics (both in motoring and in generating mode): maximum torque
= 400 Nm, maximum power = 25kW, and maximum speed = 700rad/s. The
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S.I. engine has the following characteristics: maximum torque curve = {0 87
110 107} Nm @ {400 1300 3700 5000} rpm. The maximum battery power is
35kW. Consider a driving situation in which the speed of the output shaft
is 343rad/s and the required torque is 129 Nm. Supposing that the decision
variables of the energy management strategy are engine speed and torque,
evaluate the admissible range of these variables.

e Solution

The degrees of freedom are selected as the engine torque and speed. Thus the
admissible range is drawn on the engine speed-torque plane. The engine limits
themselves are drawn as straight lines (curve A)

T. =0, for we <42
87
Te:%'(we—lﬁ)a for 42 <w, <136
23
Te = 87+ 57 - (we — 136), for 136 < w, < 387
T, =110 — 1—2’6  (we — 387), for 387 < we <524

The motor speed is fixed, i.e., w,, = wy = 343 rad/s. The motor base speed
is 25000/400 = 62 rad/s. Thus the max torque is 25000/343 = 73 Nm. The
relationship between engine torque, motor torque, and output torque is

2.6

T, ==
3.6

=Ty —Tph.
Thus the engine torque corresponding to the maximum motor torque (curve
B) is

129 — 73

Te = - = N .
o - 8 Nm

Only engine torque values greater than 78 Nm are admissible, since they do
not saturate the motor limits.

The relationship between generator torque and engine torque is T, =
T./3.6. The engine torque corresponding to the maximum generator torque
is 160 - 3.6 = 576 Nm, thus far beyond the engine limits. The generator base
speed is 25000/160 = 156 rad/s (in both rotating directions). The engine speed
corresponding to the generator base speed is

wg +2.6-wy

36 = +156 4 2.6 - 343 = 291 and 204 rad/s.

Thus outside of this range the max power limit of the generator could limit
the engine operation. The max power limit of the generator is T,, = 25000/w,,
thus in engine variables (curve C) is

T, 25000

3.6 3.6 -w,—892
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The intersection of curve C with the curve T, = 110 Nm is at 475 rad/s.
To be more precise, the intersection should be made with the fourth branch
of the curve A, leading to a quadratic equation.

Neglecting in a first approximation the motor and generator losses, the
battery power is P, = P, — P, = Py — P.. The output power is Py =
129 - 343 = 44247 W. Thus the limit P, = 35 kW in engine variables becomes
we - Te = 44247 W — 35000 W = 9247 W (curve D). The intersection with
curve B is at 118 rad/s. The curve A at this engine speed gives 70 Nm, which
is below curve B. Thus the battery constraint is not active at these driving
conditions. All the other limits (generator minimum torque, motor minimum
torque) are not active as well.

The engine admissible range is thus between curve B (T, = 78 Nm), curve
A (between w, = 126 rad/s and 475 rad/s), and curve C (between w, =
475 rad/s and 524 rad/s).

million cars
800
all countries
400 +
USA
1980 2000 year

Fig. 10.11. Schematic representation of the development of the number of passen-
ger cars operated worldwide.

Problem 4.40

Derive the coupling matrix for the four torque levels of a PSD from the el-
ements of the kinematic matrix in the case of quasistatic modeling. Do the
same in the case of forward modeling, i.e., derive (4.166).

e Solution
In backward modeling the kinematic matrix generally reads

we=A wfr+ B -wy,
W =C-ws+ D -wy.
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Moreover, the power balance of the PSD reads
Te - we+ Ty -wm =Tg wyg+Tf-wy.

In backward modeling one wants to calculate 7. and 7}, as a function of T’
and Ty. To do so, use the kinematic relationships

Te-A-wy+Te B-wg+Ty - C-wy+Ty D -wyg=T4 wg+ T wy.
By equating the factors of w, and, respectively, w¢, one obtains
T.-A+ T, C="1Ty,
T.-B+T,-D=T,,
thus,

B 1
“aDp-BC
B 1

_A-D—BC'(

T, D-T;—C-T,), and

Ty ~B-Tj+A-T,).

In the case of forward modeling, the input variables are w; and wg, while the
output variables are Tj; and T. As a result, Equation 4.141 is obtained.

Problem 4.41

For the compound power split device architecture shown in Fig. 4.56, derive
the kinematic matrix M and the values of the two kinematic nodes.

et s

C1 R2

to final drive

R1 C2 ICE

MGl 52

Fig. 10.12. Compound power-split configuration for Problem 4.41

e Solution

Let the first electric machine be the motor and the second the generator. The
general relationship of a PGS is

wr+2z-ws = (14 2) - we.

For the first PGS,



References 7

We + 21 - Wi = (14 21) - wy.
For the second PGS,
wr+ 22 wg = (1+ 22) - we.

Thus the kinematic matrix is A = 1/(1 + 2z2), B = z2/(1 + 22), C = (21 +
2o+ z122)/71(1 + 2z2), D = —1/21(1 + 22). The two nodes are calculated (see
Problem 4.42) as K; = 1/(1 + z1) and Ko = 1 + z3).

Problem 4.42

Derive equation (4.167) for K, as a function of K and equation (4.168) for r
as a function of K, including the definitions of K7 and Ks.

e Solution

We use the definition of M as in Problem 4.40. By defining K = wy/w., we
have
wy/we=A-K+ B and Wm/we =C - K+ D.

Thus,
K_@_C-K—i—D_ D
" wy A-K+B  B(1-£)
=z

from whence the definition of K1 = —D/C and Ko = —B/A. The power split

ratio is

wg Ty  wm Tn

we Te we Te
By using the torque matrix calculated in Problem 10,

D- Ly B. L
r=(A-K+B) gty =(C-K+D) gt

Equating the last two equations and defining T /T, = X, derive that
(D-X+C)- (A-K+B)=(C-K+D)-(B-X+A)

from whence

X (D-(A-K+B)-B-(C-K+D))=A-(C-K+D)-C-(A-K+ B)
=X.-(A-D-K-B-C-K)=A-D-B-C,

thus X = 1/K. Hence,

_ 1 (CE4D)-BHAK) 1 o () (4 5)
"TK B-C—A-D K B-C—A-D

As B-C — A- D can be written as

cC A 1 1
p-5-(5-5) =05 (5 x):

equation (4.143) is obtained.
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Problem 4.19

Derive (4.163)-(4.164).
e Solution
Speed balance:
We =0a-wy+ (1 —a)- wy,
where a = z/(1+2),1—a=1/(1+ 2).
Steady-state torque balance:
Te = Tq + Tru
T, =Tp — T,
Dynamic torque balance (note the sign of inertia torque in the right-hand

side):

dwe dwg dwy
Te= @ =Ty + 05 2+ T4 O 0.

Power balance:

dwe B dwg dwy B
(Te_@c'ﬁ>'we—<rq+95 dt) wg+(Tr+8r dt) Wy =

—(Te—@c-%>~a~wg+<Te—@c-d;8)-(l—a)-wf—
_<Tg+@s-%>-w9+<ﬂ+@r dtf> wy =

z(Te O.-a %—90 (1 a)-dditj) a-wg+
—l—(Te—@c-a-%—@c-(l ) %) (1—a)- wy

from whence, by equalizing the terms multiplying w, and those multiplying
wy, one obtains

dw dw dw
T.—0. a2 9 .(1-a) a —L = Rt}
a-T.—6.-a p O.-(1—a)-a 7 T, + Os p
dwg 9 dwy dwy
(I—-a) Te—6.-a-(1—a) p O, (1—a) el T, + O, p
which are the equations sought, since
z 22 1
(1—a)= 2 = d(1-a)=
a-(1-—a) e a e and (1 —a) TEE
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Problem 77

Extend equations (4.149)-(4.150) to the case where there are losses in the
planetary gearset.

e Solution

Assume that e, and e, are the efficiencies of the contacts carrier-sun and
carrier-ring, respectively, the power balance neglecting the inertia terms is
simply written as

Po= P4 P,

Te - we = % “wg + e—r Wi, from whence
Tg:e:~a~Te, ' and
T, =e--(1—a)- T, where a =

142
The lost power P, i

Bost:Te'we_Tg'Wg—TT'wf:
=a-T.-wy-(1—es)+1—a) Te -wp-(1—e).

Non-electric Hybrid Propulsion Systems

Hybrid-inertial Powertrains
Problem 5.1

Derive a Ragone curve similar to (5.1) and (5.2) for a flywheel battery. Then
evaluate the maximum energy and power. Use a simplified expression for the
loss power of the type P, = R - w}.

e Solution
Assume constant power output of the flywheel and assume the flywheel
starts at speed wy.
newline

a) Dynamics of the flywheel
For constant power Py, the dynamic equation:

@f-wf-w'fz—Pf—R-wﬁ,

which can be rewritten as the following integral:
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@f . do.)f — _dt
Py +R~w%
e
ﬁ . d(Rw? + Pf) — &t
(Rw? +Pf)
@f 2 too [e%e]
3R In [Pf + wa(oo)} ’to = —t‘o
Pf + Rw?
Oy, | Frt Rep( )
2R Py +Rw12¢(0)

By setting integral limits from ¢ = 0,wf = wp to t = too,ws = 0 yields

o) Py + Rw? (0
Or | Br By
2R Py
too =7 -In(1+ R-wi/Py).
where 7 £ 0 /(2R).
b) Energy delivery
Ey =Pty
1
= Pf ’ _% - o2
1+ RP—;
! i
=— -Prln|l+R—
R [ " f}
¢) Initial energy available
The initial energy stored in the flywheel is
Ey=1/2-0;-wi.
Thus the efficiency can be calculated as
Ef Pf R- w%
= = = -In |1 .
=B TR n{ T

Discussion

If we plot out the Ragone curve E; = Ey(Py), it appears to be a
monotonously increasing curve, contrarily to battery and supercapaci-
tors. That is, the larger is the power, the larger is the energy that can
be extracted from the flywheel and thus its efficiency.
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Problem 5.2

Dimension a flywheel for the following application (F1 KERS): P4, = 60kW,
Eraz = 500kJ, Winae = 60000rpm. Assume 3 = 0.5, p = 1658 kg/m? (carbon
fiber), pO-8nY-2 = 0.48 (sealed flywheel).

e Solution

Assume [ denotes the the geometric ratio of the wheel width over the
wheel diameter; d = 0.2 [m], and ¢ denotes the ratio between inner and
outer diameters of the flywheel rings.
a) Calculate the moment of inertia
The maximum speed i8 wyq; = 60000 rpm = 60000 - 27/60 = 6283 rad/s.
From the maximum energy, the moment of inertia can be calculated with
2 Epmag 3 2 2
Of = = 2-500-10°/(6283)° = 0.0233 kg - m=.
b) Find the flywheel diameter

By setting P, = P4 and neglecting bearing losses, the diameter is
found from (5.5) by setting P4 = Pmnaas, 1-€.,

0.04-p2.8-12.2-u?8(t) - (B+0.33) = Pro(t) = Prcas
0.04-0.48 - d*° - (6283/2)%% . 0.83 = 60 - 10°,

from whence d ~ 0.2m. Thusb=3-d=0.5-0.2 =0.1m.
¢) Dimension the flywheel mass with material property
Using (5.7), find the geometric ratio q from the equation:

T d*
=~ .p-b—(1-¢
Or=5-pbpl—d)
0.026 = 3.14 - 1658/32 - (1 — ¢*) - 0.1 -0.2*

)

from whence g = 0.4069.
The mass is obtained from (5.8) as

myp=p- / 1 (27r)dr

Tin
2

my = prz (1-¢%)

myp=0.1-0.2%-3.14- 1658 - (1 — 0.4069%) /4 = 4.346 kg.

Problem 5.3

Evaluate the charging efficiency of the flywheel of Problem 5.2 for a braking
at maximum power for 2s. Evaluate the round-trip efficiency.
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e Solution

a) Charging efficiency

(i) estimate the coefficient of loss power using maximum achievable power
During charging, the flywheel dynamics reads Of-wys-w¢ = Pf —R-w]%.
Using the data of Problem 5.2, an approximation for R could be

R = Ppaz/w?,,, = 60-10%/(60000 - 27/60)? = 0.0015.

max

Thus, the charging speed trajectory w; satisfies:

9f cdotwy - Wy =Py — R - w?
P; — R - w}(0)

which gives, 71ln m] = —(too — to0)

By definition, 7 £ @;/(2R) = 8.332s. Therefore, beginning at rest,
the speed profile is as follows, with the maximum braking power charg-
ing the flywheel for 2s:

P ¢
r=5-)

1 3
Wilias = \/% [1 - e—ﬁ} = 2002 rad/s.

(ii) Charging efficiency
Charging efficiency is the ratio of available energy storage to available
energy input from regenerative braking:

By =Py -t
1, 1, P :
Eout—Qwaf— 2@f R [1 e }
Eout @j Y
R = — 1— :|
o 2Rt[ “r
83325

- [1 . e*—} — 88.90%.
2s
b) Calculate discharge and thus roundtrip efficiency
The initial speed for discharging equals the final speed of charging:

Wo,disch = Wf,en = 2902rad/s.

Thus, the total discharging energy equals:

2
R-w§ gisen

1
* Py

e
Ef disch = IR Pr In
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With the energy storage in the flywheel, the discharging efficiency can be

calculated:
Rw? .
ln |:1 + O,dwsch,:|
Era P
Maisch = —p " = i = 90.64%
out 1—e =

Finally, the round-trip efficiency is therefore n = np, * naisen = 80.58%.
Discussion

Generally, the maximum energy of flywheel is used to estimate the moment
of inertia and mass, while the maximum power is used to estimate the
coefficient of loss power.

Problem 5.4

Evaluate the CVT ratio v(t) during a deceleration of a vehicle equipped with
a flywheel-based KERS and the opening time of the clutch. Use the flywheel
data of Problem 5.3. The flywheel is connected to the input stage of the
CVT through a fixed-reduction gear with ratio 8.33. Final drive and wheel
ratio (%) = 13. Initial conditions: v(0) = 80km/h, w;(0) = 10000 rpm,
m, = 600kg, braking time 2s (assume a constant braking power), CVT range
Vmaz/Vmin = 6.
e Solution
a) Calculate the range of CVT ratio
As for the initial speed,
wy(0) 10000 x 2 7/60
v(0) = - Vid
vp-v(0) -2 8.33-80/3.6-13

Tw

= 0.4352.

Therefore, given the CVT range, the maximum CVT ratio is as follows:

V() = v(0) x Zm9T = 6 x 0.4352 = 2.611.

Vmin

b) List equations from the vehicle side
Given that the vehicle speed trajectory during decceleration is

v2(t) = v%3(0) = 2 Py - ty/m,

, where P is the constant braking power which brings the vehicle approx-
imately towards standstill. Thus, the average braking power is

My - w?

P, = =1/2-600- (80/3.6)2/2 = 74.07 kW.

123

The corresponding final speed at the clutch opening time equals:

) (80)2 2 % 74.07 x 103 - ¢,
v (te) = — .

3.6 600
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¢) List equations from the flywheel side
According to the result of Problem 5.3:

5w = [ - wp0)] -t

Using intemediate results from Problem 5.3, the following values are
known:

Py =60kW, R = 0.01520kg - - -m?, 7 = 8.332s.

Equations from the flywheel side can be established by substituting values
in.
d) Solve equations with the CVT ratio constraint

= — _wslted)
v(t.) = 2.611 = o T

wilte) = = [Pf/r _WJ%(O)M] e~ 7+Pi/R
v2(te) = v2(0) — 2 Py - to/m,

Substituting one speed with the other, we get:

80 2 wite)
2.611 x — . 1 = . *
< 6 X3.6X833X 3) T )

Eliminate the second unknown variable and make equations of ¢. only:

1
3.948 x 107

_te

{Pf/R — [Pf/R—w2(0)] - e % } —02(0) — 2 X Py X to/ma.
(10.26)
The solution is therefore:

te =1.9999s ~ 25
wr(te) = 1431 rad/s = 13660 rpm
v(t.) =0.1648 m/s.

Discussion
After the clutch opening time ¢ > t., the clutch is open and the vehicle
can further decelerate util rest, with the help of tyre friction power.

Hybrid-hydraulic Powertrains

Problem 5.5

Derive a Ragone curve similar to (5.1) and (5.2) for a hydraulic accumulator.
Show that for high power this definition is equivalent to that adopted in the
text.

e Solution
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Energy balance
Establish the accumulator’s energy balance for Ragone Curve:

E=myg-c,- % O4(t) = —py(t) - % Vo(t) = h Aw(04(t) — bu)
i Va(t) = Qu(t)

mg Ry 0
Py(t) = gvgg(t)g(t)'

Power output
As from the textbook, the power of a hydraulic accumulator is output
through the change of pressurized flow:

By = py(t) - Qu(t)-

Therefore, given that E = mg ¢, 04(t), rewrite the energy balance as fol-
lows:

. h Ay
E=-P,— -E4+hAy,b,.
My Cy
Let 7 = 7;;?4?, and E* = E + 7 (P, — h Ay, 0.), then we have:
dE* dt
Ex  t

Solve ODE with initial and final conditions.
Assume constant power output.

Assume starting of the cycle is defined as point “B”, while the end of
power output is reached when gas temperature equals liquid temperature.

E|t:0 = mgcv,geBE|t:oo = mgcv,gew = Ej
Solving the ODE subject to these conditions, we get:

Py, + (Eo — Ew)}

tOOZT-ln[ D,

So the total energy transmitted is:

Eo — B,
Eha:Ph-tOO:Ph-T-ln[l—i—oi}

Ph'T

Prove the equivalence of validity
According to the reference cycle used for power output:

WAB =My - Cyyg (93 — HA) = EO — Ew

. When P, — oo, using L’Hospital rule in limit calculation, we get:
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En, :k-(EO—Ew) =k -Wap,

which proves the validity of definition (5.36), as an equivalence of the
Ragone Curve function
Discussion

e the energy balance ODE assuming the mode of constant power output
is a source of Ragone Curve Function;

e the Ragone Curve shows the energy is positively correlated with the
power, so the energy output is hight if the constant power level is
higher.

Problem 5.6

Derive (5.48) and (5.50).

e Solution

Fuel-Cell Propulsion Systems
Fuel Cells
Problem 6.1

For high pressures, the thermodynamic properties of gas have to be calculated
using the Redlich-Kwong equation of state instead of the ideal gas law. The
Redlich-Kwong equation reads

(10.27)

7}?-19 a
=y

—b VO-V-(V+b)

where p is pressure, R is the universal gas constant, 9 is temperature, V is
the molar volume. The constants a and b are defined as

0.4275 - R2 . 92/° 0.08664 - R - 1,
a= o p= v e (10.28)
De Pe

where ¥, is the temperature at the critical point, and p. is the pressure at
the critical point. Using this equation of state, evaluate the gaseous density
of hydrogen at 350 bar, 700 bar, when the gas temperature is 300 K.

e Solution

Assume the temperature of Hs is 300K.
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a) Gas states and constants .
From thermodynamic tables, R = 8.314J/mol - K, 0. = 32.97K, p. =
1.293 MPa. Then, we find the constants:

0.4275 x R? x 02.4

“ Pe
04275 x 8.3142 x 32.97°.4
N 1.293 x 106
=9.251 x 1077,

~0.08664 x R x 0.

De
~0.08664 x 8.314 x 32.97
- 1.293 x 106

=1.837 x 107°.

b

b) when p; = 350 x 10° Pa, 6; = 300 K.

P, = Rel _ a
! Vi—b O -Vi-(Vi+D)
314 251 x 1072
350 x 10° — 8.314 x 300 9.251 x 10

Vi — 1.837 x 105 sqrt300 x Vi (V; + 1.837 x 10-5)

Solve the 37 order algebraic equation, we get:

Vi = 8.963 x 10~°m? /mol;
PLH, = 1‘74; = 22.31kg/m?.

¢) when py = 700 x 10° Pa, 63 = 300 K.

P RO, a
T Va-b VB Vo (Vatb)
—5
700 x 10° = — 5314 %300 9.251 x 10

Vo — 1.837 x 105 sqrt300 x Va(Va 4 1.837 x 10-5)

Solve the 3" order algebraic equation, we get:

{ Vs = 5.400 x 10~°m3 /mol;

p2.m, = i = 37.04kg/m?.
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Discussion

e when p; = 350 x 10° Pa, 6; = 300 K.
P1,idealgas = % = 2807kg/m3

Its compressibility factor Z; = ELVL — Plidealges — ] 958
RO, Pl,realgas

e when py = 700 x 10° Pa, #; = 300 K.
3
P2 idealgas = —ngIE = 5614kg/m

Its compressibility factor Zs = % = % =1.516.
2 ,realgas
e over-estimation of high pressure cases As can be seen from the com-
parative result, the higher the pressure is, the larger would the over-

estimation be.

Problem 6.2

A good approximation of the compressibility factor of hydrogen between pres-
sures p and pg is

Z =1+ 0.00063 - <p£) (10.29)
0

(verify it with the results of Problem 6.1). With this assumption evaluate
the energy required to compress 1 kg of hydrogen (from 1 bar) to 350 bar and
700 bar, respectively, at 300 K, under the further assumptions of (i) isothermal
compression, (ii) adiabatic compression. Evaluate the result as a percentage
of the energy content of hydrogen.

e Solution

a) Derivation of compression work in isothermal and isentropic case:

(i) Isothermal case
Given the definition of compressibility,

Pv=ZRo,

where Z =1+ 0.00063 x (p%). After integrating dIWW = v dp from pg
to p, we get:

PZRO
WC:/ 2 dp
Po p

P /10.
_ Ro / (_O 00063p0> dp
Po p +

— RO [m L 0.00063 fﬂ]
Po Po

Note that in most cases py < p.
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(ii) Isentropic case
For isentropic processes, pv” = C|

Zppo RO

W. =
v—1

-1
ol
<£) —1].
Po
where Z denotes the average compressibility factor of the initial and

final state.
b) p = 350 bar, § = 300 K.

(i) Isothermal case

8.314
We = 5755 300 [n(350) + 0.00063 x (350 — 1)] = 7.580MJ /kg.

(ii) Isentropic case

8.314
5 200 T30 (350%’1 - 1) = 15.25MJ ke,
(iii) Comparison with LHV
Since for Hy, LHV = 120 MJ/kg, the ratio of isothermal compression
work to LHV is 6.317%, while that of the isentropic compression work
is 12.71%.
¢) p =700 bar, § = 300 K.

1+1.258
5 X

We =

(i) Isothermal case

8.314
We = 57575 X300 [In(700) + 0.00063 x (700 — 1)] = 8.719M] /ke.

(ii) Isentropic case

141.258 8.314 .
W, = 2 . 20 D0 (700% - 1) — 19.30MJ /ke.
(iii) Comparison with LHV
Since for Hy, LHV = 120 MJ/kg, the ratio of isothermal compression
work to LHV is 7.266%, while that of the isentropic compression work
is 16.09%.

Problem 6.3

Typical characteristics of various metal-hydride materials (1-4) for hydrogen
storage are listed in the following table [350]. Evaluate the energy density for
these storage systems.

e Solution
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m @ 6
Material density (g/cm®) 62 125 126  0.66
Porosity (%) 50 50 50 50
Mass storage capacity (%) 1.8 555 6.5 11.5

a) Energy density for storage
For hydrogen storage, the energy density is given by:
Ew _ Hi

Vit Yht

where £ = P% - M%:

Yht denotes the reciprocal of material density
P% denotes the porosity of material
M% denotes the mass storage capacity

b) Material 1

%kl) = 6.2 x 50% x 1.8% x 33.33kWh/kg = 1.860 kW h/1
¢) Material 2

%kz) =1.25 x 50% x 5.55% x 33.33kWh/kg = 1.156 kWh/1
d) Material 3

T2 |(3) = 1.26 x 50% x 6.5% x 33.33kWh/kg = 1.365 kW h/1
e) Material 4

]‘”;}’Z: l(ay = 0.66 x 50% x 11.5% x 33.33kW h/kg = 1.265 kW h/1
Discussion
Despite an increase in the gravimetric storage capacity, the energy density
still decreases when the material changes from (1) to (4). This is because
the size and porosity of the material also matters a lot. Even the specific
energy may decrease if the necessary system becomes significantly larger

and thus heavier (ancillaries, etc.).

Problem 6.

Evaluate the increase of energy density obtained with the cryo-compressed
tank (CcH2) concept operated at 77 K with respect to conventional, ambient-
temperature pressurized tanks.

e Solution
Assume the energy density is evaluated through the storage capac-
ity (hydrogen density) pp, using the method of Problem 6.1.

a) Compressed tank: 350 bar, 300 K
Density has been calculated in Problem 6.1, where

pn = 22.31kg/m".
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b) Cyro-compressed tank: 350 bar, 77 K
Molar specific volume can be calculated by solving:

950 % 105 — _ S3AXTT 9.251 x 1077
V —1.837Tx1075 /77-V (V +1.837 x 10-9)

Therefore,

V = 3.666 x 10~°m?/mol
M,  2x107®
VvV  3.666 x 1075
c¢) Cyro-compressed tank: 700 bar, 77 K

Molar specific volume can be calculated by solving:
314 251 x 107°
700 x 10° — — 8.314 x 77 _ ~9~5><O

V—1837x 107> /77-V(V +1.837 x 107?)

pn = = 54.56kg/m’

Therefore,

V =2.751 x 107° m*/mol
M, 2% 1073

3
Vv 2751x 105 72.70kg/m

Ph =

d) Liquid cyrogenic tank
Check thermodynamic tables, we find:
pn = Tlkg/m".

Discussion

e Cyrogenic pressurized tank gives twice the hydrogen storage density if
compared with the normal pressurized tank with ambient temperature.

e Cyrogenic liquidified storage gives comparable result if compared with
the cyro-genic pressurized storage.

Problem 6.5

Explain the different values of v in Table 6.2.1, for storage tanks pressurized
at 350 bar. Note that ~y,; denotes the reciprocal of the material density.

e Solution

a) Calculate thickness of housing:
According to equation (5.33)

p-d
w=-—
4-0
where d is the diameter of the tank shell, while o is the maximum tensile
stress.
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b) Derive the vy, for spherical shape:

d
mps = prdiw = p-wd* - pa
4o
1 6p
=p.Zqgdd £
P 67T 4o
p
= — V—
2 p o
Thus, the reciprocal of density is
1% 20
Vht = —— = 57—
mpe  3pp

¢) Evaluate and explain different vy, According to Table 6.2.1, the reciprocal
of density can be calculated for different materials:

Material p kg/l] o [MPa]
Steel 8.0 460
Aluminum 2.7 210
Magnesium-composite 1.9 1000
~2x460 x 10°
Thtsteel = 578 % 350 x 107
= 1.0951/kg.
_ 2x210x 108
Thtalt = 397 % 350 x 107
= 1.4811/kg.

2 x 1000 x 106
3 x 1.9 %350 x 10°
= 10.031/kg.

Yht,composite =

Discussion

e The differece in v, is caused by differences in tensile strength o and
material density p.

e In the energy density calculation,
Ew _ Hi
" Ynt

the numerator focuses on the mass fraction of hydrogen that is stored
in the system, while the denominator includes the effect of material
density and geometric shape.
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e As a further step in the future, increasing pressurized level (to-
wards 700bar), or choosing material with higher tensile strength (till
6000MPa) can improve the storage system and will be gradually in-
troduced.

Problem 6.6

Evaluate the storage pressure and the specific strength (ratio of tensile
strength to density) of the tank material that would be necessary to meet
the 2015 DOE targets of Table 6.2.1 with gaseous hydrogen.

e Solution

a) Calculate the 2015 DOE target

L — 3.0kWh /kg

Mht
T = 2.7kWh /1 (10.30)
€t = 9.0%
b) Calculate the pressurized level
4 o . 3 . 6 o 3
V= Sk = 20— = 2469 x 10~°m® /mol

Solving the RK-equation from Problem 6.1,

8314 x 300 9.251 x 10~°
V —1.837x 1075 /300 x V (V +1.837 x 10—
= 394.6MPa.

c¢) Calculate tensile specific length of material
Density reciprocal:

 Hiépe

Yht = (%)
Vit
33.33kWh/kg x 0.09
B 2. 7kWh/1
= 1.1111/kg.

Therefore, the tensile specific length is:

o 3
; = §7htp|pz395MPa

3
=5 % 1.111 x 1072 x 395 x 10°
= 657.1kNm/kg.
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which is larger than that of magnesium-based composite fiber:

1
(5> = 1090 o6 3kNm kg
P compsite 1.9

Discussion

e As for current technology level, both the pressurized level and the
housing material tensile strength have to be improved a lot to meet
the 2015 DOE requirement.

e (Carbon fiber can probably have a specific tensile strength of a few
thousands kN m/kg, which might be a probably candidate.

Problem 6.7

Explain the explicitness of the number of cells N in (6.72).

e Solution

Assume the first approximation in (6.72) holds:
Pauz(t) = PO + N - Raux * Ifc(t)

According to the semi-empirical data, which sugests a linear dependency
between P,,, and Py for first order approximation:

PauxO(Pst
Paum:OO+Ol'Pst
=Co+ C1 - Uge(t) - Ifc(t) - N.

As the main component of the auxiliary poewr, Py contains the number
of cell explicitly.

Problem 6.8

For the fuel cell stack of Fig. 6.11, find (i) the maximum output power
Pfesmaz, (i) the current I, p at which this power is yielded, and (iii) the
current Iy., that maximizes the overall efficiency. Compare the result with
the curves shown in the figure.

e Solution

Assume: According to the fuel cell power & efficiency graph: N =
250, Upey = 1.23V,upc = 0.82V, Ap. = 200em?, Ry, = 0.0024 2, Py =
100 W Kgua = 0.05V
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a) Find the optimal current Iy, p
As is known from (6.79), cell power can be described as:

Pfcs = (N . Uoc — N - Iiaux) Ifc - PO — N - RfcIfc2(t)

oP CS|
alfc Ifc,p

At optimum, set derivative = 0, we have:

N Uy — N - Kguw = 2N Ry I e p(t)
NUse — N Kaua
2N Ry,
~ 0.82—0.05V
2% 0.02402

=160.4 A

IfC7P = I;c =

b) Find the maximum power of one single cell

Pfcs = (N . Uoc — N . /Qaux) Ifc — PO — N . Rfc Ifcz(t)
=250 x (0.82 — 0.05) x 160.4 — 100 — 250 x 0.0024 x 160.42
= 15.34kW

c¢) Find the optimal current in terms of maximum efficiency
The cell efficiency can be described as:

Uoc Rfc PO Raux
s I fe) = T 1-— Uoc - -
nt( ! ) ndUrev ( Ifc UocIch Uoc)

95

As for the same reason, the maximum efficiency is achieved if the deriva-

st Po

tive is set to zero.
current in terms of maximum efficiency is:

[ p 100
Irey = - = 12.91A
fen =\I'N Ry, 250 x 0.0024

Problem 6.9

8Ifc|1fw7 = Ogiveslj%c)n = wn;; Thus, the optimal

Calculate the same quantities as in Problem 6.8 for a small fuel cell stack
powering a racing FCHEV (see Sect. 8.6). Use the quadratic expression (6.71)
for P, and the following data: N - U,. = 16.8, N - Ry, = 0.137, Py = 19.89,

K1 = 6.6, kKo = —0.024.
e Solution

Assume: New data and new representation of Pg;:

Pauz = PO + K1 Ifc(t) + K2 - Ifc(t)
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where N - Upe = 16.8, N - Ry, = 0.137,
Py = 19.89, k1 = 6.6, 1o = —0.024.

a) Find the optimal current Iy, p
As is known from (6.79), cell power can be described as:

Ptes = (N -Upe — k1) It — Py — (N - Rye + K2) I3,

OPjcs

At optimum, set derivative - T e = 0, we have:
N Uoc — k1
Ifep =17
fel 72 (N - Rye + 12)
B 16.8 — 6.6
~ 2(0.137 — 0.024)

=45.13 A

b) Find the maximum power of one single cell

Pjes = (N - Uoe — k1) Iye — Py — (N - Rype + ko)1,
= (16.8 — 6.6) x 45.13 — 19.89 — [0.137 4 (—0.024)] x 45.13>
=210.3W

c¢) Find the optimal current in terms of maximum efficiency
The cell efficiency can be described as:

Pres(Ife)
s I'c =
Nst(Lye) N Ui Iy
= nd UOC 1 — PO + M ch + 2 IJ%C _ ch[,?c
’ Urev Uoc Ich Uoc Ifc

As for the same reason, the maximum efficiency is achieved if the deriva-
3 3 Onst — 3 2 _ P 3
tive is set to zero. oLy e = OglvesIfcm = SINT Thus, the optimal

current in terms of maximum efficiency is:

| P 19.89
Iro, = =/ = 13.25A
Ten =\l 'ky + N Rye 0.1370.024

Reformers
Problem 6.10

Derive (6.95).

e Solution
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As for a Methanol Reformer, the chemical reactions can be concluded as
follows:
CH30OH + H,O — COq + 3Hy, Ahp = 584kJ/mol

Assume n,,,ns,Nco,, N, denotes the number of moles of methanol,
water, carbon-dioxide and hydrogen at time ¢, respectively.
a) Methanol

Using the extent of reaction:
N (0) — ()
N (0) ’

xr =

we have:
N, = N (0) (1 — ).
b) Watersteam

=ns(0) —ny(0) - x

= nm(0)(0 — )
where o denotes the ratio of the moles of water to the moles of methanol,
which is the feed-in gas ratio and is assumed to be known at the beginning

of reaction.
¢) Hydrogen

np =3 Ny (0).
d) Carbon-dioxide

n+ COs =1 2-ny(0).

e) Derivation of the methanol evolution
Substitutes all the molar number into the molar fraction, we have:

Omle) = N+ N +7:Lh +nco,
_ N (0)(1 — )
N (0)(1 — ) + np(0) (0 — ) + 4 - = - npy, (0)
1—2z
T U+o)+2%

Given that at the beginning of the reforming process, the feed-in gas ratio

is predefined S:L((%)) = ¢. Thus,

nm (0) 1
nm(0) +ns0)  1+o

Con() = (1 +a)1+1a‘ﬁcm(0).

Cm(0) =
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which exactly gives (6.95).

Supervisory Control Algorithms

Driver’s Intepretation
Problem 7.1

An ICE-based powertrain has the following characteristics: v = {15.0,8.1,5.3,3.9, 3.1, 2.6},
wheel radius r,, = 0.32m, rated engine power Fp ;. = 92kW at a speed
We,maz = D24rad/s, engine braking torque Tp min = 20 Nm. Build a driver’s
interpretation map. Then, follow a torque control structure to generate an

engine torque setpoint for a driver pedal request of 50% at a vehicle speed of
100km/h and fourth gear.

e Solution

The curve describing the maximum force available at the wheels consists of
a first part that reproduces the engine maximum torque curve (not known in
this exercise) for the 1st gear, and a second part that is the envelop of the
maximum-power engine points at different gears. The maximum-power engine
point is at w, = 524rad/s and T, = 92 - 103/524 = 176 Nm.

The vehicle speed at gear ¢ is related to the engine speed by the equation
vy = Ty /i - we, for i = 1,...,6. The force at the wheels is Fy; = v;/ry - Te.
Since v = 100/3.6 = 27.8m/s is greater than vy, = 524 -0.32/15 = 11.2m/s,
the maximum-power range is active. Therefore, F; = 92 -103/V corresponds
to 100% accelerator pedal. The maximum brake power is calculated from the
engine data as 20 - 524 = 10.5kW. Thus F; = 10.5 - 10%/V corresponds to
0% accelerator pedal. At the current speed, the maximum force is 3312 N,
the minimum force is 378 N. For a pedal depression of 50%, assuming linear
interpolation, we have a force request F; = —378+(3312+378)-0.5 = 1467 N.
Assuming 4th gear, the engine torque is T, = 0.32/3.9 - 1467 = 120Nm at a
speed w, = 27.8-3.9/0.32 = 339rad/s = 3235 rpm.

Problem 7.2

Add an electric machine to the powertrain of Problem 7.1, having the
following characteristics: maximum torque T}, mer = 140Nm, base speed
wp = 300rad/s, maximum power Py, mqr = 42kW. Calculate the total torque
demand for the same driving situation as in Problem 7.1 if power assist is
authorized at each vehicle speed. Assume coupled regenerative braking.

e Solution
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The vehicle speed corresponding to the base speed of the motor is 300 -
0.32/11 = 8.7m/s = 31.4km/h, thus lower than v; (see Problem 7.1). There-
fore, the actual vehicle speed corresponds to the maximum-power range of the
motor. Summing the two powers yields 92+42 = 134 kW. The minimum force
at the wheels does not change with respect to the ICE case. The maximum
force is now Fy = 134 -103/27.8 = 4820 N. For a 50% pedal position, the force
demand is Fy = —378 + (4820 + 378) - 0.5 = 2221 N, which corresponds to
a total powertrain torque of T; = 2221 -0.32 = 711N. In the 4th gear, that
would correspond to an engine torque T, = 711/3.9 = 182 Nm, which is very
close to its maximum torque.

Problem 7.3

Propose a driver’s interpretation function for a BEV whose motor and battery
have the same data as in Problem 4.9. Assume a coupled braking circuit.
Calculate the torque setpoint for (i) w,, = Orad/s and 0% pedal depression,
(ii) wy, = 100rad/s and 0% pedal depression, (iii) w,, = 250rad/s and 50%
pedal depression.

e Solution

The 0% pedal position corresponds to the minimum between I .y, as calcu-
lated in Problem 4.35 and a negative torque for which the driver has a similar
feeling than with an ICE-based powertrain. Fix this torque to, say, 1/10 of
the maximum torque. Thus

Win . - 2 Ry - (0.1 Ipaz)
—Kq Or Wiy, ,
2-R, P Ka
Ia min — —0.1- Imaw f m $7
: R I A
Pma;E
- else.
Kg * Wm
while for 100% acceleration
Pma;E
Loz for w,, < ———,
I = Raq * Imaz
a,mazx Pmam
_— else.
Ka * Wm

The curve I, = f(a,w,,) is obtained by interpolation between these two limits,
Ia = La,min +a- (Ia,maac - Ia,min)-

For the case (i), Lo, min =0 and I, =T, = 0.

For the case (ii), wy, = 100rad/s and w,, > M =2-0.05-(0.1-
88)/0.25 = 3.52rad/s. Thus I, = Iy min = —0.1-88 = —8.8A, T, = —2.2Nm.

For the case (iii), w, = 250rad/s and w,, < 4-10%/(0.25-0.1 - 88) =
1818 rad/s. Thus Ty, = —2.2 + 0.5 - (22 + 2.2) = 9.9 Nm.
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Problem 7.4

Derive a PI model for a human driver of an electric vehicle that tries to
follow a prescribed drive cycle acting on the acceleration pedal. Derive a gain-
scheduling tuning of the PI parameters. Vehicle data: mass m, = 1360kg,
2 pa-Af-cq=0.25N/(m/s)?. Evaluate the PI coefficients for a vehicle speed
of 20m/s. Assume perfect recuperation (decoupled braking).

e Solution
Vehicle dynamics can be generally written as

dv F,—co — cg - 02

dt My
The driver is sensitive to the difference between v(t) and vs(t). Its action is
on the acceleration and brake pedals. Define the general driver’s output as
the force F; (positive for traction, negative for braking). Thus

dv u—co— co - V2

dt m ’

u:Kp~(v—vs)—l—Ki-/(v—vs)dt.

Linearize around an operating point v, then define us = co+co -vg, z=v—s,
w = u — us. Then evaluate

dz w—ca-(vV? =02 w—c3-2-v5-(V—vs) wW—2-ca-05"2

= ~ = =Kw—az,

dt My My My
where K = 1/m, and a = 2 - ¢ - vs/m,,.
Now close the loop with the driver regulator

szp-z—l—Ki-/zdt

Obtain
s 2=K Kys2+K-K;-z—a-s-z— 2(s)(s°+(a—K-K,)-s—K-K;) =0

By pole-placement, target at

wp =+ (—K-K;)=1 rad/s,
and
(=(a—K- -K,)/(2 -w,)=0.7

With the numerical values, K = 1/1360 = 7.35-10"% a = 2-0.25 -
vs/1360 = 3.7-107% - v,, K; = —1/K = —1360, K, = (a — 0.7-2)/K =
(3.7-107% - v, — 0.7-2)/7.35- 10~*. For vy = 20m/s obtain K, = —1898N.
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Regenerative Braking Control
Problem 7.5

Derive an ideal law to split the braking effort between the two axles under
the assumption that the adherence is the same at each wheel.

e Solution

Write force and torque balance equations for a two-wheel equivalent vehicle.
We have four equations in the four unknowns Ny, Na (normal forces), Fy, and
I, (longitudinal forces), where subscript 1 is for front wheels and subscript 2
for rear wheels, while the total required force F} is known:

Fy + F, = F;, (balance of logitudinal forces)
Ny + Ny = N, (balance of normal forces)
N-b=F,-h+ N;-(a+b), (balance of momenta)
F, F:
Fll = FZ, (equal adherence)

where N = m,, - g is the vehicle weight, a and b are the horizontal distances
of the wheel axles from the center of gravity (CoG), and h the height of the
CoG.

By combining these four equations, obtain

N-b F-h
1_a—|—b a+b
N-a F,-h

No =N — Ny =
2 Py S

During braking, F; < 0 and the front weight increases. Moreover, the equal
adherence condition reads

Fy - Ny = Fy - Ny. (10.32)
For a given F}, obtain the ideal split
F,-(N-a—F;-h)=(F—F)-(N-b—F;-h) = Fy,-N(a+b) = F;- (N -b—F;-h),

or
Fi-b F?-h
= — .
a+b N-(a+b)
In terms of torques
T, -b T? - h
T ==t ¢

Ta+b Nory-(atb)
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_Ti-a T? - h

Ca+b N-ory-(a+b)

The equal adherence curve Ty = T(T}) is obtained by manipulating (?7?)

15

as
Fi-(N-a+F;,-h)=F,-(N-b—F;-h)
or

T2 h+2 T -To-h+Ti N-a-ry—To - N-bry+T2-h=0 (10.33)

Problem 7.6

Consider a vehicle having an electric powertrain on the rear axle, with
Tomaz = 1540Nm (at the wheels), Py, max = 42kW, and the following
vehicle characteristics (see Problem 7.5): static weight distribution fraction
s = 0.40, height of CG h = 55cm, wheelbase | = 2.685m, wheel radius
Ty = 0.32m, vehicle mass m, = 1932kg. Evaluate the regenerative braking
torque and the frictional braking torque on the front and rear axles for a total
braking torque T3 = —1200Nm, vehicle speed v = 90 km/h, under (i) a max-
imum regeneration strategy, (ii) a constant braking distribution between the
axles of 70%—-30%, (iii) ideal braking as in the result of Problem 7.5, and (iv)
a modified brake pedal that induces regenerative braking up to a deceleration
of 0.05g and then frictional braking with a constant braking distribution of
70%-30%.

e Solution

At v = 90km/h the maximum regenerative capability of the electric power-
train is

42103
—— = 537Nm.
3.6~ 0.32
The braking power is
90 - 400
—— = 31.2kW.
3.6-0.32

In the case (i), Tree = —537Nm; Ty = —1200 + 537 = —663Nm, Tp =
0Nm. The braking split ratio is 55%/45%. However, this value is above the
equal-adherence curve, thus it is not admissible. The quantity 7). should be
limited as in the case (iii).

In the case (ii), Tree = —0.30 - 1200 = —360Nm, 773 = —1200 + 360 =
—840Nm, 75 = 0 Nm.

In the case (iii), using the formula of Problem 7.5,

12002 - 0.55

Tree = 040 (=1200) + {oo0 =030 2685 — oL Nm,

and 71 = —1200+4431 = —769Nm, T = 0Nm (braking split ratio 64%/36%).

In the case (iv), the threshold torque is m, - a -, = 1932+ (—0.05) - 9.81 -
0.32 = =300 Nm. Thus T}e. = —300Nm, 77 = 0.7-(—1200+300) = —630 Nm,
Ty = —270 Nm.




References 103
Problem 7.7

Consider a conventional (coupled) braking system where Ty = k- T1 (T7 <
0,75 < 0). Calculate the maximum value of the adherence that can be ob-
tained under the assumption of equal adherence between the axles (ideal dis-
tribution curve) and the corresponding total braking torque. Check what hap-
pens for higher braking torques. Then, calculate the limit value of k that can
be achieved. Use the numerical values of Problem 7.6.

e Solution

The limit of conventional braking systems occurs when the practical braking
split curve meets the ideal split curve. The latter is given by (??), while the
former reads T = k - T1. By combining these two equations, obtain

T _ —N-ry-(a—k-b)
LT R+ k)2

and
—k-N-ry-(a—k-b)

h-(1+ k)2

Since both T} and T, are negative quantities, a condition on k is that
a—Fk-b)>0,or

Ty =

a
k<l
<3

For k = a/b, the braking distribution is such that
Ty 1 Ts k

T, 1+k T, 1+k

The common value of the adherence factor (u1 = u2 = u) is obtained by
calculating N7 and N,. First evaluate

—N-ry-(a—k-b)

Ti=T1+To=(01+k)-Th =

h-(1+k)
Then, find
N Nb-Thor, N-b+N-(ak-b) . Nk
e a+b T A4k -(a+b) T 11k

and the adherence factor as

—T1 —T2 a—k-b

TN tw Nory h-(1+k)

I

With the data of Problem 7.6, the limit £ = 0.4/0.6 = 0.667. For a value
k = 0.3/0.7 = 0.429, the maximum adherence is 0.488. The limit values
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of Th and T, are -2055Nm and -881 Nm. The maximum braking torque is
T; = —2935 Nm.

For higher braking torques, e.g., T —3500 Nm, the braking split ratio would
be 2450/1050Nm. The vertical forces would be N; = 119%'_?1'2%1 = 13632N,
Ny = 1932 - 9.81 — 13632 = 5321N. Thus pu; = 2450/13632/0.32 = 0.56
while po = 1050/0.32/5321 = 0.62. This circumstance o > p7 is potentially

dangerous and should be avoided.

Problem 7.8

Derive the ideal braking distribution law as in Problem 7.5 when one axle in
motoring while the other is braking (for instance, battery recharge mode in
an HEV with an engine on the front axle and an electric machine on the rear
axle). For simplicity, assume a = b.

e Solution
As in Problem 7.5,
Fy + I, = F;, (balance of logitudinal forces)

Ny + N, = N, (balance of normal forces)
N-b=F;,-h+ Ny-(a+b), (balance of momenta)

but now
F1  F2
N1 N2’
the latter being the condition of equal adherence py = —po. By combining
these four equations, obtain
N-b F,-h
Ny = —
"Ta+b a+b
. F,-h
Ny =N —N; = —
E 'S aTb T ath
Fy - Ny=—F5- Ny, (10.34)

from whence
Fy(N-a+F,-h+Fy-h) = —Fy-(N-b—Fy-h—Fy-h) = Fy-N-a+h-F? = —N-b-Fo+h-Fj.

There are two solutions to this equation for a = b. One is Fy = F} + % The

other is F, = —F}, which does not imply the satisfaction of the total force Fy

but constitutes a limit in the 2nd and 4th quadrant of the plane F;—F5.
From the first solution, find

T, N-a-ry T, N-a-ry

7=t _ 2w ot
175 2-h 2= 5 Ty
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Dynamic Coordination
Problem 7.9

In a series HEV the supervisory control yields engine torque and speed set-
points T, and w,. Derive a simple generator controller in order to achieve the
desired speed of the APU.

e Solution

The dynamics of the APU can be described by the simplified equation

dwe(t)
Oapu - 5 = Te(t) — Ty(t).

The generator torque open-loop setpoint is Ty s, = T¢ sp. However, in order to
let the generator speed converge toward the value we, at least a proportional
correction should be added. Assuming T, (t) = T¢ s, (1),

Ty(t) = Te(t) + kyp - (wg(t) — we(t)).
The closed-loop dynamics therefore reads

Oupu -5 -0 =—K,, - @,

which converges to @ = 0 with a time constant Oy /kp.

Problem 7.10

Derive the dynamic equations to control the generator torque in a simple PSD-
based system like that of the Toyota Prius. Neglect the generator inertia.

e Solution

Manipulate the dynamic equations (4.163)—(4.164) with Oy, = 0 to obtain

dw,(t) 1+2
carrier'—:Tet_ 'Tta
0 D — g - 2y
dwy (t)

Oring - = é cTy(t) + T (t) — Tr(2).

dt

where Ocqrricr is represented by @, and O,y by the vehicle inertia.

The resulting dynamics for the engine speed is rather similar to that of
Problem 7.9, except for the 1er—z factor now multiplying the generator torque.
It is laborious but straightforward to show that the same dynamic equation
for we (but not for wy!) applies also to the case where Oy, is not negligible.
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Problem 7.11

In a post-transmission parallel HEV, in principle it is possible to compensate
the torque gap at the wheels during a gear shift. Evaluate the time elapse after
which the vehicle speed before the shift is recovered (¢, recovery time) and
the necessary electric energy for a downshift from 4th to 3rd gear occurring
during a constant vehicle acceleration. Data: gear ratios including final gear
v = 5,4, motor gear ratio = 7, = 11, transmission efficiency n;, = 0.97,
motor efficiency 7,, = 0.85, wheel radius r,, = 0.29m, engine shift speed
we = 45001pm, shift duration ty = 1s; acceleration a = 0.5m/s?, vehicle
mass m, = 1360kg, ¢, =0.009, ¢4 - Ar =0.5 m?.

e Solution

Define the two time points ¢; and t2 as the beginning and the end of the gear
shift (to — t1 = t5). Evaluate

4500-7

v 2 o(t) = we’,i_gift =30 =27m/s =98km/h.
T 0.29

Without compensation, the vehicle speed decreases during the shift according

to the law ao(t) n )
u(t) Pa-Af-cq-v
a0

or (2.17) with o = /%512 = 0.015, 5 = /9.8 0.009 = 0.3. The coasting

velocity at t5 is

Vg = g - tan (arctan (% -vl> —a-f-(ta — tl))

03 - tan (arctan <w . 27> —0.015-0.3 - 1>

3

2 My

= 0.015 0.3
=26.7m/s = 96 km/h.

After the engine is engaged again, the speed increases according to the linear
law v(t) = vg + a - t. The recovery time is
V1 — V2 0.3
= — =0.6s.

a 0.5
Thus the total time lost is ¢, = ts +t3=1+0.6 = 1.6s.

This time can be recuperated if the motor provides the missing torque
during the shift. This torque is

ty =

F.(t . . ceq - Ar-v(t)?
Tty = D) _ muadkmy et pa-ca- Ay oot
Tw Tw

The energy provided by the motor is calculated from
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ABy = [[am(®)- Tutdt = — - [ Fio) - v(0yit =
Ug
:% ((mva+mch)/U(t)dt+/0'5pachf’U(t)sdt)
1 ’U%-’U% My - Cp 2 2 4 4
:E-(mv' 5 T o, (vy —v1) +1.2-ca Af - (v — 1)/ (8- a)),

where now vo = v; +a-ts =27+ 0.5-1=27.5m/s. Thus the energy is

1 27.52 — 272 1360 - 0.009
AE,, = —— - {1360 - - (27.5% — 272
0.97 ( 2 T 505 ( )+
27.5% — 274
05-1.2-05- "= ) =95.7kJ
+ 4.0.5 ) ’

with an average power P, = 25.7kW.

Problem 7.12

Consider a parallel HEV with an electric machine mounted on the primary
shaft of the gearbox with a reduction gear ratio v,,. During a gear shift, the
inertia of the motor sums up to the inertia of the primary shaft. To reduce the
synchronization lag, the motor in principle could yield a torque to compensate
its own inertia. Model this situation with simple equations. Then calculate the
motor energy consumption for the following data: v, = 3.3, downshift from
4th to 3rd gear with v5 = 5.5, 74 = 3.9, vehicle speed v = 60km/h, motor
inertia ©,, = 0.07kg/m?.

e Solution

During synchronization without motor assist, the dynamics of the primary
shaft reads

dwp (t)
dt

O

Tw

= Tpi(t) - Yo + k- (m - wp(t)> ,

where the second right-hand term simulates the action of the synchronizer
which is proportional to the difference between the secondary speed with the
new gear ratio and the primary speed. The term 7, ; is transmitted from the

motor inertia
dwy,

dt -

Tm,i:_ m "

Since Wy, = Yim - Wy,

(Qp + '77271 ' Qm) : dwgt(t) =k- (71)(?1” ik - Wp(t))

and the primary shaft speed increases from the initial value w4 = 2= up to

Tw

the new value wp 3 = ”T'ZS. The variation law is (ideally) asymptotic,
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ot = B0 (10200 00 g (LB,

Tw Tw

where © £ O, + O,, - 72,. To decrease the motor inertia, one should apply a
torque T, such that

@m . dwm(t) = Tm - Tmz
dt ’
such that T;, ; = 0, thus
dwny, (t) dw,(t)
dt Tt T
O - k- (v(t) - 2 = w,(1))
= Qp 5

where wy(t) is still calculated with the equation above but with ©,, instead of
e.

The motor power is

Pm: m * Wm =
dwp.

dt

dwy,

Yot = O

The energy consumed results from the integral of P, or

w2 4 — w?
E,, =0, 72 - p,3 p,4
Tm 5
Numerically,
70-5.5
Wp,3 = m =334 rad/s
70-3.9
i = 3G gy 2o rad/fs
3342 — 2372
E,, =0.07-3.3%. — = 21KkJ

Heuristic Energy Management Strategies
Problem 7.13

Consider a pre-transmission, single-shaft parallel HEV with fixed gear reduc-
tion. System data: gear ratio including final gear ratio v = 4, engine maximum
torque curve Ty maz(we) = 504 0.7 - we — 1-1073 - w?, motor maximum torque
Tnmae = 150Nm, motor maximum power Py, mqe = 25kW, vehicle data
cp =033, Ay = 2.5m?, ¢, = 0.013, m,, = 1500kg, O,, = 0.25kgm?, r,, =
0.25m. Consider the simple, SOC-independent heuristic energy-management
strategy:
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EV mode if we < 1000rpm or if T, < 40 Nm,
power assist mode if T, > T max,

else, recharge mode if T, > 0

regenerative braking if T, < 0.

Evaluate the scheduled mode, the engine torque, and the motor torque for
the following driving situations: (i) v = 17km/h, a = 1.37m/s?; (ii) v =
38.76km/h, a = 0.094m/s?; (iii) v = 28.8km/h, a = 1.56 m/s?; (iv) v =
95km/h, a = 0.19m/s?.

e Solution

For the case (i) the required propulsion force is

w
2 2
Tw

=1503-1.369 + 191.3 + 0.47 - 4.75% = 2257 N.

Ft = (mv—i—

-a+mv-9.81-cT+l- w-Cp-Ap-v? =
) 5P 7

The engine torque would be T, = F}- %“ = 2257-0.25/4 = 141 Nm. The engine
speed would be w, = v - % = 75.9rad/s = 725 rpm. The mode selected would
be the ZEV (we < 1000rpm and T, > 0). The base speed is 25 - 103/150 =
167rad/s. The motor torque T;,, = 141 Nm is lower than the motor maximum
torque at 725 rpm, which is 150 Nm.

For the case (ii), the required force is 1503 - 0.094 4+ 191.3 + 0.47 -
(38.76/3.6)% = 387 Nm. The engine torque would be of 387-0.25/4 = 24.2 Nm.
The engine speed would be 38.76/0.25 - 4 = 172rad/s = 1645 rpm. The mode
selected would be again the ZEV (T. < 40Nm with w. > 1000rpm). At
1645 rpm (higher than the motor base speed) the motor maximum torque is
25-10%/172 = 145 Nm. Thus the ZEV mode is feasible.

For the case (iii), the required force is 1503-1.56+191.3+0.47-(28.8/3.6)% =
2535N. The engine torque would be of 160 Nm. The engine speed would be of
1230rpm. The engine max torque at that speed would be T¢ 40 = 50 + 0.7 -
128 —1-1073 - 1282 = 123 Nm. Thus the mode selected would be the boost
(Te > Te mas and we > 1000rpm). The motor torque would be 160 — 123 =
37 Nm, which is lower than the motor max torque.

For the case (iv), the required force is 805 N. The engine torque would be
of 50 Nm. The engine speed would be 4033 rpm = 422rad/s. Thus the selected
mode would be the battery recharge (T, > 40Nm and w, > 1000rpm). The
maximum generating torque at 422rad/s is —25 - 103/422 = —59 Nm. Thus
the maximum engine torque could be 50 4+ 59 = 119 Nm (feasible because the
maximum engine torque is 167 Nm).

Problem 7.14

Consider the following SOC-dependent energy-management heuristic strat-
egy:
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e engine on with P, = P, — P, 3(&) if Py > Pe start(€),
e else, engine off,

with the definitions Pt,b = _Pm,maw+2'Pm,mam/(§hi _glo) : (g_glo)u Pe,start =
Prymaz/ (Eni — &1o) - (€ — &) and the numerical values &,; = 80%, &, = 40%.
Assume a unit-efficiency motor operation. Perform again the calculations of
Problem 7.13, for £ = {55,70}%.

e Solution

For the case (ii), engine possible speed and torque w, = 172rad/s, T, =
24.2Nm would lead to P. = 4.16kW. Since Py, maz = 25kW, Pemar =
24.2kW, evaluate

€—40

m . Pm,mam =94kW for g = 55%,

Pe,start =

=18.75kW for ¢ =70%.

Now, P, < P, start, thus the selected mode is ZEV.

For the case (iii), we = 129rad/s, T. = 160Nm would lead to P, =
20.6kW. In this case Py, mas = 150-129 = 19.3kW, P, 0 = 15.95kW, thus
P, start = {7.2,14.5} kW for the two SOC values. In both cases, P, > Pe siqrt-
Evaluate P, = —19.3 4 (£ —40)/40 - (19.3 - 2) = {—4.8;9.7} kW. Therefore,
P, would be {25.4;10.9} kW. After saturation, P, = {15.95;10.9} and obtain
as a difference P,, = {4.65;9.7} (boost mode).

Fot the case (iv), we = 422rad/s, T. = 50Nm would lead to P, =
21kW. Since Py, maz = 25kW and P ar = 70.6kW, evaluate P siort =
{9.4;18.75} kW. In both cases, P. > P, stqrt. Evaluate P, = {—0.55; 18.2} kW
and find P, = {21.55; 2.8} kW. No saturation is needed and P,,, = {—0.55,18.2}
thus the selected mode is recharge, resp., boost.

Problem 7.15

Give an intepretation of the heuristic energy-management strategy of Prob-
lem 7.14 in terms of equivalent “cost” of the battery power with respect to the
fuel power. Assume a Willans-type engine model with constant parameters e
and Py and a unit-efficiency electric machine.

e Solution
The heuristic rule reads (P; is the demand power)

Pe:O if Pt>Pe,start+Pt,b
P.=P, — Py if P> Pestart + Prp.

Define an “equivalent” power consumption as H = P, + s - P,,, where s is the
equivalence factor. Using a Willans engine model,
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PO P,
H:?(Pmt>0)+?+S(Pt—Pe)

Note that:

For Pe =0, H =5 P;.
For P.=P, — Py, H="10 2=l 4 g p

€ €

The switching condition for which P, = 0 is preferable is that s - P, <
Poy PoPuv 4 6Py, thatis, Pre(s — 1) < 2o P ye(s — 1), or P < Lot Py,
By comparing this switching condition with the heuristic rule, derive

Pe,start as

P,
Pe,start - 70 + Pt,b;
e-s—1
from whence derive
1+ F
s-e=

Pe,start - Pt,b

as the equivalence rule between the two strategies (i.e., between s and P siqrt)-

Optimal Energy Management Strategies
Problem 7.16

Derive the exact formulation of the Euler-Lagrange equation (7.14) if the
equivalent-circuit parameters of the battery are affine functions of SoC as
described by (4.64) and (4.66). Consider the following system and operating
point: battery capacity ), = 6.5 Ah, nominal open-circuit voltage U,. =
250V, nominal internal resistance R; = 0.3 {2, electric power P, = 15kW,
variation of the open-circuit voltage with respect to SOC ko = 20V, and
variation of the internal resistance k4 = —0.1 (2. Evaluate the characteristic
time constant associated with the variation of the Lagrange multiplier and
assess the constant-p approximation.

e Solution
The Hamiltonian function is
H =my +p- &,
where & = —1;,/Qo. The Euler-Lagrange equation is written as

L _9H _p 0L
H= 8I_Q0 ox

For an equivalent circuit model,
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Use Uz P, A Use
I, = - x - == —A
"“"2°R, \\4RZ R, 2R
oL 1 1 Use
WU, 2-R; 2-A 2-R?
o Ue 1 (Ui P
OR;, 2-R? 2-A 2 R} R?
Numerically,
2502 15-103
A= 5 — =351.58 A
(2-0.3) 0.3
oI, 1 1 250
= — . =—-031A/V
Uy 2-03 2-351.58 2-0.32 /
ol 250 1 2502 15-103
_ _ - =20A/0
OR; 2-0.32  2-.351.58 ( 2.0.33 * 0.32 /

% oI . oU,. 0Ol . OR;
dr  9U,. Oz OR; Ox

= —0.31-20420- (—0.1) = —8.2 A/-

and finally obtain
po ol 1 8.1 1

© Or Qo  6.5-3600  2854s

Problem 4.36

Starting from the results of Problems 7.16, 4.26, find an approximated ex-
pression for the variation of the Lagrange multiplier. Evaluate the error with
respect to the exact solution.

e Solution
Using the result of Problem 4.26,
Pb RZ

~ T — 2
IbNI—UOC+2'U—§c Pb7
thus

oI P, Ri
=—— —6-— P,
oU,. U2, Ui ot

ol 2,

OR; U3, P

With the numerical values of Problem 7.16 compared to the exact solution,
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ol 15-103 0.3 o
0. o502 6 - Sroi (15-10%)" = —0.34 A/V  (10% error)
oI 2 .2
OR;  250% (15-10°)" = 28.8 A/ (50% error)
ol
or —0.34-20429-(-0.1) = -9.7 A (20% error)
x

Problem 7.18

At low temperature operation, the variation of the internal parameters of a
battery can be significant. Develop a version of the ECMS where variations
of internal resistance, via the parameter k3 of (4.66), with temperature are
accounted for. Cell data: k1 = 3.4V, kg = 0.5V, k4 =0, and

0.01
R3 = 0.015 — 7.9[; . K,

with ¥y in °C. The nominal SOC is £ = 0.5, temperature J = 25°C, power
P, = 0.1 Py mas, thermal capacitance Cyp = 300 J/K, thermal conductance
1/Ry;, = 0.5 W/K, and capacity @, = 6 Ah. Evaluate the time constant of the
adjoint states.

e Solution

The quantity to be minimized is still the fuel consumption rate. The SOC
variation is still proportional to the current. However the latter varies as a
function of SOC and temperature. Thus the state equation for the temperature
must be taken into account. The Hamiltonian is

* 0
H=m¢+p - =+v-—,
where 0¢/0t = —1I;,/ Qo and

g 99 ) N1
E—E—(Rl'lb—a-ﬁ)-m,

where 9 2 9 — Pamb- The Euler-Lagrange equations read

L oH 1 9L
H="0e =1 Qe o

. O0H o 1
V——%——V (2 R’L Ib %—Oé> m

The quantity 01,/9¢ is calculated as

Oy _ 0ly OUsc Ol ORi 0L, . Ol
of — oU,. 0 ' OR, 0t  9U, " OR;

“ kg
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while

9~ OR; 99 OR; 99
With the numerical values for the open-circuit voltage and the internal resis-
tance are calculated as

3[1; 8 '8RZ— - 8]5 8/13

Upe =K1+ kK2-¢q=N-(34+05:-05)=365-NV

25
Ri=k3+ks-q=N- (O.015—0.01-E) =0.009- N (2,

while the maximum power can be calculated with equation (4.74)
U2, 3.65%. N2

4-R;  4-0.09-N
P.=0.1"Pyar =37-N W.

=370-N W

Pb,max =

This results in the numerical value for the current

2 P 652
n Uffp‘ﬁb»_\/ 3.65 LN

4. 4-0.0092  0.009
;o U | Usc \* By _
"T9R,; 2-R; R

2
_ 3.66 3.65 3 — 105 A
2-0.009 2-0.009 0.009

The variations in the current relative to vriations in the states {£, 9} are now

oL, 1 ) Use B
oU,. 2-R; 2-R,-A)

1 3.65 3.12
SR ( Rt I it |
2-0.009- N ( 2-0.009-192) N MV
oy Uee 1 (B UL\ _
oR;, 2-R? 2.A \R? 2-R})
3.65 1 37 3.652 75.2
_ a : _ =2 A0
2-0.0092  2-192 \0.0092  2-0.0097 N
O 5 19.05+752-0=—1.56 A
o
o, —0.01
SF = T5:2- =5 = —0.019 A/K

Following time constants of the lagrange mutlipliers are obtained
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1 oI, 1.56 .
e =—72.1075 s
Qo 0¢ 6 - 3600 /

2RI, 2 — —2.0.009-10.5-0.019 —5- 10~
_ blay T = 0.0017 /s
Crp 300

RIR B I®

Problem 7.19

Find the optimal-control formulation (Hamiltonian function and Euler-Lagrange
equation) of the energy management of a hybrid powertrain with an ICE and a
supercapacitor. Find under which approximation the costate is time-invariant.

e Solution
The state equation (4.117) of the supercapacitor reads

d R P, 2-P.
_UQ . 1— sc sc - _ sc.
dt*° ( U2, ) Cse

Define z £ Cy. - U2 =2 - E,. as the state variable, then

Sc

dx 2. P,

dt 1 Ry - Py - S

x

In this way the Hamiltonian can be built in power terms as
H:Pf+S'Pech7

where P..;, = dx/dt. The Euler-Lagrange equation reads

ds o oOH - 8Pech
dat  O0x ox '
where
8Pech7 2'PS2C'RSC'OSC
8:10 (.I - Psc : Rsc : Csc)z,

which depends on z, thus is not constant. Only if one neglects the resistance
Ry, then 0P, /0 is zero.

Problem 7.20

Formulate the energy-optimal energy management in the case of a double-
source electric powertrain, with a battery and a supercapacitor.

e Solution
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In this case the optimization criterion is the minimization of the battery con-
sumption, i.e.,
L:Pech:Uoc'Ilh
while the global constraint is over the supercapacitor SOC or voltage,
1 2
Therefore the Hamiltonian reads

H:Uoc'Ib(Pb)+S'P507

where Ps. = %, and the Euler—Lagrange equation is
ds OH 0P,
—_—= —— = — 8
dt Ox ox ’

for whose development see Problem 7.19. The global constraint over the state
2 can be used to find the unknown initial value of s. However, the constraints
locally applied to the state = are even more critical in this case.

Problem 7.21

Formulate the optimal energy management for a parallel HEV that includes
engine temperature variations. Assume that the cold-engine fuel consumption
is given by an equation of the type

;;Lf(Tevwevﬁe) = ;hf,w(Tevwe) ’ f(TeaWea 196)7

where ¥, is one engine relevant temperature and m¢ ,, is the warm-engine fuel
consumption. Moreover, assume an engine temperature dynamic of the type

Ct,e : /(96 = Pheat(Teaweaﬁe) — Q- (/(96 - ﬁamb) .
e Solution
The cost function is L :ﬁ@f. There exist two state variables, namely, the SOC
of the battery £ and the engine temperature .. Thus the Hamiltonian is
dg dd.

H:mf (Te7wea19e)+ﬂ'a+’/' dt ’

where & = g(T.,t,€) and 9 is given in the problem text.
The Euler-Lagrange equations read

= —%—ZI =—u- g—g as usual (see Problem 7.16)

o O0H _ 9my 9, o Of v (0Puear
V= = 0. a

a0, o0, oo, "o, T G

Define v = —v - Cy . to have a third term in the Hamiltonian that has the
units of a power. In that case, the state variable would be the thermal energy
accumulated Eyj,. Since there is no constraint over the state ¥, (or Eip,), the
terminal value of the second Lagrange multiplier v must be v(T') = 0.
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Problem 7.22

Evaluate the optimal gear ratio profile during an ICE-based vehicle accelera-
tion from rest to vy on a flat road. Use (i) the acceleration time ¢ and (ii) the
fuel consumption my as the performance index. Make the following simplify-
ing assumptions: constant engine parameters T, = T¢ a2, €, P, continuously
variable gear ratio, linearized vehicle dynamics

where Fy = u - T, and u = v/r,. Verify the solution given by optimal con-
trol theory by analyzing the dependency of the criterion on the gear ratio.
Numerical data: b = 1072, u = /74 € [Umin, Umaz] = [2,12], m, = 1000 kg,
vy =100km/h, T, = 150Nm, e = 0.4, Py = 2kW.

e Solution

Fuel power consumption:

Te -we + Fy Te-u-v+ By
Py = c = - .

Case (i)

||
\
||

3u

o Uppiin, 1f 8 < 0

u =
{umawifs>0

Euler-Lagrange equation:

H D0 -0,

thus
p(t) = p(0) -

Use the condition that H = 0 for “free final time” problems, to find that 1(0)

must be negative,
1
ILL(O) = _Ev

Moy
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since the quantity w - T /m, is positive. Thus p(t) is always negative and s(t)
is negative as well. Consequently,

u®(t) = Umaz-

Intuitively, the longest gear is to accelerate in the least time possible. Of
course, speed limits of the engine force the gear shift as soon as the upper
limit is reached. The criterion J = t; is obtained after having calculated

1

/J’(tf) - - UmazTe _ b vy :

My

() (o).

where = b- vy - My/(Umas - Te). It is easy to verify that t; is a decreasing
function of u. Also verify that

Then

w-T,
t) = e . 1 —b-t
v(t) p— ( e )
and
b-vy-m 1
te) = bty 2o g bty — =
v(ty) =vy=e T, T =e T~
as in the previous equation.
Case (ii)
T P,
J:/ Teouvt By,
0 e
L:Te-u-v
e
T, u- T,
H = 4 v+u.<u - v>
e my
oH T, Te
s 98 v _(E+i> 7o e U
ou e My, e My e My
Euler-Lagrange equation:
T, -
="t b
u- T, u- Ty bt
t) = 0)— .
R CORE = I

Again, the Hamiltonian must be constantly zero for the optimal solution:
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Thus
u-T,
e-b

Moreover, from the state equation for v and the constancy of the control u
(either wpin OF Upqs ), Obtain

wu(t) = (11— eb't) .

u- T, b
U(t):b-m -(1—€bt)

_u-Te bt u-Te bt
s(t) b-m,-e (1 ¢ )+b-mv-e (1 N )

Analyze s(t):
s(0)=0
s(00) = —0
u- T, u-T,
5(0) = b -(=b)=0
5(0) b-m,-e +b-mv-e (=)

Thus s(t) is always negative (except for ¢t = 0). Consequently,
u®(t) = Umaz-

Verify the criterion

'Te 'Te 2.T2 1 1
J:/Ldt:u /u '(1_6_b't)dt=7u = .(tf—i——.e—b'tf__

e b'mv e.b.mv b b
However,
.b-m
—b-ty 1 Uf v
¢ u-T,
and thus
J:ﬂ tj_i_l_vjmv_l :ﬂtj_m
e-b-my b T. b e-b-my P

After inserting the expression for ¢y, it is easy to see that J is a decreasing
function of u.

ECMS
Problem 7.23

Consider a parallel HEV. The engine is a Willans machine with e = 0.3 and
P.o = 2kW. The electric drivetrain has a constant efficiency 7, = 0.8 and

)
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a maximum/minimum power P, maz/min = £20kW. Calculate for which
values of the equivalence factor s a purely electric drive and a full recharge,
respectively, are optimal for a power demand P, = 20 kW.

e Solution

If u = P,/ Py, i.e., the ratio between the power delivered by the IC engine and
the power demand, then
u - Pt =+ P810

p “h(u)+s-(1—u)- Py - n:ilgn(u_l),

H(Ptvsvu):

where h(.) is the unit step fuction. Since

oH P . sign(u—1)

“el

is piecewise constant, the optimal u° is either at w = 0, u = 1, or at 4 = Uaz
(discontinuities). The three values of the Hamiltonian are

Py
= 8§ - —
MNel

€ €

P, Pe
H(umam>:?t'umam+5'nel'(1_umam)'Pt+ 0

The value of gy is such that (1 — Umag) - Po = P min, which leads to
Umaz = 2. After inspection, the purely electric drive (v = 0) is selected when

Tlel Pt + Pe,O o 0.8 o
HO)<H(1) = s<= B =g 11=29
and
2. P+ P.g 1 2.1
H(0)< H2) = . 1 203-(08+L):3'4'
t e - (Wal + E) . . 08

Thus, s must be lower than 2.9 for the purely electric drive to be optimal.
The full recharge is optimal when

2- P 1

€ Tel

P,
H(2)<H(l) = _S'nel'Pt<;t = s> =4.2.

and
H(2)<HO) = s>34

Thus full recharge is optimal when s > 4.2). For 2.9 < s < 4.2, the purely
ICE operation is optimal.
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Problem 7.2

Derive a look-up table yielding the optimal engine torque 7. of a post-
transmission parallel hybrid as a function of w,,, T} and s. Use the following
engine model,

P, — @, for T, > 0
F= 0, for T, >0

with the following parameters:

€

—1.63-17%-w? — 0.0876 - w, — 6.80, T, > Te turbo

1 { 1.21-107° - w2 — 0.0053 - we + 2.94, T. < min(Temazs Teturbo)
e

Py {0.166 w2+ 1174 we +4.59-10%,  To < min(Te.mazs Te.turbo)

e 519 w? —2.83-10% - w, + 2.27- 105, To > Te turvo

with Te turbo = 200Nm and T 0, = —0.0038 - wg +2.32 - we — 7T9Nm. Use
the motor model

Py = wy - Trp + (0.0012 - wy, 4 0.0179) - T2 + (—0.0002 - w2, + 0.789 - wy,, + 384) =
= W - T + alwm) - T2 + c(wm)

with P, mae = 42kW and T}, pmee = 140Nm, and the battery model of
Problem 4.26 with R; = 0. Find the optimal T, for T; = 1000Nm, w,, =
39rad/s, v, = 11, v = 8.1 (including the final gear), and s = 2.8.

e Solution

The unconstrained optimum of Problem 7.25 must fulfil the constraints
Tm > Tm,min = _Tm,maw and Te < Te,mam

Moreover, the coefficient 1/e changes across T, = 200 Nm.

The motor limits at wy,, = w, - Vm = 429 rad/s are £98 Nm (both in
motoring and generating). These two values correspond to T, = —10 Nm and
T. = 256 Nm, respectively. At w. = w,, - v = 315 rad/s, the engine maximum
torque is

T.maz = —0.0038 - 315% +2.32 - 315 — 79 = 274 Nm.

Summarizing, the admissible 7, range is between -10 Nm and 256 Nm, with
a discontinuity at 200 Nm.

For the assigned operating point, assume first that the optimal solution
is below the turbocharging limit. Thus 1/e = 2.47 (e = 0.40), a = 0.53.
Consequently, from (?7?) of Problem 7.25 find

_ 315-247—51.2.8.429

™ 5 0.53 = —48.7Nm
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and
7, = 1 0m T g9 6Nm
v
which is a point below the turbocharging limit. To confirm this result, test
the other set of Willans parameters. In particular, 1/e = 4.65 (e = 0.21).
Consequently,

315-4.65— 81.2.8.429

" 5 0.53 = 547 Nm

which is clearly beyond the motor limit. Thus the optimal point is T, =
190 Nm, 7}, = —49 Nm.

For a further verification, calculate the Hamiltonian for 7, = —10Nm,
T. =0Nm, T, = 190Nm, 7, = 200 Nm and 7. = 256 Nm (a = 0.53, ¢ = 686):

1 P,
For T, = —10, - = —%% = 0, T},, = 98 = H=134-10°
e e

For T, = 0, 1:2.47, Peo
€

=21.43-10%, T}, = 91 = H =1.23-10°

>
e

o0

0 = 9143103, T,, = —49 = H = 1.159 - 10°

For T, — 190, * = 2.47,
e

e
1 P,
For T, = 200, — = 2.47, =% =21.43.10%, T}, = =56 = H = 1.163 - 10°
(& €
1 P.o 5 5
For T, = 256, — = 4.65, —=2 = —1.49-10°, T,, = —98 = H =1.25-10
e e

which confirms the bounded optimum at 190 Nm.

Problem 7.25

Find the unconstrained optimal engine torque for a post-transmission parallel
hybrid with an engine model of the type

Pe,O+Pe
Pp= ==t

an electric machine model of the type
szwm-Tm—i—a-Tgl—i—c,

and the battery model of Problem 4.26,

2-R;

Peen = Py + P - =55

where P, = P,,. Neglect the SOC influence.

e Solution
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The optimal operating point is the pair (T¢, ). The optimal T, is calculated
for each transmission ratio . For each 7 the engine speed w. = 7 - w,, and
the motor speed wy,, = Y - Wy are fixed (7, is usually a constant). Thus the
coefficients 1/e, P /e, a, and ¢ are also fixed.

The Hamiltonian is

HZPf—i-S-Pech:

1 P.
:—.we.Te+ 0
&

+

e

+s- ((wm~Tm+a-Tﬁl+c)+%~(wm-Tm—i-a-Tﬁl—l—c)Q).

oc

To find the optimal T, differentiate the Hamiltonian

OH e 2-R;
aTe :%—S- (1+ Ugc 2(mem+a]Ti+c)> (wm+2aTm)f}/:

=0

since Yy, - Ty = Tp — v - Te and 9T,,/0T. = —7/vm. If one neglects the loss
term in the battery model, the resulting equation is

Cﬁzl-s-(o.)m—i-2-a-Tm)
€ Ym

and the optimal solution would be

" 2-a s v
from whence
T:Tt_'ym'Tm:E_ 77271 _ 73@ W
c ~ ~ 2-a-e-8-v 2-a-v v

Problem 7.26

Use the result of Problem 4.21 and a simplified battery model P.., = P, to
derive an analytical solution of the optimal energy management of a series hy-
brid. Following Problem 4.21, consider the engine Willans parameter varying

as
0 for P,=0

1 J4.01 for 0<P,<14-0.92-103
e 1336 for 14-0.92-10° < P, < 62-0.92- 103
389 for  62-0.92-10% < P, < 68-0.92- 105,

and 7y = 0.92.
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e Solution

The Hamiltonian is

P P,
H=P;+5 Pup = —+—245-(P,—P,).
e Mng-e
This function is affine in Py, and
OH 1
- — s
OFy  ng-e

However, the coefficient 1/e changes with P,: Now, the possible solutions are
at the discontinuity points. For low s, the optimum is at Py = 0~ and H(0™) =
5+ Pp,. For increasing s, the optimum switches toward P, = P; - 7y = 57 kW,
where P; is the engine power at w. = 1000 rpm. The switching value of s is
calculated by equating

5P =2148-10°+ s+ (P, —62-10° - ) =  s=3.76

For s > 3.95, the optimum shifts to Py = Ppa. - 17y = 62.8 kW.

Problem 7.27

Derive equations (7.24) — (7.25) from PMP.

e Solution

For a parallel hybrid with constant efficiencies 7 and 7., the Hamiltonian is

e

%+8'77€'(Pt_Pe)u for P, < P, < Prax

%Jrs.M for0< P, <P,

H(S,Pe)—{

that is, the dependency H(P.) is piecewise affine and consists of two segments.
For small values of s, 0H/OP, is always positive, thus the optimal value is
P.=0.

The value of s for which 0H/JP. = 0 in the first segment is s1 = 7./77.
Beyond this value, the first segment is increasing and the second is decreasing,
thus the optimal control is P, = P;.

The value of s for which 9H/OP. = 0 in the second segment is so =
1/(ne - ny). For higher values of s, the second segment is decreasing, thus the
optimal control is P, = Py,qz.

Summarizing, one recovers that s = s; or lower values lead to a battery
discharge; s = so or higher values lead to a battery recharge, while any value
between s; and sq leads to pure ICE operation, thus charge-sustained opera-
tion (but no hybrid operation).



References 125
Problem 7.28

For the simple parallel HEV model of Problem 7.23, with e = 0.4, P, o = 3kW,
Ner = 0.9, find the conditions on P; for which the ZEV mode, the ICE mode
or the battery recharge with P, = —2 - P, are optimal, respectively.

e Solution

As opposed to the results of Problem 7.23 the solution is now to be found as
a function of s. After inspection, three possibilities arise:

e Ifs <s; =" =3 then only the purely electric mode (P, = 0) could be
optimal.

o Ifs) <s<syg= ell_e = 3.7, then the optimum is either the purely electric
mode or the purely ICE operation. The switch is when

nel'Pe70 - 27 kW
S-e—Nel T 4-5-9’

P, =

thus below which ZEV mode, above which ICE mode are optimal.
e If s > s9, then again two possibilities arise, namely, the ZEV or the
recharge mode. The switch is for

Net * Peo 2700 kW
s-e—2-77el+8-n§l-e_724-3—1800'

P, =

Problem 7.29

Use the result of Problem 7.28 to evaluate s over a drive cycle with the fol-
lowing characteristics: Eirae — Eree = AE = 0.183 MJ, Ejpge = 0.670 MJ,
Praz = 18.9 kW. Assume a linear relationship between cumulative energy
and power demand. Then perform again the calculations for the data of Prob-
lem 7.23.

e Solution

The condition for s to be optimal is that the electrical energy is balanced over

the cycle, thus -
EZE’U

el

Tel - (AE + Echg) =

where E.p, is the mechanical energy demand during the recharge phase (the
same quantity is sent from the engine to the generator because u = 2) and
E.., is the mechanical energy demand during the ZEV phase.

Assume first that s > so. Then two phases exist, ZEV or recharge. The
switch power is
Mel * Pe,O

Piim =
tim se—2-Me+5-m7 e

and this relationship will be used to calculate s once Pj;,, has been found.
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To calculate Py, observe that E,., is the energy for power demand lower
than Py,,. Since a linear relationship between energy and power demand is
assumed,

E rac
E(Pt) B P:nam .Pt,
then _
= Etrac
Ezev - sz
Pmaac l

Consequently, Echg = Eirac — Een. Using these equations, obtain

Etrac Etrac

e'AE e'Erac_e' szzipzm
1lel +nl ! 1lel Pmam l Pmaw'nel l
2 Erac AE
= Plim = et 3 ‘ = + . Pma;ﬂ =10.8 kVV7
1+77€[ Etrac

from whence, calculate the charge-sustaining and optimal value of s as
2- Blm + Pe,O

o = 2.83.
€ - (ﬁ + Nel - Plzm)

S =

To verify the initial assumption,

1
S = =2.78 < s.
MNel * €

So the assumption was correct and the result is valid.

For the data of Problem 7.23, ¢ = 0.3, Peg = 2 kW, 1 = 0.8, one would
obtain s; = 2.67, sy = 4.17. Assuming s > s, would lead to Pjip,,q = 9.41 kW
and s, = 3.60 which is not greater than ss.

Assuming instead that s;1 < s < sg, there is a switch between ZEV and
ICE modes. Thus the energy balance is

n _ EZE’U

2 AE Pma;ﬂ
Net - AE s Or Plimp = o= =27 Fma

— = 3.3 kW.
Tlel Etrac

This switch power corresponds to

- Plim,b"'Pe,O 'E — 498
b Him,b € o

which is not lower than s, as assumed.

Finally the only possible result could be s = s3, so that the recharge and
the ICE mode are equally optimal. A switch will be added in order to balance
the battery energy. For s = sg, the limit power for the ZEV mode is

UB)
1—n2

el

- P.o = 3.56 kKW.
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The corresponding ZEV energy is 0.126 M.J. To be balanced, a recharge energy

n EZ&’U n
Echg - 77—2 - AE - 133 kJ
el

is needed. Thus a further power limit
Pmam : (1 - ?chg ) =154 kW

trac

can be taken, above which the recharge mode is selected and below which the
ZEV mode is selected.

Implementation Issues
Problem 7.30

Consider a post-transmission parallel HEV with the following simplified
data: motor transmission ratio 7,, = 11, wheel radius r,, = 0.317m, en-
gine transmission ratio v = {15.02,8.09,5.33,3.93,3.13,2.59}, transmission
efficiency 7, = 0.95. Consider the following driving situation: torque de-
mand at the wheels T; = 378 Nm, vehicle speed v = 69.25km/h, engine
on, electric consumers off, 4™ gear. In this situation, Ty max = 140Nm,
Prymaz = 42kW, Upmin = 300V, Up ez = 420V, P, st0rt = 3kW, P, =
0.9345 -T2 +673.97 - T, + 127.44, U,. = 381.12V, R; = 0.3648 Q (discharge),
R; = 0.3264) (charge), Coulombic efficiency n. = 0.95, Te maz = 269.7 Nm,
Te min = —20Nm, fuel consumption

My = (Te = Tomin) - (2.9-1078- T, + 1.112-107°) =
=29-107%. T2 +1.17-107° - T, +2.225-10~*
Find the engine and motor torque calculated by the ECMS. The current
estimation of the equivalence factor is s = 3.
e Solution

Calculate first the electric-mode Hamiltonian H.,:

vy 42103
m=—"Ym = d y - - d
w - o 667 rad/s wp 10 300 rad/s
T Pm max
T,n(0) = =X = 34.4 Nm, Tnmaz = —22% — 63 Nm
TYm Wm

The motor speed w,, is above the base speed wy, further the motor torque is
smaller than the maximum possible motor torque. The eletrical power of the
motor is calculated with the given relationship

P, (0) = 0.9345 - 34.42 + 673.97 - 34.4 + 127.44 = 24.4 kW = P,(0).
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The battery power is limited by

U2
Pb,mam = min <4 .o]—c%i’

Py = — Jmar = Uoe Unmar o 04y
bmin — R, = —aU. .

Uoc ' Ub,min - (meu'n2
R;

) = 66.7 kW,

Thus the condition Py ymin < Py < Py mae is fulfilled. Evaluate

_ Use  |U2—Ri-4-P
T 2.R; 4. Ri?
Peocn(0) = Upe - I(0) = 26.1 kW.

1,(0) = 68.5 A,

Thus the hamiltionian for the ZEV case is
Hey =5 Peepp, = 3-26.1 =79.2kW.
Now calculate hybrid Hamiltonians. For simplicity take only three candidate
values:
T}

Te(1) = Te maz, Te(2) = =101.2 Nm, T.(3) = Te min
Ve Tt

The corrseponding fuel consumptions are
my (1) = (269.7+20) - (2.9- 107 - 269.7 + 1.112-107°) = 5.49 g/s
my (2) = (101.2+20) - (2.9-107% - 101.2 + 1.112-107°) = 1.70 g/s
my (3) =0g/s

The electric motor has to provide the folowing torque (note the role of the
transmission efficiency):

Tt — Ye Te,mam M

m(1) - 57.2 Nm,
Tm(2) =0 Nm,
T, Ye'Te,min
Tm(3) = 5 at =41.9 Nm

All three absolute values are lower than 63 Nm, so the constraints are not
violated. Calculate the electric power
P(1) = 0.9345 - 57.2% — 673.97 - 57.2 + 127.44 = —35.37 kW = Py(1),
P, (2) = 0.13 kW = P,(2),
Pn(3) = 0.9345 - 41.9% + 673.97 - 41.9 + 127.44 = 30 kW = P,(3).
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All three values are between -50kW and 66.7 kW, so the battery limit is not
overstepped. Again, the battery current is derived with the same formula as
above as

381.12 381.122 + 0.3264 - 4 - 35.37 - 103

() = 503061 ~ \/ 4-0.32642 = 864 4,
381.12 381.122 — 0.3648 - 4 - 127

() = 536 ~ \/ 4-0.36482 =0.33 4,
381.12 381.122 — 0.3648 - 4- 30 - 103

1,(3) = - — 858 A

o) = 5703618 \/ 4-0.36482 85.8 4,

which results in electrochemical power consumptions

Peoen(1) = —381.12-86.4 - 0.95 = —31.28 kW,
P.en(2) = 381.12-0.33 = 0.13 kW,
P.cn(3) = 381.12-85.8 = 32.7 kW.

Combining these results leads to
Hpyp = 42.6-10° - {5.49,1.705,0} - 1072 + 3 - {—31.28,0.13,32.7} - 10° =
= {140,73,98} kW.

Finally, the chosen operating point will be the pure ICE operation. Thus the
engine will continue to stay on.

Problem 7.31

Solve again Problem 7.30 for the situation in which the engine is turned off.
e Solution
Nothing changes up to the calculation of Py(1,...,3). In order to account for
the engine turning on phases, add P s¢qrt = 3kW to the battery power:
Py(1) = —35.374+ 3 = —32.37 kW,
Py(2) =0.134 3 = 3.13 kW,
Py(3) =30+ 3 =33 kW.

All three values are still admissible. Again the battery currents are calculated
as

381.12 381.122 + 0.3264 - 4 - 32.37 - 103

L) = 553561 ~ \/ 4-0.32642 =795 4,
381.12 381.122 — 0.3648 - 4-3.13

1,(2) = - — 8927 A

o(2) = 57 0.3648 \/ 4-0.36482 ’
381.12 381.122 — 0.3648 - 4- 33 - 103

1,(3) = - —953 A

o(3) = 57 0.3648 \/ 4-0.36482 ’
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which results in electrochemical power consumptions

Poen(1) = —381.12-79.5 - 0.95 = —28.79 kW,
P.on(2) = 381.12-8.27 = 3.15 kW,
P.en(3) = 381.12-94.2 = 36.3 kW.

Combining these results leads to

Hpyp = 42.6 -10° - {5.49,1.705,0} - 10~ + 3 - {—28.79,3.15,36.3} - 10° =
= {147.5,82,109} kW

In this case He, < min(Hp,p) and it is more convenient to keep the engine off
and use the ZEV mode.

Problem 7.32

Consider an ECMS with a stop-start strategy implementation based on hys-
teresis thresholds. In order to start the engine, Hye, (see Problem 7.30) must
fulfill the condition

Hhe’u < Zon - He'u'

At the previous calculation step, the lower Hamiltonian value was H,,, thus
the engine is off. At the current time step, the power demand is P, = 13.28 kW.
The equivalence factor estimation is s = 3.2813. Calculate the mode selected
for a hysteresis threshold z,,, of (i) 95% and (ii) 90%, respectively. Use the fol-
lowing data and models: post-transmission parallel HEV architecture, trans-
mission efficiency, 7 = 0.95, fuel consumption Py = 2.5446 - P, + 9.6525 - 103
if P, > 0, electrochemical power

P _ ) 12707 Py +2.7703 10 —2.014 - 103, if P, > —595 W
«h ™) 0.7397 - Py, +2.4544 - 103 — 2.014 - 103, if P, < —595 W.

The cost of engine start is Pe siqrt = 2.014 kW (in electrochemical power
units).

e Solution

The Hamiltonian function is bilinear. Thus the optimum combination can be
either at P, = OW (ZEV mode), at P, = —595W (discontinuity), or at
P, = P¢ jmae- The engine power at the discontinuity is

13.282 - 103 + 595
Py gis = T0F OB 14,607 kW,

However, a simple inspection of equations above shows that

~ 102388,  for P. > 14.607 - 103

OH {—1.1465, for 0 < P, < 14.607- 103 W
oP,

Thus the minimum of H is either at the discontinuity point or at the ZEV
mode:



References 131
e for P, =0, P,, = 13.282kW and P,..;, = 19.648 — 2.014kW, thus
H., = 57.86 kW;

o for P, = 14.607TkW, Py = 46.821kW, P,, = —=595W, P, = 2.014kW,
the engine must be started and

Hpyp = 53.4295 kW.

In order to choose between H., and Hp,, the hysteresis threshold z,, must
be considered:

o for (i) zon = 95%, the engine will be turned on if 53.43 < 0.95 - 57.86 =
54.97, which is true.

o for (ii) Zon = 90%, the engine should be turned on if 53.43 < 0.90-57.86 =
52.07, which is not true.

Thus in this case the engine should be kept off.

Problem 7.33

Consider an HEV under several repetitions of an elementary driving cycle.
An ECMS has a PI adaptation of s as a function of SoC that yields a new
estimation every cycle repetition. Assume that the overall behavior of the
system on a cycle-by-cycle basis depends on s as follows:

Ag(n) = &(n) = &(n—1) = K- (s (n) = s0),

where £(n) is the SoC at the end of the n-th repetition, s¢ is the optimal value
of s, s(n) is the value adopted during the n-th cycle, and Ky > 0 is a constant
depending on the particular system. Evaluate the stability and the dynamic
characteristics of the controlled system on a cycle-by-cycle basis. Evaluate the
influence of the integral term in the PI controller.

e Solution

Let A&(n) be the variation of SOC on the n-th cycle, i.e., in a first approxima-
tion, a quantity proportional to the electrochemical energy consumption of the
cycle. The cycle-by-cycle dependency between SOC and s can be linearized
as

Ag(n) = &(n) = &(n—1) = K- (s (n) = s0),

where sg is the optimal theoretical value of s, s(n) is the value adopted during
the n-th cycle, and K, > 0 is a constant depending on the particular system.
Correspondingly, the adaptation rule for s(n) reads

n—1

s(n) =sp—ky-&n—1)—ki- > _ (),

=0
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where A£(0) = 0 by definition, k, > 0, k; > 0 and s, initial value of s. By
shifting from the discrete time to the continuous time, and by combining the
two equations, one obtains

d?s ds

W:_kp'Ks'ﬁ_ki'Ks'(S_so)'

This dynamics is stable. The factor s converges to sg (unknown) as prescribed.
Thus the quantity Az converges to 0. The true SOC error, the integral of AE,
converges to zero as well (the prescribed value). The integral of the SOC error
converges to the value (s, — so)/ki.

If k; = 0, the SOC error does not vanish but it tends to (s, — s0)/kp.

Problem 7.3/

Compare (7.22) with (7.27) — (7.31). Under which assumptions are they equiv-
alent?

e Solution
Combining (7.27) — (7.31), obtain
S(t) = Schyg + (Sdis - Schg) . p(t) é Schg + (Sdis - Schg) . (pO +p1 (t) : Eech(t)) .

In the assumption that the difference Ej, — Ex(t) £ AE), is kept constant
(sliding horizon), the coefficient p; is constant as well and

S(t) = Schyg + (Sdis - Schg) * Po + (Sdis - Schg) *p1- Ee(t)-
The term E..;(t) is the electrochemical energy consumed. In terms of SOC,
Eech (t) = QO : (5(0) - §(t)) : Uoc(t)
and, assuming an averagely constant open-circuit voltage,
Eeen(t) = K - (£(0) — £(1)) -
If £(0) = &, obtain (7.22) with

St = Schyg + (Sdis - Schg) * Po;

kp = (Sdis - Schg) Pl K.
Now give a closer look to py and p;. To simplify the analysis, assume u, =
u; = 1 and neglect \. Thus,

L 1

Ae and =
(n% + 776) : AEh

Po =
o e
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Further impose (7.26)

1
— = Sdis " Nf, Tle = Schg " Nf
e
to find
po = Sdis
Sdis T Schg
1
P11 =
(Sdis + Schg) C1f AEm

2 2
o Sdis o Schg + Sdis
St = Schg + (Sdis — Schg) - = :
Sdis + Schg Sdis + Schg

It is easy to show that under the aforementioned assumptions scpy < s¢ < Sqis,
thus s; plays the role of the constant optimal equivalence factor sg.

Problem 7.35

Express sg as a function of u,, ui, Sais, and scpg. Evaluate sg for spe. = 5,
Smin = 2, knowing from a cycle analysis that u,/n. = 1.2 and u; - 7. = 1.8.

e Solution

Using the method of Problem 7.34, but with w, # wu;, obtain

ul-sg—l—uT-si
§g = ——MMMM8M8M8 .
Up 84 + U+ Sc

For the numerical case (Symaz = Sq and Spin = Se.

e = 1]2% = 0.63
Sd

u, = 0.76

w = 2.85

2.85-22 +0.76 - 52
S0 = =3.2.
0.76 -5 +2.85-2

Remark: the value of u, found shows that pure ZEV would not be allowed in
this case.



