Modern Robotic Systems

No robot is an island

• The robot is only a small part of a **robotic system.**

Kiva */ Amazon Robotics

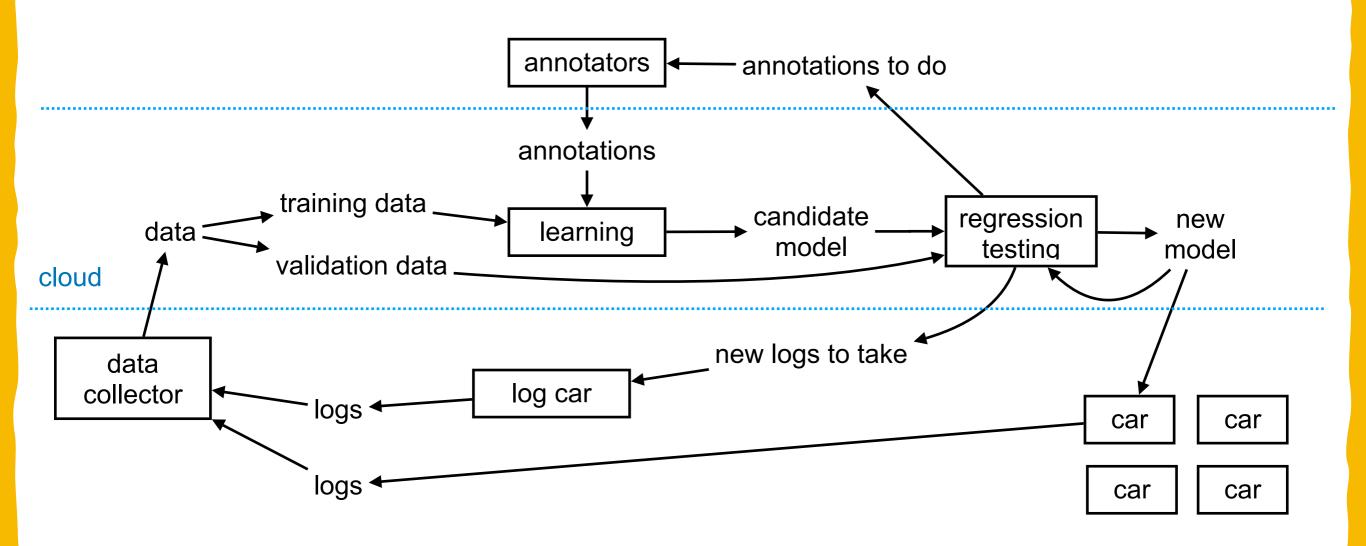
Robotic systems

- The **robot**:
 - The hardware: ...
 - The software: ...
- The other robots
- The **other machines**
- The **infrastructure**:
 - The network
 - The power
 - ...

- The **people**, including:
 - Supervisors
 - Safety operators
 - Customers
 - Data annotators
 - QA
 - ...

Classical robotics development

- The old model of development:
 - design
 - product development
 - integration ("system integrators")
 - installation
 - support

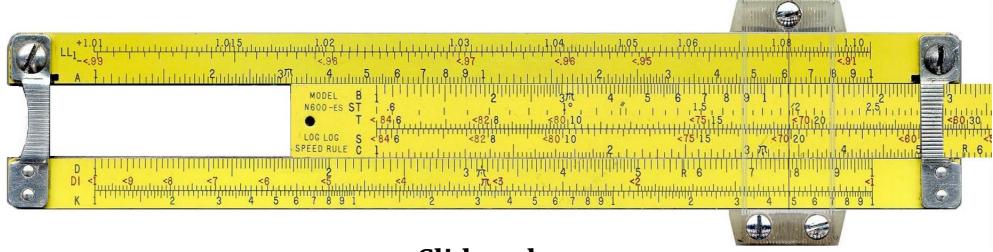

Modern robotics development

- Aspects of modern robotics development:
 - The system is continuously evolving.
 - **Agile** development.
 - Continuous integration.
 - There is continuous **feedback from deployment** (sensors, user feedback)
 - Great importance of **data**.
- We will see some of these "best practices" in the class.

Example of cloud pipeline for object detection

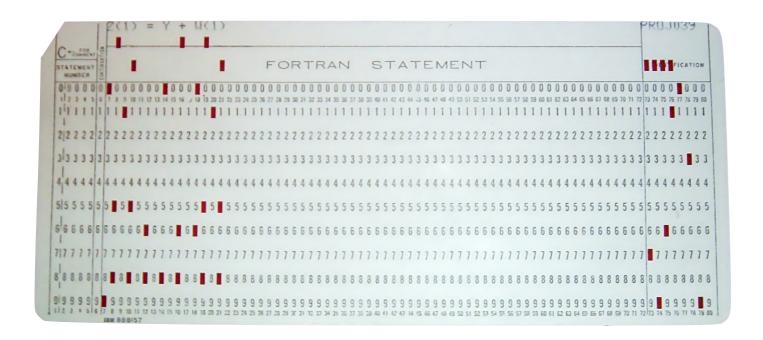
- Robot collects data
- Models are learned in the cloud
- Regression tests in the cloud

- Failures are sent to the annotators
- The annotated data becomes part of the training set


Tools for modern roboticists

Tools make the professional

Engineering tools of the 40s



Slide rule

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
1.0	-0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	37
1·1 1·2 1·3	·0414 ·0792 ·1139	0828	0864	0899	0934	0969	1004	1038	1072	0755 1106 1430	3	7	10	14	17	21		30 28 26	31
1·4 1·5 1·6	1761	1492 1790 2068	1818	1847	1875	1903	1931	1959	1987	1732 2014 2279	3	6	8	11	14		20	22	25
1.7 1.8 1.9	·2304 ·2553 ·2788	2330 2577 2810	2601	2380 2625 2856	2648	2672	2695	2480 2718 2945	2742	2529 2765 2989	2	5	7	9	12		16	19	21.
2.0	·3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
2·1 2·2 2·3	·3222 ·3424 ·3617	3243 3444 3636	3464		3502	3324 3522 3711	3541	3365 3560 3747			2	4	6	8	10	12 12 11	14	15	17
2·4 2·5 2·6	·3802 ·3979 ·4150	3997	4014	4031	4048	4065	4082	3927 4099 4265	4116	4133	2	3	5 5	7	9	10	12	14	16 15 15

Log table

Tools of the 1950s

Punched card

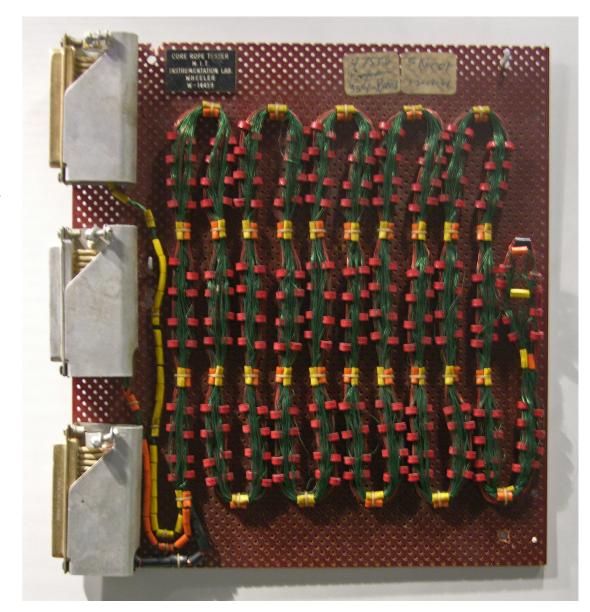
This stack of 62,500 punched cards — 5 MB worth — held the control program for the giant SAGE military computer network. (<u>link</u>)

Tools of the 1960s

Mainframe

1

Tools of the 1960s


- Director of the Software Engineering
 Division of the MIT Instrumentation
 Laboratory next to the source code for Apollo 11.
 - You can find the code on Github at: https://github.com/chrislgarry/Apollo-11

Margaret Hamilton (1936-)

"Core rope memory" used by the Apollo program

- Computer memory was represented by magnetic ropes, woven together by old ladies.
 - LOL memory = Little Old Lady memory
- One of the main problems was reducing the source code size, and the slow speed of old ladies.
 - Read about this and other interesting stories in the <u>Tindellgrams</u>.

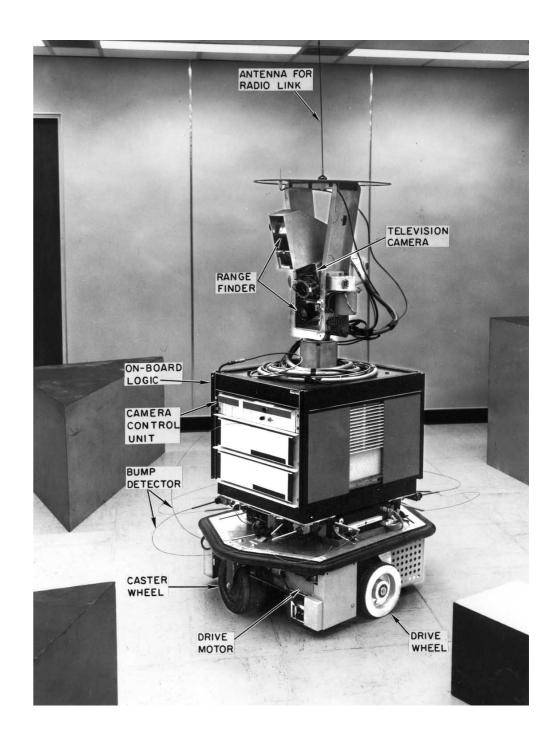
Rope memory

Tools of the 1970s

HP-35

Pascal

>DIR in TURBO PASCAL


```
program Turbo_Pascal_directory;
 {een voorbeeld dat laat zien hoe een TURBO FASCAL programma eruit ziet; TURBO}
{PASCAL is een programmeertaal die (onder meer) onder het CP/M besturingssys-}
 {teem draait.}
(de procedure GEEF_INHOUD is een zelfstandige procedure welke in staat is de) (inhoud van een CP/M schijf weer te geven (DIR))
                                                                           {geef disk-directory}
const
                                         {de index van de directory extend}
  setDMA = 26;
searchfirst = 17;
                                             CP/M (bdos) functie codes
  searchnext = 18;
var
FCB
                                            :array[0..32] of char;
:array[0..3,0..31] of char;
  directorynamen
                                            :char;
  index, regelaantal, directorycode :integer;
  gevondennaam
                                            :string[11];
  writeln;
  write('De inhoud van disk? (toets A of B): ');
  repeat
  read(kbd, drivenaam);
  drivenaam:=upcase(drivenaam);
  until drivenaam in ['A', 'B'];
  writeln(drivenaam);
 writeln;
regelaantal:=0;
  FCB [0]:=chr(ord(drivenaam)-64);
                                                                      {plaats drivenaam in FCB}
  for index:=1 to 11 do FCB[index]:='?';
for index:=12 to 32 do FCB[index]:=chr(0);
                                                         {alleen vraagtekens in de filenaam}
                                                                                     {wis de rest}
                                                                 {waar de namen komen moeten}
  directorycode:=bdos(searchfirst,addr(FCB));
                                                              {zoek eerste naam in directory}
  while directorycode<255 do
                                                {zolang het einde nog niet gevonden is...}
 begin
if directorynamen[directorycode,extend]=chr(0)
                                                                       {1e entry van die naam?} {ja, printen}
      then begin

if regelaantal>0 then write(':');
              write(copy(directorynamen[directorycode],2,8), '.');
for index:=9 to 11 do
    write(chr(127 and ord(directorynamen[directorycode,index])));
              regelaantal:=regelaantal+1;
if regelaantal=5 then begin
                                                                         {maximaal 5 per regel}
                                           writeln;
regelaantal:=0;
             end;
  directorycode:=bdos(searchnext);
                                                                        {zoek de volgende naam}
  end:
  writeln;
 writeln;
end;
begin
  geef_inhoud;
```

_ _ _ _ _ _ _ _ _

Robots of the 1970s

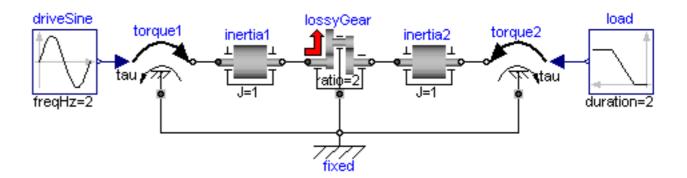
- "Shakey", the first "embodied intelligence".
 - <u>Documentary</u>.

Shakey the robot

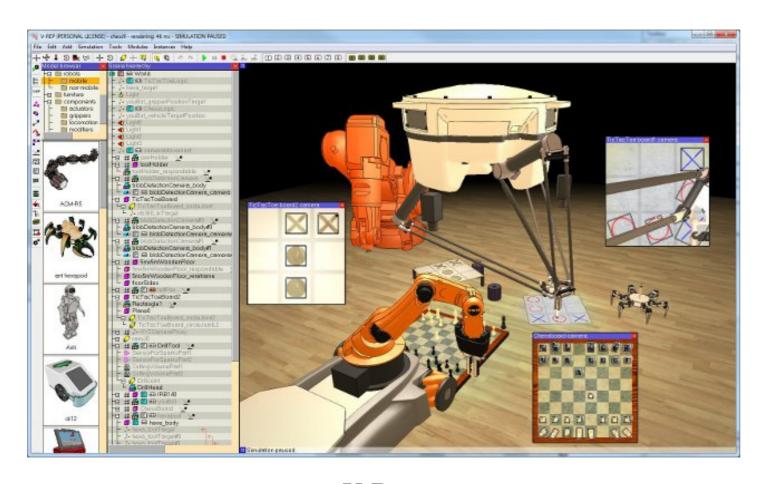
Tools of the 1980s

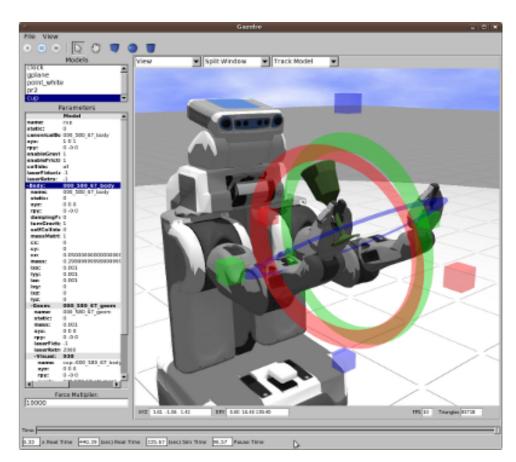
Personal computers

16


Tools of the 1990s

- Modelling software
- Computer-algebra systems




17

Tools of the 2000s

Robot simulations

V-Rep

Gazebo

Tools of the 2010s

- Source code management
- Issue tracking
- Cloud storage
- Cloud computing
- Continuous integration
- Configuration management
- Project management

What's cool in 2017

still cool in 2018!

and 2019!

and 2020!

new entry

Take-away points

• The robot itself is just a small part of a **modern robotic system**, which includes robots, people, local infrastructure, remote infrastructure.

- There are new development methods and tools to learn.
 - Formulas are useless if you cannot translate them into action.
 - Nobody will do it for you!

"smart, and gets things done"

• p.s. You are not competing with whom is around you, you are competing with everybody else in the world...