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System decomposition

e All starts with a decomposition of a system in components.

e Whatis a system and what are components?

“A system is composed of components;
a component is something you understand.”

— Howard Aiken (1900-1973)



Physical and logical architectures

* There are two aspects for “architectures”:
* Logical architecture - what the system is doing
* e.g., system decomposition, data flow
 Physical architecture - how it is doing it

* e.g., which computer runs which component

 Containerization: Which computer runs which virtual computer that runs which
component?

%?docker



Logical architecture

* The logical architecture describes: Useful

e System decomposition in components
e Data flow (Who tells whom what)
 Representations

* Priors (Who knows what)

* The logical architecture is independent of language, middleware,
and other implementation details.
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Estimation: Probability basics, Bavesian filtering
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https://www.youtube.com/watch?v=OksuVuNY5o0

The basic principle of perception

e You should acquire (all and only) “actionable information”.
e Actionable information: the information that is needed to perform the task.

e [tis task-dependent.
e Non-actionable information: irrelevant to the task.

e Processing itis a waste of time and resources.

Information

Task weather class location referendum results

Dress up to go to class actionable

Reach home from class actionable



Self-driving car - actionable information

e C(ars

e Pedestrians

https://www.voutube.com /watch?v=0ksuVuNY500


https://www.youtube.com/watch?v=OksuVuNY5o0
https://www.youtube.com/watch?v=OksuVuNY5o0

Duckieboft - actionable information

e Duckiebots
e Duckies
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Part of logical architecture for Duckietown

* Part of the main perception pipeline.

 Purple refers to “static” information.

 The diagram does not show how
things are implemented.

e |t does show who-knows-what, and
who-tells-what-to-whom.
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Physical Architecture

 “Physical” architecture: how things are implemented.
* The physical architecture includes:
 Which processor runs what process?
e How is the data communicated (TCP, UDP, etc.)
* Where is the data stored

e Protocols, formats, etc.



Computation grarh

e Computation graph
* nodes = components
* edges = signals
* node weight = flops required

* edge weight = size in bytes




Part of computation grarh of Duckietown
e This is the Duckietown ROS graph

* |t lists the nodes and the signals.
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Physical architecture: Resource grarh

* Resource graph:

* nodes = processors

]‘\)
* edges = network links

* node weight = processor power é CJ

* edge weight = bandwidth



Deprloyment: Mapping logical architecture onto physical

* We need to map the computation graph onto the resource graph.

» Different choices will have different properties for latency, frequency, etc.
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Deprloyment: Mapping logical architecture onto physical

* We need to map the computation graph onto the resource graph.

» Different choices will have different properties for latency, frequency, etc.
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Exameple in Duckietown: Computation grarh

 Computation graph: we collapse all computation in one node

camera R motors
driver ' driver

T

(abstracting all computation as one node)




Example in Duckietown: Resource graprh

Your laptop

Raspberry PI

4 core ARM 4 core x86

wireless link

latency: 2 ms - 20 ms
bandwidth: 1-100 MB/s

camera [actuator]

Duckietown



Example in Duckietown: Resource graprh

Your laptop

Jetson Nano

4 core ARM 4 core x86

wireless link

latency: 2 ms - 20 ms
bandwidth: 1-100 MB/s

[actuator]

Duckietown



Example in Duckietown: Derloyment 1

 Option 1: Run everything on the SoC (PIl/Nano)

Your laptop

SoC
4 )
orchestrator
camera motors
driver driver
\_ _J




Example in Duckietown: Deployment 2

Option 2: Run from your laptop

Soc

Your laptop
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Example in Duckietown: Deployment 3

Option 3: Run heavy processing on the laptop

Your laptop

orchestrator
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driver driver
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An interesting read

e E.A.Lee and S. A. Seshia, Embedded Systems -- A Cyber-
Physical Systems Approach



