System
Architectures

&

System decomposition

e All starts with a decomposition of a system in components.

e Whatis a system and what are components?

“A system is composed of components;
a component is something you understand.”

— Howard Aiken (1900-1973)

Physical and logical architectures

* There are two aspects for “architectures”:
* Logical architecture - what the system is doing
* e.g., system decomposition, data flow
 Physical architecture - how it is doing it

* e.g., which computer runs which component

 Containerization: Which computer runs which virtual computer that runs which
component?

%?docker

Logical architecture

* The logical architecture describes: Useful

e System decomposition in components
e Data flow (Who tells whom what)
 Representations

* Priors (Who knows what)

* The logical architecture is independent of language, middleware,
and other implementation details.

The LINE

to design

Duckietown

observations

Logical architecture overview

....................................... agent / controller

(y“‘)"I(I,.I

3

belief / estimate

£ D —
' outputs
! —

inputs

commands

to design

given

Modeling

perception control

commands

observations g planning
- .

belief / estimate

to design

e

given

sensor(s) actuators

o5 and environment

Fixed
field

R L (t)

VW—rr ()
OO ‘G é{

w(t)

Rotor

5

[- i = - = ———

=
bN

Duckietown

Sensing

feeeeeeeae e e e agent / controller
) . commands
observations
Adl >
: belief / estimate
(Ad d=0 [
to design
s e e E e L EE e eeSeSeESeESSeTeeseesTesestesseesseaseassanas . givcn
inputs \
& :

v » »
e i
A 2 ' 7 - y F Panels Help

C v /::am

P Principal Axis 7

Camera Center

Estimation: Probability basics, Bavesian filtering

Duckietown

sensor(s)

control

planning

belief / estimate

commands

to design

process and environment

world / plant

.

given

actuators

Measurement

Prediction

Perception

commands

observation

belief / estimate

to design

A

--.-----.-.-..--.-....-..-.--.-.--.-------world / plant SEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEESE

Robot: tori log: tori ETHZ_2017-12-22-17-18-41 time: 300 s

Algorthms | color correction: boseline | preparction: bossline | detectior: boseling | filter: moregenaric_stroight

Row input imoge segmants rectified on imoge rectifed thelihood

-
i -
| T
i - aam
i e Pl
: e B
P | o
‘ -
:
(-

0 Btas b v . e e)

model ossumed for locolizotion map repro exploined 253% [w 80% ¥ 100X R 100%]

1)

.

-3

-

"7} -t . . .

https://www.youtube.com/watch?v=OksuVuNY5o0

The basic principle of perception

e You should acquire (all and only) “actionable information”.
e Actionable information: the information that is needed to perform the task.

e [tis task-dependent.
e Non-actionable information: irrelevant to the task.

e Processing itis a waste of time and resources.

Information

Task weather class location referendum results

Dress up to go to class actionable

Reach home from class actionable

Self-driving car - actionable information

e C(ars

e Pedestrians

https://www.voutube.com /watch?v=0ksuVuNY500

https://www.youtube.com/watch?v=OksuVuNY5o0
https://www.youtube.com/watch?v=OksuVuNY5o0

Duckieboft - actionable information

e Duckiebots
e Duckies

Planning

observations

outputs

belief / estimate

inputs

commands

to design

given

F §

F 3

Mission Planning
3x speed

R

Control

Value

Current State

x(t)

tl t+Ts
present

Duckietown

. — —

t Input (T*)

PUR————————: -2 (LA 1) 118 1) | (] o

perception

Dma.

observations

planning

control

Gunin belief / estimate

A\ 4

fnfaiaac

outputs inputs

A

sensor(s)

process and environment

frrssssssssssssssssssssssssssssEEEssEEsEEEs world / plant EsssssssssssssssEEsIEEsIEESIEESEEEEEEEEEEE

Prediction
(Nominal Trajectory)

MPC computed

t+ T,

t+ Ty
future

time

N

R LS

actuators

A

to design

given

Part of logical architecture for Duckietown

* Part of the main perception pipeline.

 Purple refers to “static” information.

 The diagram does not show how
things are implemented.

e |t does show who-knows-what, and
who-tells-what-to-whom.

appearance
prior anti-instagram learner calibration
— J procedure
A
learned calibration
transform
v image-space v
sensor —2ge | | anti- segment segments ground
instagram detector projection
transformed

image

3D
segments
—_—

observations

Logical Architecture

....................................... agent / controller

(9"1(1,.1

-8

belief / estimate

' outputs
["

inputs

commands

to design

given

... for a fleet

agent / controller

observation:

ception

control

&8

= \/', 3
8
planning

belief / estimate

commands

to design

inputs

process and environment

N

actuators

world / plant

perception

agent / controller

control

observations

vigd. |
o

planning

belief / estimate

given

perception

perception

commands

observations

planning

belief / estimate

to design

given

inputs

N

actuators

sensor(s)
process and environment

agent / controller
control

world / plant

observations

g
= %” 3
il

planning

belief /

commands

agent / controller

perception

control

oo

commant

sensor(s)

s e B

8

inputs

N

observations planning

belief / estimate

actuators

process and environment

sensor(s)

inputs

process and environment

Duckietown

N

actuators

world / plant

observations

world / plant

commands

to design

perception

agent / controller

inputs

sensor(s,
control ©

do

process and environment

N

actuators

L
-8
planning

world / plant

belief / estimate

to design

sensor(s)

inputs

given

process and environment

N

actuators

world / plant

given

Physical Architecture

 “Physical” architecture: how things are implemented.
* The physical architecture includes:
 Which processor runs what process?
e How is the data communicated (TCP, UDP, etc.)
* Where is the data stored

e Protocols, formats, etc.

Computation grarh

e Computation graph
* nodes = components
* edges = signals
* node weight = flops required

* edge weight = size in bytes

Part of computation grarh of Duckietown
e This is the Duckietown ROS graph

* |t lists the nodes and the signals.

Sensors

pi_camera ‘ov node
““““““““ camera_node (SY,AC) JOY—
| ~image/compressed joy
] sensor_msgs/Compressedlmage.msg sensor_msgs/Joy.msg
—

/
—_— 7

=/

F1: lllumination Robustness

anti_instagram
anti_instagram_node (F1)

|

~corrected_image/raw ~image_health
sensor_msgs/Image.msg duckietown_msgs/AntilnstagramHealth.msg

Physical architecture: Resource grarh

* Resource graph:

* nodes = processors

]‘\)
* edges = network links

* node weight = processor power é CJ

* edge weight = bandwidth

Deprloyment: Mapping logical architecture onto physical

* We need to map the computation graph onto the resource graph.

» Different choices will have different properties for latency, frequency, etc.

2ok

computation graph —| optimization [¢——— resource graph
deployment
T))

Deprloyment: Mapping logical architecture onto physical

* We need to map the computation graph onto the resource graph.

» Different choices will have different properties for latency, frequency, etc.

2ok

computation graph

——| optimization [¢——

'

deployment

ook

T \

Egi

resource graph

Exameple in Duckietown: Computation grarh

 Computation graph: we collapse all computation in one node

camera R motors
driver ' driver

T

(abstracting all computation as one node)

Example in Duckietown: Resource graprh

Your laptop

Raspberry PI

4 core ARM 4 core x86

wireless link

latency: 2 ms - 20 ms
bandwidth: 1-100 MB/s

camera [actuator]

Duckietown

Example in Duckietown: Resource graprh

Your laptop

Jetson Nano

4 core ARM 4 core x86

wireless link

latency: 2 ms - 20 ms
bandwidth: 1-100 MB/s

[actuator]

Duckietown

Example in Duckietown: Derloyment 1

 Option 1: Run everything on the SoC (PIl/Nano)

Your laptop

SoC
4)
orchestrator
camera motors
driver driver
_ _J

Example in Duckietown: Deployment 2

Option 2: Run from your laptop

Soc

Your laptop

\

O

N

orchestrator

camera
driver

motors
driver

camera [actuatorj

\

Example in Duckietown: Deployment 3

Option 3: Run heavy processing on the laptop

Your laptop

orchestrator

SoC
(
camera motors
driver driver
_

J

\

camera [actuator]

Mk,

An interesting read

e E.A.Lee and S. A. Seshia, Embedded Systems -- A Cyber-
Physical Systems Approach

