System Architectures

System decomposition

- All starts with a decomposition of a system in components.
- What is a system and what are components?

"A system is composed of components; a component is something you understand."

— Howard Aiken (1900-1973)

Physical and logical architectures

- There are **two aspects** for "architectures":
 - Logical architecture what the system is doing
 - e.g., system decomposition, data flow
 - Physical architecture how it is doing it
 - e.g., which computer runs which component
- **Containerization**: Which computer runs which virtual computer that runs which component?

Logical architecture

- The logical architecture describes:
 - System decomposition in components
 - Data flow (Who tells whom what)
 - Representations
 - Priors (Who knows what)
- The logical architecture is <u>independent of language</u>, <u>middleware</u>, and other implementation details.

The LINE

to design

given

Logical architecture overview

Modeling

Sensing

Estimation: Probability basics, Bayesian filtering

Perception

The basic principle of perception

- You should acquire (all and only) "actionable information".
- Actionable information: the information that is needed to perform the task.
 - It is **task-dependent**.
- Non-actionable information: irrelevant to the task.
 - Processing it is a waste of time and resources.

	Information		
Task	weather	class location	referendum results
Dress up to go to class	actionable	not actionable	not actionable
Reach home from class	not actionable	actionable	not actionable

Self-driving car - actionable information

- Cars
- Pedestrians
- ...

https://www.youtube.com/watch?v=0ksuVuNY5o0

Duckiebot - actionable information

- Duckiebots
- Duckies

• ...

Planning

Duckietown 1

Control

Part of logical architecture for Duckietown

- Part of the main perception pipeline.
- Purple refers to "static" information.
- The diagram does not show how things are implemented.
- It does show who-knows-what, and who-tells-what-to-whom.

Duckietown 16

Logical Architecture

... for a fleet

Physical Architecture

- "Physical" architecture: how things are implemented.
- The physical architecture includes:
 - Which processor runs what process?
 - How is the data communicated (TCP, UDP, etc.)
 - Where is the data stored
 - Protocols, formats, etc.

Computation graph

Computation graph

- nodes = components
- edges = signals
- node weight = flops required
- edge weight = size in bytes

Part of computation graph of Duckietown

- This is the Duckietown ROS graph
- It lists the nodes and the signals.

Physical architecture: Resource graph

Resource graph:

- nodes = processors
- edges = network links
- node weight = processor power
- edge weight = bandwidth

Deployment: Mapping logical architecture onto physical

- We need to map the computation graph onto the resource graph.
- Different choices will have different properties for latency, frequency, etc.

Deployment: Mapping logical architecture onto physical

- We need to map the computation graph onto the resource graph.
- Different choices will have different properties for latency, frequency, etc.

Example in Duckietown: Computation graph

Computation graph: we collapse all computation in one node

(abstracting all computation as one node)

Example in Duckietown: Resource graph

Example in Duckietown: Resource graph

Example in Duckietown: Deployment 1

Option 1: Run everything on the SoC (PI/Nano)

Example in Duckietown: Deployment 2

Option 2: Run from your laptop

Example in Duckietown: Deployment 3

Option 3: Run heavy processing on the laptop

An interesting read

• E. A. Lee and S. A. Seshia, *Embedded Systems -- A Cyber-Physical Systems Approach*