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Duckietown

Verification and Validation (V&V)

• Mission:	what	the	system	should	accomplish;		

• often	informally	speci5ied;	subject	to	the	vagueness	of	human	minds	and	
multitude	of	stakeholders.	

• Speci-ication:	A	(formal)	description	of	how	the	system	must	behave.	

• Veri-ication:	Convincing	oneself	that	the	system	conforms	to	the	speci5ication.	
	
							“Are	we	building	the	system	right?”	

• Validation:	Convincing	oneself	that	the	system,	when	conforming	to	the	
speci5ication,	accomplishes	the	mission.	
	
							“Are	we	building	the	right	system?”
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Duckietown

The difference between Verification and Validation

• Mission:	We	must	save	the	prince/princess	kidnapped	by	the	dragon.	

• Speci-ication:	We	need	a	way	to	kill	the	dragon.	

• Proposed	solution:	We	are	going	to	launch	a	satellite	equipped	with	a	powerful	
laser	that	can	kill	the	dragon	from	orbit.	

• Veri-ication:	An	extensive	campaign	of	tests	assures	us	that	our	proposed	satellite	
design	can	kill	any	known	species	of	dragon	from	orbit.	Veri-ication	passed	✓	

• Validation:	Somebody	realizes	that	the	princes/princesses	tend	to	die	in	the	
resulting	heat	wave.	Validation	failed	✘	
	
Revised	speci-ication:	We	need	a	way	to	kill	the	dragon	while	the	prince/
princess	remains	alive.
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Duckietown

System, subsystem, component V&V

• Validation	and	Veri5ication	(V&V)	apply	to	system-level,	subsystem,	and	
component	level.
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Duckietown	examples	

• System-level	speci-ication:	Create	an	autonomous	mobility-on-
demand	system	for	the	city	of	Duckietown	such	that	the	average	
wait	time	is	less	than	5	minutes.	

• Subsystem-level	speci-ication:	The	subsystem	(anti-instagram	+	
line	detection	+	lane	5ilter	+	controller)	must	be	able	to	follow	a	
lane	and	stop	at	the	stop	line	with	accuracy	2cm	/	5	deg.	

• Component-level	speci-ication:	The	lane	5ilter	must	provide	a	
localization	estimate	accurate	to	0.5	cm	/	3	deg	with	frequency	10	
Hz	and	latency	less	than	100	ms.



Duckietown

Verification and Validation (V&V)

5



Duckietown 6



Duckietown

The fundamental limitation of testing

• Testing	can	only	show	the	presence	of	errors,	not	their	absence.	(Dijkstra)	
	
(Absence	of	evidence	is	not	evidence	of	absence.)	

• There	are	two	types	of	scienti-ic	theories:	those	that	have	been	falsi-ied,	
and	those	that	have	not	been	falsi-ied	yet.			(Popper)
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Duckietown

Different types of tests

• Unit	tests:	single	function,	single	module	

• Integration	tests:	multiple	modules,	testing	their	communication/interaction	

• Functional	tests:	multiple	modules,	testing	the	end-to-end	functionality,	often	
with	synthetic	data.	

• Regression	tests:	multiple	modules,	testing	on	real	data	

• Simulation	tests:	testing	in	simulation;	multiple	5idelity	levels.	

• Hardware	in	the	loop	(HWIL)	tests:	tests	performance	(cpu,	network,	…)	

• Flight	tests:	closed	course	(controlled	conditions),	or	actual	roads	

• Acceptance	testing:	does	the	customer	like	the	product?
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Duckietown

Unit tests

• Unit	tests	verify	the	functionality	of	single	modules	or	part	of	a	module	(even	a	
single	function),	in	isolation	from	the	rest	of	the	system.	

• they	speed	up	debugging	-	5ind	issues	quickly	in	complex	code	

• they	speed	up	integration	on	a	new	system	or	environment	

• they	prevent	unexpected	changes	of	functionality.
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Duckietown	examples	

• Camera	geometry	tests:	Sample	random	calibration	
information.	Take	an	(x,y,0)	point,	project	it	to	image	space,	and	
re-project	back	to	the	ground	plane.	We	should	obtain	the	same	
coordinates	that	we	started	from.



Duckietown

Most problems are simple stupid mistakes
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The map is not estimated 
correctly. Maybe I should 
have used a better  
preconditioner for that 
matrix inversion…

Reality:	you	forgot	a	
minus	sign.

Reality:	half	of	the	datasets	are	
not	loading	due	to	a	bug	in	the	
dataset-indexing	code	that	you	
wrote	in	a	hurry	last	year.	The	
last	12	months	of	experiments	
have	been	useless.	You	wasted	
one	year	of	your	life.

Learning is not converging; 
maybe I should try 
implementing that fancy 
new method everybody is 
talking about…



Duckietown

Test-driven development (TDD)

• Write	the	tests	before	writing	the	code.
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Duckietown

Code coverage

• Code	coverage:	%	of	lines	of	code	that	are	reached	by	the	tests.
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Duckietown

Code coverage

• Code	coverage:	%	of	lines	of	code	that	are	reached	by	the	tests.	

• Risk:	writing	lots	of	easy	tests	that	give	a	false	sense	of	security.
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Goodhart's	law	
"When	a	measure	becomes	a	target,	
	it	ceases	to	be	a	good	measure."



Duckietown

Integration tests

• Integration	tests	verify	that	multiple	modules	work	well	together.	

• Example:	one	module	can	read	the	data	provided	by	another.
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Two	successful	unit	tests,		
zero	integration	tests.	



Duckietown

Functional tests

• Functional	tests	verify	the	end-to-end	functionality	provided	by	a	subsystem,	
often	with	synthetic	data.
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Duckietown	example	
Test	the	pipeline	ground	projection	+	lane	5ilter	with	synthetically	
generated	line	detections.	Fix	a	pose	q,	generate	line	detections	at	q,	check	
estimated	pose;	results	should	be	equal	to	q.



Duckietown

Regression tests

• Regression	tests	verify	the	end-to-end	functionality	provided	by	a	subsystem	
on	real	data	(logs).	

• May	involve	the	use	of	annotated	ground	truth	for	realistic	scenarios.	

• Example:	pose	information	from	sensors	you	might	not	have	in	production		
(motion	capture,	differential	GPS)	

• Example:	sensor	annotations	(images	for	cameras,	point	clouds	for	lidar,	
tracks	for	sonar)	

• May	involve	data	taken	in	controlled	conditions.
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Duckietown	examples	
Check	that	we	can	detect	all	April	tags	at	a	distance	of	40	cm.	
Check	that	we	have	>99%	reliability	in	duckie	detection.



Duckietown

Example of image annotations
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bounding	boxes

polygons

pixel-level	segmentation



Duckietown

Simulation tests

• Simulations:	use	responsibly.	

• “Simulations	are	doomed	to	succeed”:	developing	5irst	in	simulation	will	lead	
to	failure.	

• Simulations	are	necessary	in	robotics	to	do	closed-loop	control	tests.	

• Different	levels	of	-idelity	to	achieve	different	goals:	

• Fully	photorealistic	3D	world	with	physically	based	rendering:		
use	to	explore	limits	of	perception.	

• Not	photorealistic:	may	still	be	useful	as	functional	tests	for	perception.	

• Ignore	sensors	and	just	simulate	perception	errors:		
useful	if	you	have	a	good	statistical	model	of	perception.	

• Ignore	sensors	and	dynamics:	may	still	be	useful	for	multi-agent	systems
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Duckietown

Hardware-in-the-loop (HWIL) tests

• “Hardware	in	the	loop”	(HWIL):	bench	test	with	(part	of)	the	system	hardware.	

• HWIL	tests	are	typically	used	to	measure	the	performance	

• Example:	test	total	latency	with	CPUs	under	full	load	

• Example:	test	reliability	of	network	under	stress	

• …	

• At	runtime,	health	monitoring	modules	will	check	these	values.	
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Duckietown	example:	Check	that	the	total	latency	is	less	than	100	
ms	when	run	on	a	Raspberry	PI.



Duckietown

Testing the complete system

• Tests	in	controlled	conditions:	In	the	end,	
the	rubber	must	meet	the	road…	

• Typically	use	a	catalogue	of	maneuvers	

• intersection	with	stop	signs	

• intersections	without	stop	signs	

• passing	on	the	left,	on	the	right,	…	

• On	road	tests	measure	system-level	
performance	metrics.	

• Example:	number	of	takeovers	per	mile
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Uber’s	test	track

University	of	Michigan’s	test	track



Duckietown

Acceptance tests

• Acceptance	tests	are	useful	for	validation:	does	the	customer	accept	the	
product,	or	should	we	go	“back	to	the	drawing	board”?
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