
Testing
autonomous

vehicles

Duckietown

Verification and Validation (V&V)

• Mission:	what	the	system	should	accomplish;		

• often	informally	speci5ied;	subject	to	the	vagueness	of	human	minds	and	
multitude	of	stakeholders.	

• Speci-ication:	A	(formal)	description	of	how	the	system	must	behave.	

• Veri-ication:	Convincing	oneself	that	the	system	conforms	to	the	speci5ication.	
	
							“Are	we	building	the	system	right?”	

• Validation:	Convincing	oneself	that	the	system,	when	conforming	to	the	
speci5ication,	accomplishes	the	mission.	
	
							“Are	we	building	the	right	system?”

2

Duckietown

The difference between Verification and Validation

• Mission:	We	must	save	the	prince/princess	kidnapped	by	the	dragon.	

• Speci-ication:	We	need	a	way	to	kill	the	dragon.	

• Proposed	solution:	We	are	going	to	launch	a	satellite	equipped	with	a	powerful	
laser	that	can	kill	the	dragon	from	orbit.	

• Veri-ication:	An	extensive	campaign	of	tests	assures	us	that	our	proposed	satellite	
design	can	kill	any	known	species	of	dragon	from	orbit.	Veri-ication	passed	✓	

• Validation:	Somebody	realizes	that	the	princes/princesses	tend	to	die	in	the	
resulting	heat	wave.	Validation	failed	✘	
	
Revised	speci-ication:	We	need	a	way	to	kill	the	dragon	while	the	prince/
princess	remains	alive.

3

Duckietown

System, subsystem, component V&V

• Validation	and	Veri5ication	(V&V)	apply	to	system-level,	subsystem,	and	
component	level.

4

Duckietown	examples	

• System-level	speci-ication:	Create	an	autonomous	mobility-on-
demand	system	for	the	city	of	Duckietown	such	that	the	average	
wait	time	is	less	than	5	minutes.	

• Subsystem-level	speci-ication:	The	subsystem	(anti-instagram	+	
line	detection	+	lane	5ilter	+	controller)	must	be	able	to	follow	a	
lane	and	stop	at	the	stop	line	with	accuracy	2cm	/	5	deg.	

• Component-level	speci-ication:	The	lane	5ilter	must	provide	a	
localization	estimate	accurate	to	0.5	cm	/	3	deg	with	frequency	10	
Hz	and	latency	less	than	100	ms.

Duckietown

Verification and Validation (V&V)

5

Duckietown 6

Duckietown

The fundamental limitation of testing

• Testing	can	only	show	the	presence	of	errors,	not	their	absence.	(Dijkstra)	
	
(Absence	of	evidence	is	not	evidence	of	absence.)	

• There	are	two	types	of	scienti-ic	theories:	those	that	have	been	falsi-ied,	
and	those	that	have	not	been	falsi-ied	yet.			(Popper)

7

Duckietown

Different types of tests

• Unit	tests:	single	function,	single	module	

• Integration	tests:	multiple	modules,	testing	their	communication/interaction	

• Functional	tests:	multiple	modules,	testing	the	end-to-end	functionality,	often	
with	synthetic	data.	

• Regression	tests:	multiple	modules,	testing	on	real	data	

• Simulation	tests:	testing	in	simulation;	multiple	5idelity	levels.	

• Hardware	in	the	loop	(HWIL)	tests:	tests	performance	(cpu,	network,	…)	

• Flight	tests:	closed	course	(controlled	conditions),	or	actual	roads	

• Acceptance	testing:	does	the	customer	like	the	product?

8

Duckietown

Unit tests

• Unit	tests	verify	the	functionality	of	single	modules	or	part	of	a	module	(even	a	
single	function),	in	isolation	from	the	rest	of	the	system.	

• they	speed	up	debugging	-	5ind	issues	quickly	in	complex	code	

• they	speed	up	integration	on	a	new	system	or	environment	

• they	prevent	unexpected	changes	of	functionality.

9

Duckietown	examples	

• Camera	geometry	tests:	Sample	random	calibration	
information.	Take	an	(x,y,0)	point,	project	it	to	image	space,	and	
re-project	back	to	the	ground	plane.	We	should	obtain	the	same	
coordinates	that	we	started	from.

Duckietown

Most problems are simple stupid mistakes

10

The map is not estimated
correctly. Maybe I should
have used a better
preconditioner for that
matrix inversion…

Reality:	you	forgot	a	
minus	sign.

Reality:	half	of	the	datasets	are	
not	loading	due	to	a	bug	in	the	
dataset-indexing	code	that	you	
wrote	in	a	hurry	last	year.	The	
last	12	months	of	experiments	
have	been	useless.	You	wasted	
one	year	of	your	life.

Learning is not converging;
maybe I should try
implementing that fancy
new method everybody is
talking about…

Duckietown

Test-driven development (TDD)

• Write	the	tests	before	writing	the	code.

11

Duckietown

Code coverage

• Code	coverage:	%	of	lines	of	code	that	are	reached	by	the	tests.

12

Duckietown

Code coverage

• Code	coverage:	%	of	lines	of	code	that	are	reached	by	the	tests.	

• Risk:	writing	lots	of	easy	tests	that	give	a	false	sense	of	security.

13

Goodhart's	law	
"When	a	measure	becomes	a	target,	
	it	ceases	to	be	a	good	measure."

Duckietown

Integration tests

• Integration	tests	verify	that	multiple	modules	work	well	together.	

• Example:	one	module	can	read	the	data	provided	by	another.

14

Two	successful	unit	tests,		
zero	integration	tests.	

Duckietown

Functional tests

• Functional	tests	verify	the	end-to-end	functionality	provided	by	a	subsystem,	
often	with	synthetic	data.

15

Duckietown	example	
Test	the	pipeline	ground	projection	+	lane	5ilter	with	synthetically	
generated	line	detections.	Fix	a	pose	q,	generate	line	detections	at	q,	check	
estimated	pose;	results	should	be	equal	to	q.

Duckietown

Regression tests

• Regression	tests	verify	the	end-to-end	functionality	provided	by	a	subsystem	
on	real	data	(logs).	

• May	involve	the	use	of	annotated	ground	truth	for	realistic	scenarios.	

• Example:	pose	information	from	sensors	you	might	not	have	in	production		
(motion	capture,	differential	GPS)	

• Example:	sensor	annotations	(images	for	cameras,	point	clouds	for	lidar,	
tracks	for	sonar)	

• May	involve	data	taken	in	controlled	conditions.

16

Duckietown	examples	
Check	that	we	can	detect	all	April	tags	at	a	distance	of	40	cm.	
Check	that	we	have	>99%	reliability	in	duckie	detection.

Duckietown

Example of image annotations

17

bounding	boxes

polygons

pixel-level	segmentation

Duckietown

Simulation tests

• Simulations:	use	responsibly.	

• “Simulations	are	doomed	to	succeed”:	developing	5irst	in	simulation	will	lead	
to	failure.	

• Simulations	are	necessary	in	robotics	to	do	closed-loop	control	tests.	

• Different	levels	of	-idelity	to	achieve	different	goals:	

• Fully	photorealistic	3D	world	with	physically	based	rendering:		
use	to	explore	limits	of	perception.	

• Not	photorealistic:	may	still	be	useful	as	functional	tests	for	perception.	

• Ignore	sensors	and	just	simulate	perception	errors:		
useful	if	you	have	a	good	statistical	model	of	perception.	

• Ignore	sensors	and	dynamics:	may	still	be	useful	for	multi-agent	systems

18

Duckietown

Hardware-in-the-loop (HWIL) tests

• “Hardware	in	the	loop”	(HWIL):	bench	test	with	(part	of)	the	system	hardware.	

• HWIL	tests	are	typically	used	to	measure	the	performance	

• Example:	test	total	latency	with	CPUs	under	full	load	

• Example:	test	reliability	of	network	under	stress	

• …	

• At	runtime,	health	monitoring	modules	will	check	these	values.	

19

Duckietown	example:	Check	that	the	total	latency	is	less	than	100	
ms	when	run	on	a	Raspberry	PI.

Duckietown

Testing the complete system

• Tests	in	controlled	conditions:	In	the	end,	
the	rubber	must	meet	the	road…	

• Typically	use	a	catalogue	of	maneuvers	

• intersection	with	stop	signs	

• intersections	without	stop	signs	

• passing	on	the	left,	on	the	right,	…	

• On	road	tests	measure	system-level	
performance	metrics.	

• Example:	number	of	takeovers	per	mile

20

Uber’s	test	track

University	of	Michigan’s	test	track

Duckietown

Acceptance tests

• Acceptance	tests	are	useful	for	validation:	does	the	customer	accept	the	
product,	or	should	we	go	“back	to	the	drawing	board”?

21

