
Testing in 
Duckietown



Duckietown

Challenges for testing in robotics

• Robots	live	in	an	“open	world”	that	you	cannot	fully	model.	

• No	nice	“theorems”	possible.	

• Robots	live	in	multi-domains:	hardware,	software,	environment,	users	are	hard	
to	model,	and	very	hard	to	model	in	a	coherent	framework.	

• Variability	is	a	big	problem:	of	the	hardware,	of	the	compute,	of	the	
environment,	etc.	

• Non-modularity:	hard	to	test	a	component	in	isolation.	

• Expensive	experiments

2



Duckietown

Testing hierarchy

• Unit	tests:	single	function,	single	
module	

• Integration	tests:	multiple	modules,	
testing	their	communication/interaction	

• Functional	tests:	multiple	modules,	
testing	the	end-to-end	functionality,	
often	with	synthetic	data.	

• Regression	tests:	multiple	modules,	
testing	on	real	data	

• Simulation	tests:	testing	in	simulation;	
multiple	Cidelity	levels.	

• Hardware	in	the	loop	(HWIL)	tests:	
tests	performance	(cpu,	network,	…)	

• Flight	tests:	closed	course	(controlled	
conditions),	or	actual	roads

3

Easy

Easy

Cheap

Expensive



Duckietown

Testing we do in Duckietown

• Unit	tests:	single	function,	single	
module	

• Integration	tests:	multiple	modules,	
testing	their	communication/interaction	

• Functional	tests:	multiple	modules,	
testing	the	end-to-end	functionality,	
often	with	synthetic	data.	

• Regression	tests:	multiple	modules,	
testing	on	real	data	

• Simulation	tests:	testing	in	simulation;	
multiple	Cidelity	levels.	

• Hardware	in	the	loop	(HWIL)	tests:	
tests	performance	(cpu,	network,	…)	

• Flight	tests:	closed	course	(controlled	
conditions),	or	actual	roads

4

nosetests / CI

AI-DO cloud simulation

AI-DO autolab evaluation

limited to special cases in DT



Duckietown

Nosetests

• nose	is	the	simplest	way	to	create	unit	tests.	

• Simply	create	functions	by	the	name	“test*”	in	Ciles	by	name	“*test*.py”.		

• Running	“nose	package”	will	run	all	tests	in	all	Ciles.

5

mytests.py $ nosetests mytests.py



Duckietown

Code coverage

• Suggested	services:	codecov	or	coveralls	

• Code	coverage	shows	which	lines	are	executed	or	not.

6

“dead	code”



Duckietown

Example for duckietown-world

7

https://codecov.io/gh/duckietown/duckietown-world/

https://codecov.io/gh/duckietown/duckietown-world/


Duckietown

Example for duckietown-world

8



Duckietown

Automatic testing/coverage in the cloud

9

https://circleci.com/gh/duckietown



Duckietown

Job history shows when the problem was introduced

10

https://circleci.com/gh/duckietown/aido-protocols



Duckietown

The change that broke the test

11

https://github.com/duckietown/aido-protocols/commit/fdb8f7dfeaed74dabfb15d1044035b5f11cda000



Duckietown

Writing testing code

12

ain't nobody got time for that



Duckietown 13



Duckietown

Bohr’s definition of what is “an expert”

14

An	expert	is	a	person	who	has	made	all	the	mistakes	
	that	can	be	made	in	a	very	narrow	Iield	

Niels	Bohr

Corollary:	School	is	about	making		
as	many	mistakes	as	possible		

as	quickly	as	possible

…and	remembering	them	with	inCinite	regret.


