
Version control 
with Git



Duckietown

Why using version control?

• Backup	

• Easy	experimentation	with	parallel	branches	

• Collaboration	across	teams	

• e.g.	All	of	Google’s	code	lies	in	one	repository	

• Formal	software	development	process	

• Tagging	of	releases		

• Continuous	integration		

• Pull	requests,	code	reviews

2



Duckietown

History of (non-proprietary) version control systems

• 1970s:	Print	everything	out.

3



Duckietown

History of (non-proprietary) version control systems

• 1990s:	CVS	

• Independent	history	for	each	single	Hile.	

• 2000:	Subversion		

• Client-server	architecture.	

• Repository	snapshots,	introductions	of	branches.	

• 2005:	Distributed	Version	Control	(Git,	Mercurial,	Darcs,	Bazaar,	…)	

• Peer-to-peer	network	of	replicated	copies.	

• 2010s:	Services	on	top	(Github,	Gitlab,	…)	

• Issue	tracking,	pull	requests,	continuous	integration,	…

4



Duckietown

Git

• Created	by	Linus	Torvalds	(1969-,	Finnish),	author	of	Linux	

• Created	for	Linux	kernel	development

5



Duckietown

Git

• Created	by	Linus	Torvalds	(1969-,	Finnish),	author	of	Linux	

• Created	for	Linux	kernel	development

6

When asked why [Linus Torvalds] called the new software, 
"git," British slang meaning "a rotten person," he said: 
“I'm an egotistical bastard, so I name all my projects after 
myself. First Linux, now git."

source

https://web.archive.org/web/20170623045504/https://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_begins_work_git_/


Duckietown

Jedi knights build their own lightsabers

7



Duckietown

A roboticist’s output is typically limited by tools

• Learn	to	use	the	tools	that	you	have.	

• Modify	the	tools	to	Hit	your	needs.	

• Create	new	tools.	

• Learn	enough	to	be	able	to	
create	the	tools	that	you	need.

8



Duckietown

Commit graph

9



Duckietown

Commit graph

10

master



Duckietown 11



Duckietown

Git explained with dynamical systems

12

Dynamical	system

state
command
transition		
function

Version	control	/	“patch	theory”

hash	function	(pretend	injective)

Commit	graph

Patches



Duckietown

“Git Flow” branching model

• Git	does	not	impose	any	
semantics	on	the	branches.	

• Conventions	(“branching	
models”)	are	useful.	

• Git	Flow	(right)	is	one	of	the	
most	widely	used.

13



Duckietown

Git/Github demo checklist

• Basics	

• Clone	a	repository	

• Create	a	local	branch	

• Commit	on	the	branch	

• Push	a	branch	remotely	

• Merge	branches	

• Delete	branch		

• Pull	requests	

• Create	a	pull	request	

• Review	/	approve	/	merge	

• Issues

14



Duckietown

Resources for learning Git

• Github	video	guides:	https://www.youtube.com/githubguides	

• Git	book:	https://git-scm.com/book/en/v2	

• The	Github	tutorial:	https://guides.github.com/activities/hello-world/		

• The	Github	Hlow	guide:	https://guides.github.com/introduction/Nlow/

15

https://guides.github.com/activities/hello-world/

