
Introduction to
Containerization

Duckietown

Containerization

• A	container	includes	an	application	and	its	dependencies.	

• Easy	to	ship	and	handle!

2

Duckietown

Docker containers

• Docker	containers	wrap	up	an	application	in	a	5ilesystem	containing	
everything	the	application	needs	to	run:	

• code	

• runtime	libraries	

• system	tools	

• con5iguration	5iles	

• The	containerized	application	will	run	identically	on	any	host.	

• 😀	no	incompatibilities	of	any	kind!

3

Duckietown

Why containerization

4

Package	manager	installs	apps.	
Apps	share	libraries.

😀	Each	container	has	its	own	libraries.	
	
😀	Each	container	can	be	updated		
independently.	

Traditional	way Using	containers

☹	Compatibility	issues.

Duckietown

Difference between containerization and virtual machines

5

Virtual	machines Using	containers

Hypervisor (VMWare)

Host kernel

☹	Large	overhead

☹	Apps	cannot	communicate

😀	Small	overhead

😀	Apps	can	communicate

Duckietown

Modern applications with containerization

• Modern	application	are	organized	in	stacks	of	containers	working	together.

6

Server

App	1
App	2

Duckietown

ROS communication

What ran on the Duckiebot 19

7

ARM-based single board computer (SBC)

 HypriotOS Lightweight base operating system

Docker Layer

DuckieOS

Base system based on UbuntuPortainer

containers

Demos and ROS nodes

Duckietown

What runs on the laptop

8

 (x86) Any x86 compatible architecture

Any major OS (Windows/MacOS/Linux)

Docker layer

Based on Ubuntu

Demos and ROS nodes

DuckieOS

Duckietown

Running ARM code on the laptop

9

 (x86) Any x86 compatible architecture

Any major OS (Windows/MacOS/Linux)

Docker layer

Based on Ubuntu

Demos and ROS nodes

DuckieOS

ARM32v7 emulator

Duckietown

A dream in a dream in a dream in a dream…

10

Duckietown

Docker workflow overview

• Simplest	work5low:	

• docker build		-		Builds	an	image	from	a	Dockerfile.	

• docker run -		Creates	a	container	from	an	image	and	runs	it.

11

image
container

Dockerfile	+	data
docker	build docker	run

containerdocker	run

Duckietown

The recipes to create images

• The	Dockerfile	is	the	“recipe”	to	build	a	Docker	image.

12

FROM	declares	the	base	
image.

RUN	runs	a	command

COPY	5iles	into	the	image

CMD	declares	what	is	the	
default	command.

• It’s	like	you	are	recreating	an	entire	OS	inside	the	image.	

• You	can	pin	dependencies.	

• No	other	program	will	mess	with	your	environment.

Duckietown

Portainer

• Portainer	allows	to	see	which	containers	run	on	a	host.

13

Duckietown

Docker registries: Sharing is caring

• Docker	registries	are	online	databases	of	Docker	images	that	anybody	can	use.	

• The	largest	public	registry	is	Dockerhub.	

• You	can	run	your	own	(private	or	public).

14

Duckietown

Docker registries

15

• Very	similar	to	an	“app	store”	used	by	servers.

Duckietown

Dockerhub

• Everybody	can	publish	images	for	the	world	to	use.	

• You	can	browse	the	available	images.

16

Duckietown

Docker workflow overview, with registry
• Operations	to	develop	containers:	

• docker build	-	Builds	an	image	

• docker push -	Uploads	the	image	to	the	registry.	

• Operations	to	use	containers:	

• docker pull	-	Obtains	or	updates	an	image	from	the	repository	

• docker run	-	Creates	a	container	from	an	image	and	runs	it.

17

docker	build docker	run

DockerHubDeveloper User

docker	push docker	pull

image

container

image

image

Duckietown

What’s nice about Docker

• Reproducible	and	documented	builds	with	Docker5iles.	

• Full	control	over	execution	environment:	

• Know	exactly	what	the	dependencies	are	(e.g.,	dependencies-apt.txt).	

• Know	exactly	what	Diles	your	application	needs	(build	context,	docker	diff).	

• Full	support	of	cross-application	interaction:	

• e.g.,	ROS,	LCM	

• No	conDlict	between	libraries.	

• Full	control	over	networks	and	ports:	

• Open	only	the	ports	and	for	the	protocols	you	need.	

• Full	control	over	resources	(X-Server,	CPU,	GPU,	RAM).

18

Building Docker
images

Duckietown

Docker Images hash and names

• An	image	is	uniquely	identiDied	by	an	hash:	

• On	a	registry,	it	is	also	(non-uniquely)	identiDied	by	a	name:	

• Format	of	the	name:

20

ubuntu/ubuntu:18.04

afdaniele/compose:0.9

sha256:3448a24e6db0125ebbafefee0a355232fc533bd3a68c89dab3d450a8fa15d8ed

owner/image:tag

Duckietown

Docker Image and layers

• An	image	is	the	combination	of	a	sequence	of	layers.	

• A	layer	is	a	collection	of	Diles	(uniquely	identi5ied	by	an	hash).

21

/my_file.dat (user file)
/etc/hosts (system file)

image hash = hash(
 layer 1 hash,
 layer 2 hash,
 layer 3 hash,
 layer 4 hash,
 layer 5 hash
)

Duckietown

An example Dockerfile

22

FROM python:3.6

MAINTAINER Andrea F. Daniele <afdaniele@ttic.edu>

RUN pip3 install tensorflow

…

EXPOSE 6006/tcp

CMD ["python3", "-m", “tensorflow.tensorboard", "--logdir=/tflog"]

Dockerfile

Duckietown

Common Dockerfile instructions

23

FROM

ARG

ENV

MAINTAINER

WORKDIR

USER

RUN

ADD

COPY

VOLUME

EXPOSE

CMD

ENTRYPOINT

Define the base image

Define build-only arguments (non-persistent)

Define environment variables (persistent)

Set maintainer info

Set working directory

Set user ID

Run a command inside a container

Copy files and directories from the build context

Copy files and directories from the build context

Define a new volume

Declare ports used by the image

Define default command

Define entrypoint executable

Useful	documentation:		docs.docker.com/reference

https://docs.docker.com/reference/

Duckietown 24

FROM python:3.6

MAINTAINER Andrea F. Daniele <afdaniele@ttic.edu>

RUN pip3 install tensorflow

...

EXPOSE 6006/tcp

CMD ["python3", "-m", “tensorflow.tensorboard", "--logdir=/tflog"]

python : 3.6

afdaniele / tensorflow

intermediate	layers

The	layers	of	an	image		
are	created	by	running	each	command		
in	a	Docker5ile.

Duckietown

mydir	content:

Build Context

25

FROM python:3.6

...

COPY my_image.jpg /data/my_image.jpg

...

MyDockerfile

• The	“build	context”	is	the	directory	from	which	Docker	is	allowed	to	copy	5iles		

• In	many	scripts,	it	is	“.”	(current	directory)

docker build -t my_image -f /dir1/MyDockerfile mydir>

Image	name Docker5ile	path Build	context

• Build	an	image	from	custom	Dockerfile	and		build	context	path:

Running
Docker Containers

Duckietown

Docker Containers

• A	container	is	an	instance	of	a	Docker	image.	

• It	is	uniquely	identiDied	by	an	alphanumeric	string.	

• It	is	also	assigned	a	name.		

• You	can	choose	the	name	using	the	—name	option:	
	

• Otherwise,	it	will	be	autogenerated	(admiring_einstein).

27

docker run --name my_container my_image>

94c5c6f50a7204b49c5cdfd662aa203f3af0b2e2eb6b449634738edfae77fbe3

Duckietown

Docker Container execution

28

afdaniele/tensorflow

volatile	writeable	layer	
for	mycontainer	

docker run —name mycontainer afdaniele/tensorflow>

• When	you	run	a	container	from	an	image:

• Docker	creates	a	writable	volatile	layer:	
programs	inside	the	container	can	write	
to	their	virtual	disk.

• This	layer	is	not	persistent;	it	is	lost	
when	the	container	is	deleted.

docker stop mycontainer
docker rm mycontainer

Duckietown

Combining layers - AUFS FileSystem

Advanced	multi-layered	Uni5ication	File	System

29

Another	Uni5ication	File	System

• Later	revised	to,

• Originally	meaning,

Duckietown

Data persistency - Mounting directories

• You	can	share	local	directories	with	one	or	more	containers	using	

where,	

										path	to	a	directory	in	the	host	5ile	system	

										destination	path	to	the	directory	in	the	container	5ile	system

30

docker run -v [local_dir]:[container_dir] my_image>

local_dir

container_dir

Duckietown

Data persistency - Docker Volumes

• Create	a	Docker	volume	

• You	can	attach	a	volume	to	a	container	using	

where,	

										name	of	the	volume	

										destination	path	in	the	container	5ile	system

31

docker volume create [volume_name]>

volume_name

container_dir

docker run -v [volume_name]:[container_dir] my_image>

Duckietown

Example of using a volume

• Running	the	Dashboard	on	a	Duckiebot:

32

docker run \

-it \

-p 8080:80/tcp \

-v compose-data:/var/www/html \

-v /data:/data \

--hostname $(hostname) \

--name dashboard \

duckietown/dt-duckiebot-dashboard:daffy

>

docker volume create compose-data>

Duckietown

80 / tcp

backups

db-storage

mysql-dbweb-server

version: '2'
services:
 mysql-db:
 image: mysql:latest
 volumes:
 - db-storage:/var/lib/mysql
 - backups:/backups

 web-server:
 image: apache:latest
 ports:
 - "80:80"
 links:
 - mysql-db:mysql.db
 environment:
 - DBHost=mysql.db
 - DBUser=my_user
 - DBPassword=my_password

volumes:
 db-storage:
 backups:

docker-compose.yaml

Docker Compose
• An	application	can	be	split	across	multiple	Docker	images	

• The	application	runs	when	all	the	corresponding	containers	run

