
Introduction to
Middleware

Duckietown

What is “middleware”?

• Middleware	sits	“in	the	middle”	of	
software	components	and	facilitates	their	
interaction.	

• The	purpose	is	to	provide	an	abstraction	
model	for	functions	such	as	instantiation,	
communication,	etc.		

• Middleware	provides	the	low-level	
implementation;	you	can	focus	on	the	
business	logic.

2

Duckietown

What is robotics “middleware”?

• Middleware	for	robotics	also	provides	
speci;ic	functionalities	for	robot	
development.	

• For	example,	message	types	speci;ic	for	
robotics.	
	
Joy, Imu, NavSatFix, PointCloud,
LaserScan	

• Execution	and	communication	models	
that	;it	the	robotics	paradigm.

3

Duckietown

Middleware components

• Every	middleware	must	provide:	

• Abstraction	from	sensors/actuators	hardware;	

• Communication	protocol	for	data	transport.	

• Every	middleware	should	have:	

• A	tool	for	taking	logs;	

• A	tool	for	playing	back	logs;	

• Tools	for	timing	analysis	(latency/throughput).	

• Simulation	tools.

4

Duckietown

Some popular middleware suites

5

Duckietown

From prototype to deployment

• Each	middleware	is	best	suited	to	a	different	phase	of	development.	
	
	
	
	
	

• It	is	not	uncommon	to	start	from	a	=lexible	prototype	middleware	and	then	
switch	to	some	more	rigid	and	performant	deployment	solution.	

• Well-designed	applications	separate	business	logic	from	communication	logic.	

• Make	“core	code”	independent	of	middleware;		
write	thin	wrapper(s)	speci;ic	to	middleware.

6

learning	 prototyping development productization

Duckietown

Middleware Comparison Axes

7

• You	can	compare	middlewares	along	different	dimensions.	
Choose	the	best	one	for	your	use	case.	

• In	this	course,	the	choice	is	made	for	you.

Introduction to ROS
(Robot Operating System)

*	not	an	operating	system

Duckietown

The History of ROS

• The	project	began	in	2007.	

• Funded	by	National	Science	Foundation	(NSF).	

• Later	supported	by	a	company	called	“Willow	Garage”	(not	existing	anymore).	

• Currently	supported	by	the	“Open	Source	Robotics	
Foundation”	(www.osrfoundation.org)

9

http://www.osrfoundation.org

Duckietown

Officially supported “ROS” Research-Education Robots

10

• Many	research/education	robots	come	with	ROS	drivers	support.	

• Easy	to	get	started!

Duckietown

Hardware with Supported ROS Interfaces

11

• Many	sensors	for	research/development	come	now	with	a	ROS	interface.

Duckietown 12

Duckietown

ROS Noetic

• For	this	year	we	use	ROS	Noetic.	

• This	is	the	latest	and	last			
“ROS	1”	version.

13

Duckietown

Some ROS vocabulary that we are going to learn

• Basic	concepts:	

• Nodes	

• Topics	

• Publishing	

• Subscribing	

• The	ROS	“Master”	

• Messages	

• Intermediate	concepts:	

• Launch	;iles		

• Parameters	/	parameter	server

14

Duckietown

Nodes

• Nodes	are	the	“executables”.	

• ROS	handles	threading.	

• Nodes	can	be	multi-threaded	inside.

15

node1

input topic

Subscribe

• Nodes	subscribe	(“read”)	to	topics.	

output topic

Publish

• Nodes	publish	(“write”)	to	topics.	

Duckietown

Topics

• Topics	are	used	to	pass	information	
between	nodes.	

• there	are	other	ways,	but	this	is	the	
recommended	way	

• Each	topic	has	a	“message	type”.	

• e.g.	“Image”,	“Odometry	reading”.

16

topic

node1

node2

Publish

Subscribe
• Each	topic	maintains	a	queue	of	data	

that	the	publishers	append	to,	and	the	
subscribers	read	from.	

• We	will	see	that	there	are	different	
settings	for	the	behavior	of	the	queue.

Duckietown

Multiple-writers and multiple readers

• Multiple	nodes	can	
publish	to	a	topic.

17

topic

node2node1

publish

node4node3

subscribe

• Not	the	best	way	to	isolate	
functionality	according	to	
“component-based	design”,	
but	very	low	barrier	of	entry	to	get	
something	working	quickly.

• Multiple	nodes	can	
subscribe	to	a	topic.

Duckietown

The ROS Master
• The	ROS	Master	is	a	special	type	of	node	

that	curates	the	communications	between	nodes.	

• Traf;ic	does	not	go	through	the	Master;	
publishers	register	their	published	topics	to	the	
Master,	and	subscribers	query	the	Master	for	
knowing	who	is	publishing	the	topic	using	special	
control	messages.	

18

QueryRegister

traf;ic	publisher
node

subscriber
node

ROS
Master

topic
publish subscribepublisher

node
publisher

node

illusion

reality

Duckietown

Nodes/topics example for basic Robotics Pipeline

19

Sensor
Interface

Actuator
Interface

“Node”

“Node”

Sensor Output

Actuator
Command

“Topic”

… (Collection	of	nodes)

publish

publish

subscribe

subscribe

“Topic”

Duckietown

Lane Following ROS Computation Graph

20

Duckietown

Things Get Pretty Big

21

Duckietown

Messages

• Primitive	built-in	types	(std_msgs)	

• bool, string, float32, int32, …

• Higher-level	built	in	types:	

• geometry_msgs: Point, Polygon, Vector, Pose, PoseWithCovariance, …

• nav_msgs: OccupancyGrid, Odometry, Path, …

• sensors_msgs: Joy, Imu, NavSatFix, PointCloud, LaserScan, …

• You	can	make	your	own	messages.	

• Similar	to	creating	a	new	“class”	in	object-oriented	programming.

22

Duckietown

Example message in duckietown_msgs

• Segment.msg:	

uint8 WHITE=0
uint8 YELLOW=1
uint8 RED=2
uint8 color
duckietown_msgs/Vector2D[2] pixels_normalized
duckietown_msgs/Vector2D normal
geometry_msgs/Point[2] points

• SegmentList.msg:	

Header header
duckietown_msgs/Segment[] segments

23

Duckietown

Some ROS vocabulary that we are going to learn

• ✅		Basic	concepts:	

• ✅		Nodes	

• ✅		Topics	

• ✅		Publishing	

• ✅	Subscribing	

• ✅		The	ROS	“Master”	

• ✅		Messages	

• Intermediate	concepts:	

• Launch	;iles		

• Parameters	/	parameter	server	

24

Duckietown

Launch Files

• They	describe	a	“subsystem”	of	many	nodes	and	their	interconnections.	

• Speci;ied	in	XML	format.	Basic	Syntax:	

• Top-level	tags:	

• <launch>:	Speci;ies	that	this	is	a	launch	;ile	

• <group>:	Apply	some	settings	to	a	range	

• <arg>:	Used	to	pass	arguments	between	launch	;iles	

• <node>:	Used	to	run	an	executable	

• <include>:	Include	the	contents	of	another	launch	;ile.

25

Duckietown

Example: launch file for a single node

<launch>
 <arg name="veh"/>
 <arg name="config" default="baseline"/>
 <arg name="param_file_name" default="default" doc="Specify a param file. ex:megaman"/>
 <arg name="local" default="false" doc="true to launch locally on laptop. false to
launch of vehicle"/>
 <arg name="pkg_name" default="lane_control" doc="name of the package"/>
 <arg name="node_name" default="lane_controller_node" doc="name of the node"/>
 <group ns="$(arg veh)">
 <!-- Local -->
 <node if="$(arg local)" pkg="$(arg pkg_name)" type="$(arg node_name).py" name="$
(arg node_name)" output="screen" clear_params="true" required="true">
 <rosparam command="load" file="$(find duckietown)/config/$(arg config)/$(arg
pkg_name)/$(arg node_name)/$(arg param_file_name).yaml"/>
 </node>
 <!-- Remote -->
 <include unless="$(arg local)" file="$(find duckietown)/machines"/>
 <node unless="$(arg local)" machine="$(arg veh)" pkg="$(arg pkg_name)" type="$(arg
node_name).py" name="$(arg node_name)" output="screen" clear_params="true"
required="true">
 <rosparam command="load" file="$(find duckietown)/config/$(arg config)/$(arg
pkg_name)/$(arg node_name)/$(arg param_file_name).yaml"/>
 </node>
 </group>
</launch>

26

Duckietown

Example: Composing Launch Files

27

<launch>
 <arg name="veh" doc="Name of vehicle. ex: megaman"/>
 <arg name="local" default="false" doc="true for running on laptop. false for running on vehicle."/>
 <arg name="config" default="baseline" doc="Specify a config."/>
 <arg name="param_file_name" default="default" doc="Specify a param file. ex:megaman." />
 <arg name="joy_mapper_param_file_name" default="$(arg param_file_name)" doc="Specify a joy_mapper param file. ex:high_speed" />

 <include file="$(find duckietown)/machines"/>
 <!-- joy -->
 <node ns="$(arg veh)" if="$(arg local)" pkg="joy" type="joy_node" name="joy" output="screen">
 <rosparam command="load" file="$(find duckietown)/config/$(arg config)/joy/joy_node/$(arg param_file_name).yaml"/>
 </node>
 <node ns="$(arg veh)" unless="$(arg local)" machine="$(arg veh)" pkg="joy" type="joy_node" name="joy" output="screen">
 <rosparam command="load" file="$(find duckietown)/config/$(arg config)/joy/joy_node/$(arg param_file_name).yaml"/>
 </node>

 <!-- joy_mapper -->
 <include file="$(find joy_mapper)/launch/joy_mapper_node.launch">
 <arg name="veh" value="$(arg veh)"/>
 <arg name="local" value="$(arg local)"/>
 <arg name="config" value="$(arg config)"/>
 <arg name="param_file_name" value="$(arg joy_mapper_param_file_name)"/>
 </include>

 <!-- run inverse_kinematics_node -->
 <remap from="inverse_kinematics_node/car_cmd" to="joy_mapper_node/car_cmd"/>
 <remap from="inverse_kinematics_node/wheels_cmd" to="wheels_driver_node/wheels_cmd" />
 <include file="$(find dagu_car)/launch/inverse_kinematics_node.launch">
 <arg name="veh" value="$(arg veh)"/>
 <arg name="local" value="$(arg local)"/>
 <arg name="config" value="$(arg config)"/>
 </include>

 <!-- run forward_kinematics_node -->
 <remap from="forward_kinematics_node/wheels_cmd" to="wheels_driver_node/wheels_cmd_executed" />
 <include file="$(find dagu_car)/launch/forward_kinematics_node.launch">
 <arg name="veh" value="$(arg veh)"/>
 <arg name="local" value="$(arg local)"/>
 <arg name="config" value="$(arg config)"/>
 </include>

 <!-- run the velocity_to_pose_node -->
 <remap from="velocity_to_pose_node/velocity" to="forward_kinematics_node/velocity" />
 <include file="$(find dagu_car)/launch/velocity_to_pose_node.launch">
 <arg name="veh" value="$(arg veh)"/>
 <arg name="local" value="$(arg local)"/>
 <arg name="config" value="$(arg config)"/>
 </include>

 <!-- Wheels Driver -->
 <include file="$(find dagu_car)/launch/wheels_driver_node.launch">
 <arg name="veh" value="$(arg veh)"/>
 </include>
</launch>

Duckietown

Parameters in ROS

• Con;igurations	are	loaded	at	launch	time.	

• Parameters	are	stored	on	the	parameter	server	and	can	be	queried	or	
adjusted	at	any	time	

• Bonus:	We	can	tune	the	system	without	restarting	the	applications.	

• Common	pitfall:	parameters	are	preserved	on	the	parameter	server	until	the	
ROS	Master	is	killed.	

• What	types	of	things	should	be	parameters?	

• Controller	gains;	

• Color	thresholds;	

• …

28

Checklist of
ROS commands
to know and use

Duckietown

Commands/tools to become familiar with

• roscore

• roslaunch

• rosnode list

• rosnode info

30

Duckietown

Topics

• rostopic list

• rostopic echo topic_name

• rostopic hz topic_name

• rqt_graph

31

Duckietown

Visualizing data

• rqt_plot

• rviz

• rqt_image_view

• rqt_console

32

Duckietown

Parameter server

• rosparam get param_name

• rosparam set param_name

• rosparam dump file_name [namespace]

• rosparam load file_name [namespace]

33

Duckietown

Recording and playing logs with rosbag

• rosbag record

• rosbag play

34

Programming tips

Duckietown

Bandwidth, throughput, latency, jitter

• Bandwidth	(measured	in	bits/second)	is	the	maximum	rate	at	which	
information	can	be	transferred.	

• [Message]	Throughput	(measured	in	Hz)	is	the	rate	at	which	messages	arrive.	

• The	relation	between	bandwidth	and	throughput	depends	on	the	size	in	bits	
of	the	packets	/	messages.	

• Message	Latency	(measure	in	seconds)	is	the	delay	between	the	sender	sending	
the	message	and	the	receiver	decoding	it.	

• Jitter	is	variation	in	delay	over	time.

36

• Mega	tip:	it	is	very	intuitive	to	think	of	throughput	as	the	main	
performance	metric	(how	many	images	can	I	process	per	second?)	
however	latency	is	what	kills	you	in	robotics.

Duckietown

Latency and throughput are independent

• Isn’t	latency	=		1/throughput?	No,	think	about	parallel	processing.	

• You	could	process	a	message	arbitrarily	fast	(low	latency)		
but	still	be	bound	on	the	frequency	of	the	data	source.	

• You	could	increase	the	latency	arbitrarily	while	keeping	same	throughput.

37

latency	:	4	to	24	minutes	

bandwidth	:	32	Kb/s	-	2	Mb/s

Duckietown

Do not complain about your network setup

• Some	colleagues	have	this	on	their	dashboard:

38

Duckietown

Event-based vs periodic processing

39

• Periodic processing: process the last data received every period T.

self.data = TopicType()

def subscriber_callback(data):
self.data = data

rospy.Subscriber(“topic_name”, TopicType, subscriber_callback)

 def timer_callback(event)
 # process last self.data

rospy.Timer(rospy.Duration(2), timer_callback)

• Event-Based processing: process events as they arrive

def callback(data):
process data here  

rospy.Subscriber(“topic_name”, TopicType, callback)

Duckietown

All-data vs most up-to-date data

40

• If (time to process one message) > 1/{throughput of the message data}  
you cannot process all data, and you have a decision to make.

• Option 1: Always grab the latest data and ignore that you may have missed some

• Option 2: Make sure to get all the data. The data will backlog, but each data could
be important.

• Option 3: Figure out what fraction you have to ignore, and discard as needed to be
as current as possible.

• ROS supports queue size limits that could help in these scenarios. 
Read the documentation to understand the semantics.

• Publisher side:
pub = rospy.Publisher('chatter', String, queue_size=10)

• Subscriber side
sub = rospy.Subscriber('chatter', String, callback, queue_size=10)

