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Representations: Fundamentals

. Representations of the robot and its environment are fundamental
to the capabilities that make a robot autonomous (i.e., sense, plan,
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Representations: State

. The (world) state exists independently of you and your algorithms

- What we usually call “state” (e.g., in control systems) is only a
small part of the world state

- What we call “noise” is usually used to mask our ignorance

. Markov property: the future is independent of the past given the
present

Xt & SZ. p(xt+1 |Xt, a;a xt—l’ a;_la cee aan a()) — p(xz+1 |Xt, a;)

. Markov representations occur throughout Al and machine learning
(e.g., speech understanding, natural language processing, computer
vision, ...)



Representations: Measurement
History

The state is typically observed via the robot's sensors
. Measurement history seems like a logical choice for state

« Pros:.

. Sufficient: implicitly captures all knowledge that can be gleaned
from sensor data

. Lowest level representation
. Cons:
. Measurements are redundant and convey unnecessary information

. Computationally and memory inefficient: number of
measurements increases linearly with time



Robot Representations

Xy = {x[ay[’ ez} S SE(2)

- The robot's state typically includes position  (x,y,) € R?
its pose X, which specifies its
position and orientation relative to orientation 0,

a fixed reference frame.

. The pose defines a rigid-body
transformation from a robot-fixed
frame to the “world frame”

- May also include body-frame
linear angular velocities




Duckiebot Frames

Space: R?
World Frame: {x,,y, } origin fixed at W

Body (robot) frame: {x,,y.} Center at A, axle midpoint x, forms
orientation angle @ with x,




Translations

» Cartesian representation of point P € R* with respect to reference with origin in A:

X
A _ (A LAY _ . = ~ _[7p
P = (X Y )—xpx_l'yPy_ [yp] yW“ Y 3
2 w P
* P &R withrespect to world frame: A4 W .
XW X X
W _ (JW Wy _ |[7P | _ [P A
= ey = | = [+ [
91
* Atrick to express translation as YA |oeereeeeeesennnnn -
matrix multiplication: A X Xp
plication: 5
Xp | 10 xa][¥p
= XWi= [yWl =10 1 yu||¥p[=TAX"
1 ] 0 0 11l1
W XA W



Polar Coordinates in 2D

» Cartesian representation of point P € R* with respect to reference with origin in A:

X
A _ |7P
P = [}’p] Yy 1
* Polar representation as a complex number: Yp P

PA=r=re = (r,a)

Xp = I COSX

x
Yp =T sino v\

_ 2 2
r—\[xp+yp

o = atan( y—p)
Xp



Rotations 2D

* Polar representation with respect to reference with origin in A:
PA=r=re" = (r,a)
Xp = I cos
Yp = I sina

* Polar representation with respect to
reference with origin in 4, but rotated of ©:

= el = (r,a — 0)

=r cos(a — 0)
= Xp €ost + y;, sin

= rsin(a — 0)
= — Xp Sin® + yy, cos

Special Orthogonal
~~ groupin2d

Rotation matrix is orthogonal

[ cosO sind 7
M(6) = —sin® cosO €50(2)

e Rotation:

. X
N et 4

[Xp] _ [cos —sin ” ]
= MT(B) — M_l(e) yP Sin COS
detM(0) =1,V 0




Moving between frames in 2D

* Rotations (Cartesian representation):

- yWy y
—sin@ O
PA = Yp = |sin6 cos? 0 = R(9) P
ISINN
e Translations:
x0'] 110 xaAl[%p
PW. = yw|=10 1 ya|[¥p = TPA
1 | 0O 0 1 1 X
* Rotations and Translations together:
cos® —sin@ x, _ : .
PW = TPA = TR(V) =lsin6 cos0 ya‘ W X W xW
0 0 1 p

We can now express coordinates of points in roto-translated reference systems w.r.t. to a “world” reference



3D vs 2D

 Whatis “pose”? Itis position and orientation of something (robot, sensor, cluckic, ...)

degrees of freedom

/
e In 2D: 3 dof

position (x,y): 2 dof
orientation (8): 1 dof

e In 3D: 6 dof
position (x,y,z): 3 dof
orientation (6,, 0,, 6,): 3 dof

Duckietown
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Translations 3D

t=Xi+Y) +277
N/

unit vectors

Yw,

Duckietown



3D Rotations

* Express unit vectors of rotated frame (Xp, ¥p, Zp) oy
in terms of reference frame. Obtain (X%, y&, ZR) '

Rotation matrix

R = [}, 95, 28] € SO(3) c R3

SO(3) ={Re R%:R'R=1I|R| =1}

\

Special Orthogonal group in 3d

There are many equivalent representations of R, e.g.: cosine direction, Euler angles, quaternions



Moving between frames in 3D

How to express both translation and rotation in a unified framework?

e Cartesian coordinates: Pw = Rpp + t YD

(Euclidean geometry)

* Homogeneous coordinates: [pfv] = [(;31* ﬂ [pln]

(Projective geometry)

SE(3) = {[;‘T ﬂ e R¥*:R € SO(3),t € R3)

Special Euclidean group in 3d



Summary

e Representations are important for building autonomy architectures

e States variables such as the pose (position and orientation) can be used for
describing the robot's relation to the world

e Pose can be expressed in different reference frames (world, "body")

e We looked at how to move between reference frames that are rotated and
translated w.r.t. each other

e We looked at how to express these transitions in an efficient way (homogeneous
coordinates)

. dts exercises init
‘, Try it yourself! cd mooc-exercises/representations
dts exercises notebooks

Tutorial credits to Prof. Liam Paull, University of Montreal



