Representations

Representations: Fundamentals

- Representations of the robot and its environment are fundamental to the capabilities that make a robot autonomous (i.e., sense, plan, and act)

Representations: State

- The (world) state exists independently of you and your algorithms
- What we usually call "state" (e.g., in control systems) is only a small part of the world state
- What we call "noise" is usually used to mask our ignorance
- Markov property: the future is independent of the past given the present

$$
x_{t} \in \mathscr{X} \quad p\left(x_{t+1} \mid x_{t}, a_{t}, x_{t-1}, a_{t-1}, \ldots, x_{0}, a_{0}\right)=p\left(x_{t+1} \mid x_{t}, a_{t}\right)
$$

- Markov representations occur throughout Al and machine learning (e.g., speech understanding, natural language processing, computer vision, ...)

Representations: Measurement History

- The state is typically observed via the robot's sensors
- Measurement history seems like a logical choice for state
- Pros:
- Sufficient: implicitly captures all knowledge that can be gleaned from sensor data
- Lowest level representation
- Cons:
- Measurements are redundant and convey unnecessary information
- Computationally and memory inefficient: number of measurements increases linearly with time

Robot Representations

$$
\mathrm{x}_{t}=\left\{x_{t}, y_{t}, \theta_{t}\right\} \in S E(2)
$$

- The robot's state typically includes its pose \mathbf{x}_{t}, which specifies its position and orientation relative to a fixed reference frame.
- The pose defines a rigid-body transformation from a robot-fixed frame to the "world frame"
- May also include body-frame linear angular velocities
position $\quad\left(x_{t}, y_{t}\right) \in \mathbb{R}^{2}$ orientation θ_{t}

Duckiebot Frames

- Space: \mathbb{R}^{2}
- World Frame: $\left\{x_{w}, y_{w}\right\}$ origin fixed at W
- Body (robot) frame: $\left\{x_{r}, y_{r}\right\}$ Center at A, axle midpoint x_{r} forms orientation angle θ with x_{A}

Translations

- Cartesian representation of point $P \in \mathbb{R}^{2}$ with respect to reference with origin in A :

$$
\mathrm{P}^{\mathrm{A}}=\left(\mathrm{x}^{\mathrm{A}}, \mathrm{y}^{\mathrm{A}}\right)=x_{p} \widehat{x}+y_{p} \widehat{y}=\left[\begin{array}{l}
\mathrm{X}_{\mathrm{p}} \\
\mathrm{y}_{\mathrm{p}}
\end{array}\right]
$$

- $P \in \mathbb{R}^{2}$ with respect to world frame:

$$
\mathrm{P}^{\mathrm{W}}=\left(\mathrm{x}^{\mathrm{W}}, \mathrm{y}^{\mathrm{W}}\right)=\left[\begin{array}{l}
\mathrm{x}_{\mathrm{p}}^{\mathrm{W}} \\
\mathrm{y}_{\mathrm{p}}^{\mathrm{W}}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{x}_{\mathrm{p}} \\
\mathrm{y}_{\mathrm{p}}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{x}_{\mathrm{A}} \\
\mathrm{y}_{\mathrm{A}}
\end{array}\right]
$$

- A trick to express translation as matrix multiplication:
$\Rightarrow X^{W}:=\left[\begin{array}{c}x_{p}^{W} \\ y_{p}^{W} \\ 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & x_{A} \\ 0 & 1 & y_{A} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x_{p} \\ y_{p} \\ 1\end{array}\right]=\mathbf{T}^{A} X^{A}$

Polar Coordinates in 2D

- Cartesian representation of point $P \in \mathbb{R}^{2}$ with respect to reference with origin in A :

$$
\mathrm{P}^{\mathrm{A}}=\left[\begin{array}{l}
\mathrm{X}_{\mathrm{p}} \\
\mathrm{y}_{\mathrm{p}}
\end{array}\right]
$$

- Polar representation as a complex number:

$$
\begin{aligned}
& \mathrm{P}^{\mathrm{A}}=\mathrm{r}=\mathrm{re}{ }^{\mathrm{j} \alpha}=(\mathrm{r}, \alpha) \\
& \mathrm{x}_{\mathrm{p}}=\mathrm{r} \cos \alpha \\
& \mathrm{y}_{\mathrm{p}}=\mathrm{r} \sin \alpha
\end{aligned}
$$

$$
\begin{aligned}
& r=\sqrt{x_{p}^{2}+y_{p}^{2}} \\
& \alpha=\operatorname{atan}\left(\frac{y_{p}}{x_{p}}\right)
\end{aligned}
$$

Rotations 2D

- Polar representation with respect to reference with origin in A :

$$
\begin{aligned}
& \mathrm{P}^{\mathrm{A}}=\mathrm{r}=\mathrm{re}^{\mathrm{j} \alpha}=(\mathrm{r}, \alpha) \\
& \mathrm{x}_{\mathrm{p}}=\mathrm{r} \cos \alpha \\
& \mathrm{y}_{\mathrm{p}}=\mathrm{r} \sin \alpha
\end{aligned}
$$

- Polar representation with respect to reference with origin in A, but rotated of θ :

$$
\begin{aligned}
\mathrm{P}^{\mathrm{R}} & =\mathrm{re} \mathrm{e}^{\mathrm{j}(\alpha-\theta)}=(\mathrm{r}, \alpha-\theta) \\
x_{p}^{R} & =\mathrm{r} \cos (\alpha-\theta) \\
& =\mathrm{x}_{\mathrm{p}} \cos \theta+\mathrm{y}_{\mathrm{p}} \sin \theta \\
y_{p}^{R} & =\mathrm{r} \sin (\alpha-\theta) \\
& =-\mathrm{x}_{\mathrm{p}} \sin \theta+\mathrm{y}_{\mathrm{p}} \cos \theta
\end{aligned}
$$

- Rotation:

$$
\left[\begin{array}{c}
x_{p}^{R} \\
y_{p}^{R}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{\mathrm{p}} \\
\mathrm{y}_{\mathrm{p}}
\end{array}\right]
$$

Special Orthogonal group in 2d

$$
\left[\begin{array}{l}
\mathrm{x}_{\mathrm{p}} \\
\mathrm{y}_{\mathrm{p}}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{p}^{R} \\
y_{p}^{R}
\end{array}\right]
$$

Moving between frames in 2D

- Rotations (Cartesian representation):

$$
\mathrm{P}^{\mathrm{A}}=\left[\begin{array}{c}
\mathrm{x}_{\mathrm{p}} \\
\mathrm{y}_{\mathrm{p}} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p}^{R} \\
y_{p}^{R} \\
1
\end{array}\right]=\mathbf{R}(\theta) \mathrm{P}^{\mathrm{R}}
$$

- Translations:
$\mathrm{P}^{\mathrm{W}}:=\left[\begin{array}{c}\mathrm{x}_{\mathrm{p}}^{W} \\ \mathrm{y}_{\mathrm{p}}^{W} \\ 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & \mathrm{x}_{\mathrm{A}} \\ 0 & 1 & \mathrm{y}_{\mathrm{A}} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}\mathrm{x}_{\mathrm{p}} \\ y_{p} \\ 1\end{array}\right]=\mathbf{T} \mathrm{P}^{\mathrm{A}}$

- Rotations and Translations together:
$\mathrm{P}^{\mathrm{W}}=\mathbf{T} \mathrm{P}^{\mathrm{A}}=\mathbf{T R}(\theta) \mathrm{P}^{\mathrm{R}}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & \mathrm{x}_{\mathrm{a}} \\ \sin \theta & \cos \theta & \mathrm{y}_{\mathrm{a}} \\ 0 & 0 & 1\end{array}\right] \mathrm{P}^{\mathrm{R}}$

We can now express coordinates of points in roto-translated reference systems w.r.t. to a "world" reference

3D vs 2D

- What is "pose"? It is position and orientation of something (robot, sensor, duckie, ...) degrees of freedom
- In 2D: 3 dof
position (x, y): 2 dof orientation (θ): 1 dof

- In 3D: 6 dof
position $(x, y, z): 3$ dof orientation $\left(\theta_{x}, \theta_{y}, \theta_{z}\right): 3$ dof

Translations 3D

3D Rotations

- Express unit vectors of rotated frame ($\widehat{\boldsymbol{x}}_{D}, \widehat{\boldsymbol{y}}_{D}, \widehat{\boldsymbol{z}}_{D}$) in terms of reference frame. Obtain $\left(\widehat{\boldsymbol{x}}_{D}^{R}, \widehat{\boldsymbol{y}}_{D}^{R}, \widehat{\mathbf{z}}_{D}^{R}\right)$

$\operatorname{SO}(3)=\left\{\mathbf{R} \in \mathbb{R}^{3}: \mathbf{R}^{\mathrm{T}} \mathbf{R}=\mathbf{I},|\mathbf{R}|=1\right\}$

Special Orthogonal group in 3d

There are many equivalent representations of R, e.g.: cosine direction, Euler angles, quaternions

Moving between frames in 3D

How to express both translation and rotation in a unified framework?

- Cartesian coordinates: $\mathbf{p}_{\mathrm{w}}=\mathbf{R} \mathbf{p}_{\mathrm{D}}+\mathbf{t}$ (Euclidean geometry) (Projective geometry)

Summary

- Representations are important for building autonomy architectures
- States variables such as the pose (position and orientation) can be used for describing the robot's relation to the world
- Pose can be expressed in different reference frames (world, "body")
- We looked at how to move between reference frames that are rotated and translated w.r.t. each other
- We looked at how to express these transitions in an efficient way (homogeneous coordinates)

```
| Try it yourself!
```

```
dts exercises init
```

dts exercises init
cd mooc-exercises/representations
cd mooc-exercises/representations
dts exercises notebooks

```
dts exercises notebooks
```

