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Computer Vision: Fundamentals Il

Explains Prerequisites

e Linear filters e Matrix operations
e Image Gradients e Coordinate systems
e Edge detection e Reference Frames

e Transformations
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Filtering

We want to remove unwanted sources of variation, and keep the
information relevant for whatever task we need to solve




Linear filtering

I[ng, ny] hlk, ] > Yng, ny

For a linear system, each output is a linear combination of all the input values:

Y{m,n] = h[k,{{I[m—k,n—I]

k,l

In matrix form:
Y =HI
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Linear filtering: Convolutions

I[ng, ny| o hlk, 1] > Y [ng, ny

For a linear system, each output is a linear combination of all the input values:

Ym,n] = hlk,{{I[m—k,n—1]




Convolutions

Il Y

Y{m,n] =) hlk,JI[m—k,n—]

Equivalent to cross-correlation with flipped
filter (bottom-to-top & left-to-right)



Convolutions: Key Properties

e Linearity: filter(f; + f2) = filter(f1) + filter(f2)
e Shift invariance: Same behavior irrespective of pixel location
e Any shift-invariant operator can be represented by a convolution
e Commutative:a™*b =>b%*a
e Associative:a*(b*c)=(a*b)*c
e You an apply several filters one after the other (equivalent to one filter)

e Scalars factorout: ka*b=a*kb = k(a*b)



Convolutions: Impulse

Original Filtered
(no change)
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Convolutions: Shifts

Original Shifted right
by 1 pixel
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Convolutions: Blur (box filter)

Original Shifted right
by 1 pixel
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Convolutions: Sharpeening

Original Sharpening filter
(accentuates differences
with local averages)
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Convolutions: Sharpeening

before



Convolutions: What does blurring remove?

smoothee@ (5%5)

detail

An example of unsharp masking
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Fourier Transform
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Time and Freauency Domains
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Taken from “Fundamentals of Computer Graphics’, 4th ed.




The Problem with the BoxX Filter
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Gaussian kernels

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5,0=1

A Gaussian has infinite support, but filters have finite support



Gaussian Kkernels: Properties

e Removes high-frequency components (low-pass filter)
e (Convolution with another Gaussian is also Gaussian

e Repeatedly smoothing with small std. dev. kernel is the same as convolving
with a kernel with larger std. dew.

e We can approximate heavy smoothing by repeatedly smoothing using a small
kernel (e.g., smooth, subsample, smooth, subsample, etc.), which is more
efficient
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Gaussian Kkernels: Properties

e Removes high-frequency components (low-pass filter)
e (Convolution with another Gaussian is also Gaussian

e Repeatedly smoothing with small std. dev. kernel is the same as convolving
with a kernel with larger std. dew.

e We can approximate heavy smoothing by repeatedly smoothing using a small
kernel (e.g., smooth, subsample, smooth, subsample, etc.), which is more
efficient

e Separability: 2D Gaussian factors into product of two 1D Gaussians —> separable
kernel

e We can perform 2D convolution by performing two 1D convolutions (one over
rows and one over columns)



Separable filters

e The process of performing a convolution involves K? operations per pixel, where
K is the width or height of the kernel

e (ften, the process can be made more efficient by first performing a 1D

horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations

e In this case, the kernel is said to be separable



Gaussian kernels

O =1
Gaussian Kernels
ni + n?
Go Ny, ny| X exp <_ 5 y)
Z Go[nwany] =1 Ny, Ny = [—S,—(S— 1),...,—1,0,1,. Ce (S— 1),5]

Mg, My



Gaussian kernels

O =3
Gaussian Kernels
ni + n?
Go Ny, Ny X €xp <_ 53 y)
Z Go[nxany] =1 Mgy Ny = [—S,—(S— 1), ..,—1,0,1,. Ce (S— 1),5]

Mg, My



Gaussian kernels

O =4
Gaussian Kernels
ni + n?
Go Ny, ny| X €xp <_ 53 y)
Z Go[nxany] =1 Ny Ny = [—S,—(S— 1), ..,—1,0,1,. Ce (S— 1),5]

Mg, My



