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Filtering
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We	want	to	remove	unwanted	sources	of	variation,	and	keep	the	
information	relevant	for	whatever	task	we	need	to	solve
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Linear filtering
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g [m,n] f [m,n]

€ 

f [m,n] = h[m,n,k, l]g[k,l]
k,l
∑

For a linear system, each output is a linear combination of all the input values:

f = H g

=

In matrix form:

I[nx, ny] Y [nx, ny]

Y [m,n] =
X

k,l

h[k, l]I[m� k, n� l]

Y = HI

h[k, l]
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g [m,n] f [m,n]

€ 

f [m,n] = h[m,n,k, l]g[k,l]
k,l
∑

For a linear system, each output is a linear combination of all the input values:

f = H g

=

In matrix form:

I[nx, ny] Y [nx, ny]

Y [m,n] =
X

k,l

h[k, l]I[m� k, n� l]

h[k, l]g [m,n] f [m,n]

=

Linear filtering: Convolutions



Duckietown 6

(43;41:9.43

YI

h

Convolutions

Equivalent	to	cross-correlation	with	Jlipped	
Jilter	(bottom-to-top	&	left-to-right)

Y [m,n] =
X

k,l

h[k, l]I[m� k, n� l]
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Convolutions: Key Properties

• Linearity:	"ilter(f1	+	f2)	=	"ilter(f1)	+	"ilter(f2)	

• Shift invariance:	Same	behavior	irrespective	of	pixel	location	

• Any	shift-invariant	operator	can	be	represented	by	a	convolution	

• Commutative:	 	

• Associative:	 	

• You	an	apply	several	"ilters	one	after	the	other	(equivalent	to	one	"ilter)	

• Scalars	factor	out:	

a * b = b * a

a * (b * c) = (a * b) * c

ka * b = a * kb = k(a * b)

7



Duckietown

Convolutions: Impulse
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0 0 0

0 1 0

0 0 0
* =

Original Filtered	
(no	change)
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Convolutions: Shifts
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0 0 0

0 0 1

0 0 0
* =

Original Shifted	right	
by	1	pixel	
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Convolutions: Blur (box filter)
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1 1 1

1 1 1

1 1 1
* =

Original

1
9

Shifted	right	
by	1	pixel	
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Convolutions: Sharpening
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1 1 1

1 1 1

1 1 1
− =

Original

1
9

0 0 0

0 2 0

0 0 0
* ))

Sharpening	Jilter	
(accentuates	differences	
with	local	averages)
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Convolutions: Sharpening
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Sharpening 

Source: D. Lowe 
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Convolutions: What does blurring remove?
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Sharpening 
What does blurring take away? 

original smoothed (5x5) 

– 

detail 

= 

sharpened 

= 

Let’s add it back: 

original detail 

+  

Sharpening 
What does blurring take away? 

original smoothed (5x5) 

– 

detail 

= 

sharpened 

= 

Let’s add it back: 

original detail 

+  

An	example	of	unsharp	masking
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Fourier Transform
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F (u) =

Z x

�x
f(x)e�2⇡iudx

F (k) =
N�1X

n=0

xne
�2⇡kn

N
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Time and Frequency Domains
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Taken	from	“Fundamentals	of	Computer	Graphics”,	4th	ed.
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The Problem with the Box Filter
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Gaussian kernels
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Gaussian Kernel 

•  Constant factor at front makes volume sum to 1 (can be 
ignored when computing the filter values, as we should 
renormalize weights to sum to 1 in any case) 

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003 

5 x 5, σ = 1 

Source: C. Rasmussen  

A	Gaussian	has	inJinite	support,	but	Jilters	have	Jinite	support
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• Removes	high-frequency	components	(low-pass	"ilter)	

• Convolution	with	another	Gaussian	is	also	Gaussian	

• Repeatedly	smoothing	with	small	std.	dev.	kernel	is	the	same	as	convolving	
with	a	kernel	with	larger	std.	dev.	

• We	can	approximate	heavy	smoothing	by	repeatedly	smoothing	using	a	small	
kernel	(e.g.,	smooth,	subsample,	smooth,	subsample,	etc.),	which	is	more	
ef"icient
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Gaussian kernels: Properties

Gaussian Filter

Convolution with itself is another Gaussian

* !"

Convolving twice with Gaussian kernel of width � is the same as convolving
once with kernel of width �

p
2

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 35 / 82

� �
p
2�
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• Removes	high-frequency	components	(low-pass	"ilter)	

• Convolution	with	another	Gaussian	is	also	Gaussian	

• Repeatedly	smoothing	with	small	std.	dev.	kernel	is	the	same	as	convolving	
with	a	kernel	with	larger	std.	dev.	

• We	can	approximate	heavy	smoothing	by	repeatedly	smoothing	using	a	small	
kernel	(e.g.,	smooth,	subsample,	smooth,	subsample,	etc.),	which	is	more	
ef"icient	

• Separability:	2D	Gaussian	factors	into	product	of	two	1D	Gaussians	—>	separable	
kernel

19

Gaussian kernels: Properties

G�(x, y) =
1

2⇡�2
e�

x2+y2

2�2

=

✓
1p
2⇡�

e�
x2

2�2

◆✓
1p
2⇡�

e�
y2

2�2

◆

<latexit sha1_base64="HHtH8apmmknxDQ7gNo/CEB1G0lE="></latexit>
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Gaussian kernels: Properties

• Removes	high-frequency	components	(low-pass	"ilter)	

• Convolution	with	another	Gaussian	is	also	Gaussian	

• Repeatedly	smoothing	with	small	std.	dev.	kernel	is	the	same	as	convolving	
with	a	kernel	with	larger	std.	dev.	

• We	can	approximate	heavy	smoothing	by	repeatedly	smoothing	using	a	small	
kernel	(e.g.,	smooth,	subsample,	smooth,	subsample,	etc.),	which	is	more	
ef"icient	

• Separability:	2D	Gaussian	factors	into	product	of	two	1D	Gaussians	—>	separable	
kernel	

• We	can	perform	2D	convolution	by	performing	two	1D	convolutions	(one	over	
rows	and	one	over	columns)
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Separable filters

• The	process	of	performing	a	convolution	involves	 	operations	per	pixel,	where	
	is	the	width	or	height	of	the	kernel	

• Often,	the	process	can	be	made	more	ef"icient	by	"irst	performing	a	1D	
horizontal	convolution	followed	by	a	1D	vertical	convolution,	requiring	 								
operations	

• In	this	case,	the	kernel	is	said	to	be	separable

K2

K

2K
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Gaussian kernels
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(43;41:9.43
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Gaussian kernels
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(43;41:9.43
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Gaussian kernels
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(43;41:9.43


