
Computer vision: 
image gradients 
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• Goal:	Identify	sudden	changes	(discontinuities)	in	an	image	

• Most	semantic	and	shape	information	is	encoded	in	edges	

• More	compact	than	raw	intensities

Why edge detection?
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• Goal:	Identify	sudden	changes	(discontinuities)	in	an	image	

• Most	semantic	and	shape	information	is	encoded	in	edges	

• More	compact	than	raw	intensities	

• Edges	correspond	to	valid	decompositions:	

• Surface	normal	discontinuity	

• Depth	discontinuity	

• Different	materials

&551.(&9.43��*),*�)*9*(9.43

What	de(ines	an	edge	is	very	subjective

Why edge detection?
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• Goal:	Identify	sudden	changes	(discontinuities)	in	an	image	

• Most	semantic	and	shape	information	is	encoded	in	edges	

• More	compact	than	raw	intensities	

• Edges	are	caused	by	several	factors:	

• Changes	in	depth	or	surface	normal	

• Surface	color	discontinuity	

• Illumination	discontinuity

&551.(&9.43��*),*�)*9*(9.43

Why edge detection?
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Change in image intensity
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• An	edge	in	an	image	is	a	place	of	rapid	change	in	the	intensity	function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative
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Edge detection: Partial derivatives
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• For	a	2D	function	 	,	the	partial	derivative	is	

• For	discrete	data,	we	can	approximate	this	using	?inite	differences	

• Finite	difference	?ilters	are	easy	to	implement

f(x, y)

@f(x, y)

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f(x, y)

@x
⇡ f(x+ 1, y)� f(x, y)

1
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Edge detection: Finite difference filters
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Which shows changes with respect to x?
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&551.(&9.43��*),*�)*9*(9.43
Edge detection: Finite difference filters
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Edge detection: Finite difference filters

9

&551.(&9.43��*),*�)*9*(9.43

Sobel	operator
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• The	gradient	of	an	image:	

• Gradient	points	in	direction	of	most	rapid	increase	in	intensity	

• How	is	this	direction	related	to	the	direction	of	the	edge?

Image gradients
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• The	gradient	of	an	image:	

• Gradient	points	in	direction	of	most	rapid	increase	in	intensity	

• How	is	this	direction	related	to	the	direction	of	the	edge?

Image gradients
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• The	gradient	of	an	image:	

• Gradient	points	in	direction	of	most	rapid	increase	in	intensity	

• How	is	this	direction	related	to	the	direction	of	the	edge?	

• Gradient	direction	given	by	 	

• Edge	strength	given	by	gradient	magnitude

θ = tan−1 ( ∂f
∂y / ∂f

∂x )

Image gradients
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Effects of noise

Where is the edge?

Consider	a	1D	image
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Effects of noise

Where is the edge?

Consider	a	1D	image

Where	is	the	edge?
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Solution: Apply a smoothing filter first

f

g

f * g

)( gf
dx
d

*
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• Differentiation	is	shift-invariant	and	linear											there	exists	a	corresponding	kernel

Derivative theorem of convolution
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• Differentiation	is	shift-invariant	and	linear											there	exists	a	corresponding	kernel	

• Differentiation	is	associative:

Derivative theorem of convolution

d
dx

(g * f ) = ( dg
dx ) * f
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g
dx
d

f *

f

g
dx
d
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• Differentiation	is	shift-invariant	and	linear											there	exists	a	corresponding	kernel	

• Differentiation	is	associative:	

• This	saves	one	operation

Derivative theorem of convolution

d
dx

(g * f ) = ( dg
dx ) * f
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• In	practice,	we	smooth	using	Gaussian	Iilters	(for	reasons	mentioned	earlier)	

• Remember:	Separability

Derivative of Gaussian filters

&551.(&9.43��*),*�)*9*(9.43

x-direction y-direction
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Scale of Gaussian derivative filters

1 pixel 3 pixels 7 pixels

Smoothed	derivative	removes	noise,	but	blurs	edges.		
Also	6inds	edges	at	different	“scales”


