Computer vision:
Image gradients
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Why edge detection?

e Goal: Identify sudden changes (discontinuities) in an image
e Most semantic and shape information is encoded in edges

e More compact than raw intensities
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Why edge detection?

e Goal: Identify sudden changes (discontinuities) in an image
e Most semantic and shape information is encoded in edges
e More compact than raw intensities

e Edges correspond to valid decompositions:
e Surface normal discontinuity
e Depth discontinuity

e Different materials
What defines an edge is very subjective
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Why edge detection?

e Goal: Identify sudden changes (discontinuities) in an image
e Most semantic and shape information is encoded in edges
e More compact than raw intensities

e Edges are caused by several factors:
e (hanges in depth or surface normal
e Surface color discontinuity

e [llumination discontinuity
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Change in image intensity

e An edge in an image is a place of rapid change in the intensity function

intensity function
image (along horizontal scanline) first derivative
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Edge detection: Partial derivatives

e For a 2D function f(x, y), the partial derivative is
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e For discrete data, we can approximate this using finite differences

8f(x,y) f(il?—l—l,y)—f(ilj,y)
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e Finite difference filters are easy to implement



Edge detection: Finite difference filters

Duckietown



Edge detection: Finite difference filters

Finite Difference Approximation

0
5 X[ng,n,| o< X[ng +1,ny] — X[ng — 1,1,
Ny
Derivative is a linear spatially
X * [1 0 _1] invariant operation: Convolution
10 -1
X x* 2 0 —2 Smoothed iny direction
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Edge detection: Finite difference filters

Sobel operator

Derivatives have been scaled so that
gray (0.5) corresponds to 0. Bright to
positive derivative values, dark to negative.
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Image gradients

e The gradientofanimage: V f = [gi, gi]

e (radient points in direction of most rapid increase in intensity

e How is this direction related to the direction of the edge?
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Image gradients

e The gradient of an image: Vf — [gf;, gi]

e (radient points in direction of most rapid increase in intensity

e How is this direction related to the direction of the edge?
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Image gradients

e The gradient of an image: Vf — [gf;, gi]

e (radient points in direction of most rapid increase in intensity

e How is this direction related to the direction of the edge?

vi=|5L0] ]

vi= a5

. . . : — _1
o Gradient direction given by @ = tan ( 5 /= ax>

e Edge strength given by gradient magnitude

1Vl = /G + (G




Effects of noise

Consider a 1D image
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Effects of noise

Consider a 1D image
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Solufion: Apply a smoothing filter first

Sigma = 50

f*g

Convolution

d
d—x(f*g)

Differentiation
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Derivative theorem of convolution

e Differentiation is shift-invariant and linear — there exists a corresponding kernel
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Derivative theorem of convolution

e Differentiation is shift-invariant and linear — there exists a corresponding kernel
e Differentiation is associative:

* ag
—(g f)= <dx> *f



Derivative theorem of convolution

e Differentiation is shift-invariant and linear — there exists a corresponding kernel

e Differentiation is associative:

d
—(g*f)— < g> *f

e This saves one operation dx dx

Sigma = 50
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Derivative of Gaussian filters

e In practice, we smooth using Gaussian filters (for reasons mentioned earlier)

e Remember: Separability

I, =0, % (G X) = (0, *Gs) * X =Gpo x X

_ 2 2 _ 2 2
G, = x4exp<—x —I—y) Gy, = Y exp<—$ +y>
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Scale of Gaussian derivative filters

1 pixel 3 pixels [ pixels

Smoothed derivative removes noise, but blurs edges.
Also finds edges at different “scales”
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