Comeputer vision:
edge and corner
detectors
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Building an (Canny) edge detector
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original image final output

Start from greyscale



1. Reduce nhoise

smoothee (5%x5)

Use, e.g., a 5x5 Gaussian Filter
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2. Calculate the gradient (e.g., Sobel operator)

norm of the gradient



3. Threshold the gradient intensity

Thresholded norm of the gradient



Problem 1: Thick trails

How do we turn
these thick regions
into edges?

Thresholded norm of the gradient



4. Noh-maximum supPpPression

e Look for local maximum along gradient direction
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4. Noh-maximum supPpPression

e Look for local maximum along gradient direction

e Requires checking interpolated pixels pand r
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If q is a local maximum in the direction of the gradient, keep. If not, set to 0.



Problem 2: continuity of edges

Another problem:
pixels along this
edge didn’t survive
thresholding
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Hysteresis (or double) thresholding

Use a high threshold to start edge curves, and a
low threshold to continue them.



Hysteresis (or double) thresholding

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)



Corner detection
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Corner detection: Basic idea

e The interest point should be recognizable using a local window

e Shifting the window in any direction should result in a large change in intensity
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“flat” region: “edge”: “corner”:
no change in no change along significant changes
all directions edge direction in all directions



Corner detection: Basic idea

e The interest point should be recognizable using a local window

e Shifting the window in any direction should result in a large change in intensity

/,

isotropic aperture: elongated aperture:
motion downwards to the right motion appears to be vertical
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Corner detection: Mathematics

e Window-averaged squared change in intensity due to shift by [u, v]

E(u,v) =Y w(z,y) I(z+u,y+v) — I(z,y)]

"/ T N\

window function shifted intensity intensity
(can be modeled as convolution)

Window function W( X,y) =

i = - - -

1 1n window, 0 outside Gaussian



Corner detection: Mathematics

e Window-averaged squared change in intensity due to shift by [u, V]

E(u,v) = w(z,y) [(z+u,y+v) = I(z,y)]

e T N\

window function shifted intensity intensity
(can be modeled as convolution)

[ ) 1 ‘- E(u, v)

Duckietown



Corner detection: Mathematics

e How does this function behave with small image shifts?

e (onsider a first-order Taylor series approximation

Iz +u,y+v)~I(x,y)+ I,u+ Iv



Corner detection: Mathematics

e How does this function behave with small image shifts?
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e This gives a quadratic approximation to the error function
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Corner detection: Mathematics

e How does this function behave with small image shifts?

e C(Consider a first-order Taylor series approximation

Iz +u,y+v)~I(x,y)+ I,u+ Iv

e This gives a quadratic approximation to the error function

E(u,v) =Y w(z,y) [I(z+u,y+v) — I(z,y)]°
~ Y w(z,y) [(I(2,y) + Lu+ L) — (z,y)]°

=Y w(x,y) [Lou + L]

L,y



Corner detection: Mathematics

E(u,v) = Zw(x, y) | Lou® + 21, T uv + Isvz]
z,Y

e We can express this in matrix form
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where M is a second moment matrix (structure tensor) computed from image
derivatives




Corner detection: Second moment matrix

e The surface E(u, v) is locally approximated by a quadratic form

e In which directions does it experience the greatest/least change?

u E(u, v)
v

E(u,v)~ |[u v| M

T,y




Corner detection: Second moment matrix

e The surface E(u, v) is locally approximated by a quadratic form

e In which directions does it experience the greatest/least change?

U =1 )\1 0
U M= f 0 )\2_

E(u,v)~ |[u v| M R

A1, Ao - eigenvalues of )/
e FE(u,v) = constant is an ellipse

direction of the
fastest change

direction of the
slowest change

Iso-contour of the squayed
error, E(u,v)




Corner detection: Second moment matrix

e Consider axis-aligned case (horizontal or vertical gradients) (that’s what R does)
a 0

M:_o b

e Ifeither a or b are close to 0, then it is not a corner

e Look for locations where both components are large




Selecting good features

Image patch
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Selecting good features
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Selecting good features

Image patch
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Interpreting eigenvalues

e C(lassification of image points using eigenvalues of M

A
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Harris corner detector

Proposed by Harris and
Stephens (1988)

R depends only on
eigenvalues of M

R is large for a corner

R is negative with large
magnitude for an edge

|R| is small for a flat region

= det(M) — actr(M)?
= A2 — a(A + A2)°
a € (0.04,0.06)
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Harris corher detector: Algorithm

1. Compute partial derivatives at each pixel

2. Compute second moment matrix M in a Gaussian window around each pixel

M — - Zx,yw(af;?y)lg Zaz

3. Compute corner response function R = det(M) — atr(M)? = Aidy — a(A) + 12)2
4. Find points with large corner response function R > threshold

5. Keep points that are local maxima in R (e.g., points for which R is bigger than that of
4 or 8 neighbors)



Harris corner detector: Workflow

Compute corner response R




Harris corner detector: Workflow

Compute corner response R
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Harris corner detector: Workflow

Find points with large corner response R > threshold




Harris corner detector: Workflow

Take local maxima in R




Harris corner detector: Workflow




[nvariance of corner features

e What happens when the image undergoes geometric (rotation, scale) or
photometric changes




[hvariance of corner features: Affine intensity change

= I —al+b

e Only derivatives are used —> invariance to intensity shift: / - I+ b

e Intensity scaling: I — al

threshold / \J W \ \/ v \

X (image coordinate) X (image coordinate)

Patrtially invariant to affine intensity change




[nvariance of corner features: [mage translation

| .

e Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation
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[nhvariance of corner features: Image rotation

|
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e Second moment ellipse rotates, but shape (i.e., eigenvalues) remain the same

Corner location is covariant w.r.t. rotation




[nvariance of corner features: Scaling

Iy %Z/E\

Corner

All points will
be classified
as edges

Corner location is not covariant to scaling!




[nvariance of corner features: Scaling

1mage zoomed 1mage



