
Computer vision: 
edge and corner 

detectors
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Building an (Canny) edge detector

2

original image final output
Start	from	greyscale
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1. Reduce noise
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Use,	e.g.,	a	5x5	Gaussian	Filter
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2. Calculate the gradient (e.g., Sobel operator)
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norm of the gradient
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3. Threshold the gradient intensity
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Thresholded norm of the gradient



Duckietown

Problem 1: Thick trails
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Thresholded norm of the gradient

How	do	we	turn	
these	thick	regions	

into	edges?
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4. Non-maximum suppression
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• Look	for	local	maximum	along	gradient	direction
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4. Non-maximum suppression
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• Look	for	local	maximum	along	gradient	direction	

• Requires	checking	interpolated	pixels	p	and	r
Section 8.3. Edges and Gradient-based Edge Detectors 231

Gradient

p

q

r

r

s
Gradient

Figure 8.13. Non-maximum suppression obtains points where the gradient magnitude
is at a maximum along the direction of the gradient. The figure on the left shows how
we reconstruct the gradient magnitude. The dots are the pixel grid. We are at pixel q,
attempting to determine whether the gradient is at a maximum; the gradient direction
through q does not pass through any convenient pixels in the forward or backward direc-
tion, so we must interpolate to obtain the values of the gradient magnitude at p and r;
if the value at q is larger than both, q is an edge point. Typically, the magnitude values
are reconstructed with a linear interpolate, which in this case would use the pixels to the
left and right of p and r respectively to interpolate values at those points. On the right,
we sketch how to find candidates for the next edge point, given that q is an edge point;
an appropriate search direction is perpendicular to the gradient, so that points s and t
should be considered for the next edge point. Notice that, in principle, we don’t need to
restrict ourselves to pixel points on the image grid, because we know where the predicted
position lies between s and t, so that we could again interpolate to obtain gradient values
for points off the grid.

Once these steps are understood, it is easy to enumerate all edge chains. We find
the first edge point, mark it, expand all chains through that point exhaustively,
marking all points along those chains, and continue to do this for all unmarked
edge points.
The two main steps are simple. For the moment, assume that edges are to be

marked at pixel locations (rather than, say, at some finer subdivision of the pixel
grid). We can determine whether the gradient magnitude is maximal at any pixel
by comparing it with values at points some way backwards and forwards along the
gradient direction. This is a function of distance along the gradient; typically we
step forward to the next row (or column) of pixels and backwards to the previous to
determine whether the magnitude at our pixel is larger (figure 8.13). The gradient
direction does not usually pass through the next pixel, so we must interpolate to
determine the value of the gradient magnitude at the points we are interested in; a
linear interpolate is usual.

If	q	is	a	local	maximum	in	the	direction	of	the	gradient,	keep.	If	not,	set	to	0.	
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original image

Problem 2: continuity of edges
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Another	problem:	
pixels	along	this	
edge	didn’t	survive	

thresholding
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Hysteresis (or double) thresholding
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Use a high threshold to start edge curves, and a 
low threshold to continue them.
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Hysteresis (or double) thresholding
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original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold



Corner detection
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Corner detection: Basic idea
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• The	interest	point	should	be	recognizable	using	a	local	window	

• Shifting	the	window	in	any	direction	should	result	in	a	large	change	in	intensity

Corner Detection: Basic Idea 

•  We should easily recognize the point by 
looking through a small window 

•  Shifting a window in any direction should 
give a large change in intensity 
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“@lat”	region:	
no	change	in		
all	directions

“edge”:	
no	change	along	
edge	direction

Corner Detection: Basic Idea 

•  We should easily recognize the point by 
looking through a small window 

•  Shifting a window in any direction should 
give a large change in intensity 
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“corner”:	
signi@icant	changes	
in	all	directions

Corner Detection: Basic Idea 

•  We should easily recognize the point by 
looking through a small window 

•  Shifting a window in any direction should 
give a large change in intensity 
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Corner detection: Basic idea
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• The	interest	point	should	be	recognizable	using	a	local	window	

• Shifting	the	window	in	any	direction	should	result	in	a	large	change	in	intensity

elongated	aperture:	
motion	appears	to	be	vertical

isotropic	aperture:	
motion	downwards	to	the	right
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Corner detection: Mathematics
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E(u, v) =
X

x,y

w(x, y) [I(x+ u, y + v)� I(x, y)]2

shifted	intensity intensity

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

window	function	
(can	be	modeled	as	convolution)

• Window-averaged	squared	change	in	intensity	due	to	shift	by	[u, v]
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Corner detection: Mathematics

16

• Window-averaged	squared	change	in	intensity	due	to	shift	by	[u, v]

window	function	
(can	be	modeled	as	convolution)

E(u, v) =
X

x,y

w(x, y) [I(x+ u, y + v)� I(x, y)]2

shifted	intensity intensity

Corner Detection: Mathematics 

I(x, y) 
E(u, v) 

E(0,0) 

Change in appearance of window W for the shift [u,v]: 

E(u,v) = [I(x +u, y+ v)− I(x, y)]2
(x,y)∈W
∑



Duckietown

Corner detection: Mathematics

• How	does	this	function	behave	with	small	image	shifts?	

• Consider	a	Kirst-order	Taylor	series	approximation

17

I(x+ u, y + v) ⇡ I(x, y) + Ixu+ Iyv
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Corner detection: Mathematics

• How	does	this	function	behave	with	small	image	shifts?	

• Consider	a	Kirst-order	Taylor	series	approximation	

• This	gives	a	quadratic	approximation	to	the	error	function

18

I(x+ u, y + v) ⇡ I(x, y) + Ixu+ Iyv

E(u, v) =
X

x,y

w(x, y) [I(x+ u, y + v)� I(x, y)]2

⇡
X

x,y

w(x, y) [(I(x, y) + Ixu+ Iyv)� I(x, y)]2

=
X

x,y

w(x, y) [Ixu+ Iyv]
2

=
X

x,y

w(x, y)
⇥
I2xu

2 + 2IxIyuv + I2yv
2
⇤2
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Corner detection: Mathematics

• How	does	this	function	behave	with	small	image	shifts?	

• Consider	a	Kirst-order	Taylor	series	approximation	

• This	gives	a	quadratic	approximation	to	the	error	function
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I(x+ u, y + v) ⇡ I(x, y) + Ixu+ Iyv

E(u, v) =
X

x,y

w(x, y) [I(x+ u, y + v)� I(x, y)]2

⇡
X

x,y

w(x, y) [(I(x, y) + Ixu+ Iyv)� I(x, y)]2

=
X

x,y

w(x, y) [Ixu+ Iyv]
2

=
X

x,y

w(x, y)
⇥
I2xu

2 + 2IxIyuv + I2yv
2
⇤2
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Corner detection: Mathematics

• How	does	this	function	behave	with	small	image	shifts?	

• Consider	a	Kirst-order	Taylor	series	approximation	

• This	gives	a	quadratic	approximation	to	the	error	function
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I(x+ u, y + v) ⇡ I(x, y) + Ixu+ Iyv

E(u, v) =
X

x,y

w(x, y) [I(x+ u, y + v)� I(x, y)]2

⇡
X

x,y

w(x, y) [(I(x, y) + Ixu+ Iyv)� I(x, y)]2

=
X

x,y

w(x, y) [Ixu+ Iyv]
2

=
X

x,y

w(x, y)
⇥
I2xu

2 + 2IxIyuv + I2yv
2
⇤2
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Corner detection: Mathematics

• We	can	express	this	in	matrix	form	

where	 	is	a	second	moment	matrix	(structure	tensor)		computed	from	image	
derivatives

M

21

E(u, v) ⇡
⇥
u v

⇤
 
X

x,y

w(x, y)


I2x IxIy
IxIy I2y

�!
u
v

�

=
⇥
u v

⇤
M


u
v

�

E(u, v) =
X

x,y

w(x, y)
⇥
I2xu

2 + 2IxIyuv + I2yv
2
⇤2
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Corner detection: Second moment matrix

• The	surface	 	is	locally	approximated	by	a	quadratic	form	

• In	which	directions	does	it	experience	the	greatest/least	change?

E(u, v)

22

M =
X

x,y

w(x, y)


I2x IxIy
IxIy I2y

�

•  The surface E(u,v) is locally approximated by a 
quadratic form. Let’s try to understand its shape. 

•  Specifically, in which directions  
does it have the smallest/greatest 
change? 

Interpreting the second moment matrix 
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• The	surface	 	is	locally	approximated	by	a	quadratic	form	

• In	which	directions	does	it	experience	the	greatest/least	change?	

• 		is	an	ellipse

E(u, v)

E(u, v) = constant

23

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2
Iso-contour of the squared 
error, E(u,v)

�1,�2 M-	eigenvalues	of

M = R�1


�1 0
0 �2

�
RE(u, v) ⇡

⇥
u v

⇤
M


u
v

�

Corner detection: Second moment matrix
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• Consider	axis-aligned	case	(horizontal	or	vertical	gradients)	(that’s	what	 	does)	

• If	either	 	or	 	are	close	to	0,	then	it	is	not	a	corner	

• Look	for	locations	where	both	components	are	large

R

a b

24

Corner detection: Second moment matrix

M =


a 0
0 b

�
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Selecting good features

λ1 and  λ2 are large

Image patch

Error surface12x10^5
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Selecting good features

large λ1, small λ2

Image patch

Error surface9x10^5
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Selecting good features

small λ1, small λ2

(contrast auto-scaled)

Image patch

Error surface
(vertical scale exaggerated relative to previous plots)

200
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Interpreting eigenvalues

• ClassiKication	of	image	points	using	eigenvalues	of	M

λ1

λ2

�Corner�
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

λ1 and λ2 are small;
E is almost constant 
in all directions

�Edge�
λ1 >> λ2

�Edge�
λ2 >> λ1

�Flat�
region
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Harris corner detector

• Proposed	by	Harris	and	
Stephens	(1988)	

• 	depends	only	on	
eigenvalues	of	 	

• 	is	large	for	a	corner	

• 	is	negative	with	large	
magnitude	for	an	edge	

• 	is	small	for	a	Klat	region

R
M

R

R

|R|

↵ 2 (0.04, 0.06)

R = det(M)� ↵ tr(M)2

= �1�2 � ↵(�1 + �2)
2

λ1

λ2 �Corner�

�Edge�

�Edge�

�Flat�

R > 0

R < 0

R < 0|R| small
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Harris corner detector: Algorithm

1. Compute	partial	derivatives	at	each	pixel	

2. Compute	second	moment	matrix	 	in	a	Gaussian	window	around	each	pixelM

M =

 P
x,y w(x, y)I

2
x

P
x,y w(x, y)IxIyP

x,y w(x, y)IxIy
P

x,y w(x, y)I
2
y

�

3. Compute	corner	response	function	 	

4. Find	points	with	large	corner	response	function	 	

5. Keep	points	that	are	local	maxima	in	 	(e.g.,	points	for	which	 	is	bigger	than	that	of	
4	or	8	neighbors)

R = det(M) − αtr(M)2 = λ1λ2 − α(λ1 + λ2)2

R > threshold

R R
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Harris corner detector: Workflow
Compute	corner	response	R
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Harris corner detector: Workflow
Compute	corner	response	R
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Harris corner detector: Workflow
Find	points	with	large	corner	response	R > threshold
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Harris corner detector: Workflow
Take	local	maxima	in	R
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Harris corner detector: Workflow
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Invariance of corner features

• What	happens	when	the	image	undergoes	geometric	(rotation,	scale)	or	
photometric	changes
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Invariance of corner features: Affine intensity change

• Only	derivatives	are	used	—>	invariance	to	intensity	shift:	 	

• Intensity	scaling:	

I → I + b

I → aI

I ! aI + bAffine intensity change 

•    Only derivatives are used => 
invariance to intensity shift I → I + b 

•    Intensity scaling: I → a I 

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 

Partially invariant to affine intensity change 

I → a I + b 
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Invariance of corner features: Image translation

• Derivatives	and	window	function	are	shift-invariant

Image translation 

•   Derivatives and window function are shift-invariant 

Corner location is covariant w.r.t. translation 

Image translation 

•   Derivatives and window function are shift-invariant 

Corner location is covariant w.r.t. translation 
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Invariance of corner features: Image rotation

• Second	moment	ellipse	rotates,	but	shape	(i.e.,	eigenvalues)	remain	the	same

Image rotation 

Second moment ellipse rotates but its shape 
(i.e. eigenvalues) remains the same 

Corner location is covariant w.r.t. rotation 

Image rotation 

Second moment ellipse rotates but its shape 
(i.e. eigenvalues) remains the same 

Corner location is covariant w.r.t. rotation 
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Invariance of corner features: Scaling
Scaling 

All points will 
be classified 
as edges 

Corner 

Corner location is not covariant to scaling! 

Scaling 

All points will 
be classified 
as edges 

Corner 

Corner location is not covariant to scaling! 
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Invariance of corner features: Scaling

image zoomed image


