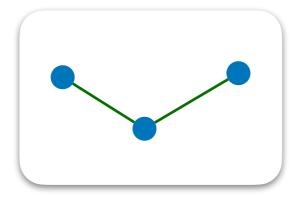
Introduction to graph-based planning

Overview of graph-based planning

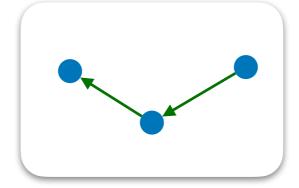
- **Graphs** as the easiest representation for planning.
 - Warning: graph nomenclature varies across fields.
 - Directed graph, labeled graph, multigraph, labeling, path, cycles, cycle bases.
- The basic **graph formulation of**
 - Nodes = states, edges = actions, paths = plans
- Specific examples:
 - Road networks
 - Pose graphs (useful for SLAM as well)
- Classic algorithms for path finding(Dijkstra, A*)

Basic graphs definitions

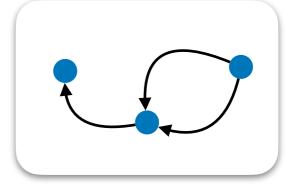
- A **graph** is a set of **nodes** (*vertices*) + a set of **edges**.
- In a directed graph, each edge has a direction (it's an arrow).
 - **Source** nodes have only outgoing edges, **sinks** have only incoming edges.
- In a multigraph, there might be multiple edges between two nodes with the same direction.



graph



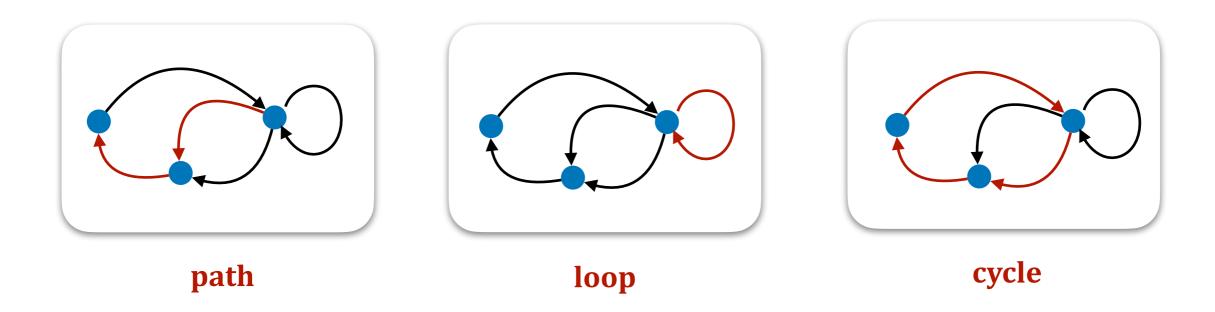
directed graph



directed multigraph

Loops, paths, cycles

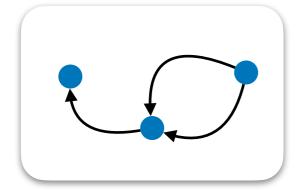
- A **path** is a sequence of consecutive edges.
- A loop is an edge for which the starting and ending node are the same.
- A **cycle** is a path that starts and ends with the same node.



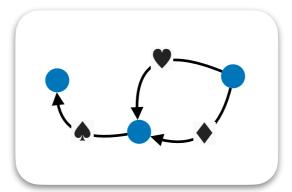
Labeled graphs

• A graph is **labeled** if there is some extra information (the "label") associated to the edges and/or the nodes.

unlabeled



labeled

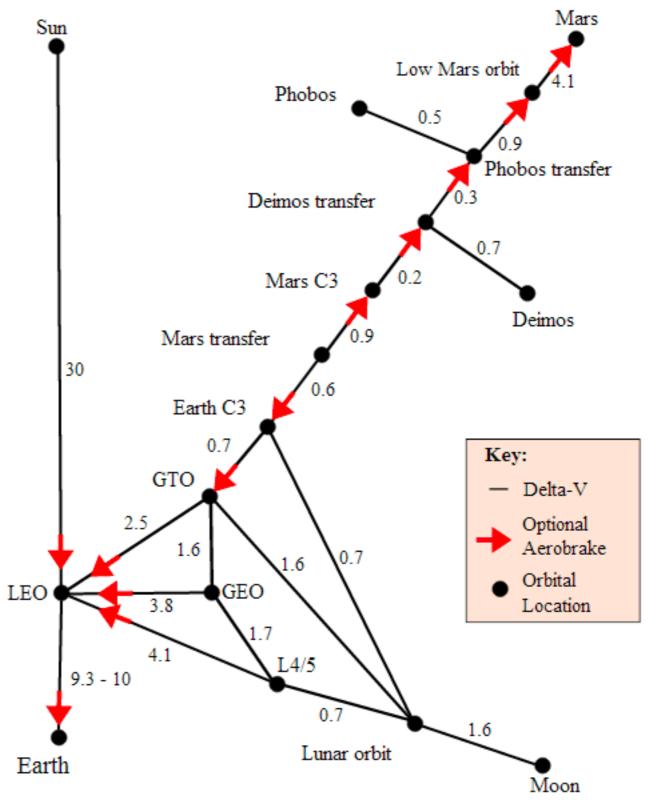


- In planning, edge labels are used to describe **costs**.
- Example: nodes = places; label = the length of a trip from place to place.

Example: Delta U maps

- Nodes = orbits.
- Edges = transfers.
- Labels = cost in "Delta V".
 - \sim = fuel to be spent

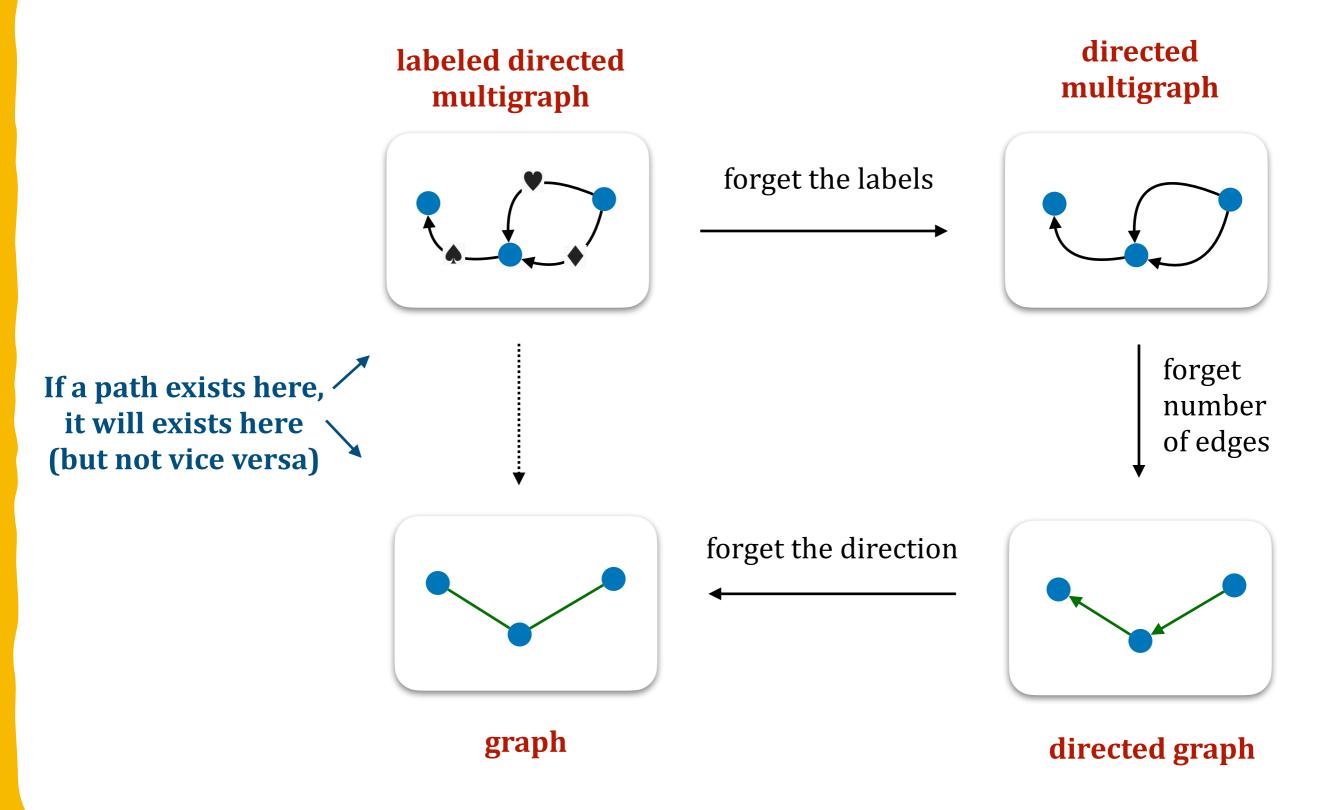
Mars/Moon/Earth Delta-Vs



N.B. Not all possible routes are shown.

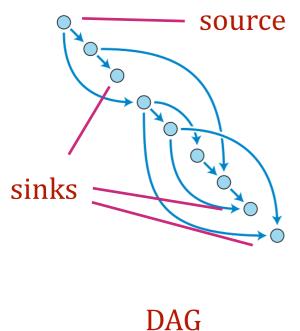
Delta-Vs are in km/s and are approximate

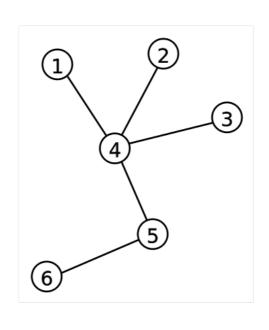
Forgetful graph transformations

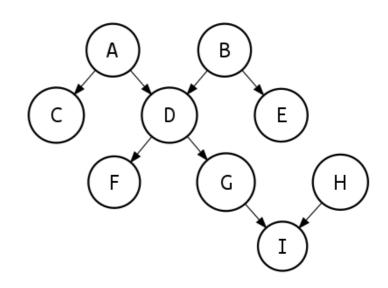


Special graphs

- **Directed acyclic graph (DAG)**: a graph that contains no cycles.
- **Tree:** Connected acyclic undirected graph
- **Polytree**: A directed graph whose underlying undirected graph is a tree.







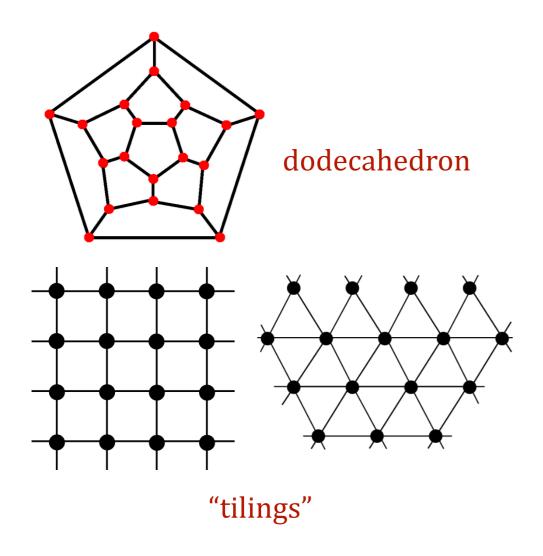
Tree

Polytree

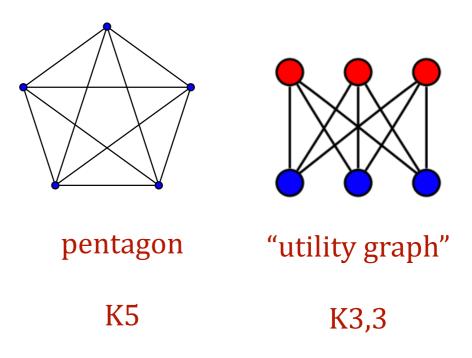
Planar graphs

• **Planar graph**: A graph that can be "embedded in the plane", in the sense that it can be drawn without any intersection of edges.

planar graphs



non-planar graphs

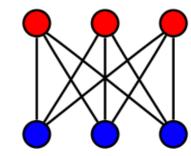


Kuratowski's theorem: if a graph is nonplanar, it's because it contains a copy of K3,3 or K5.

The utilities problem

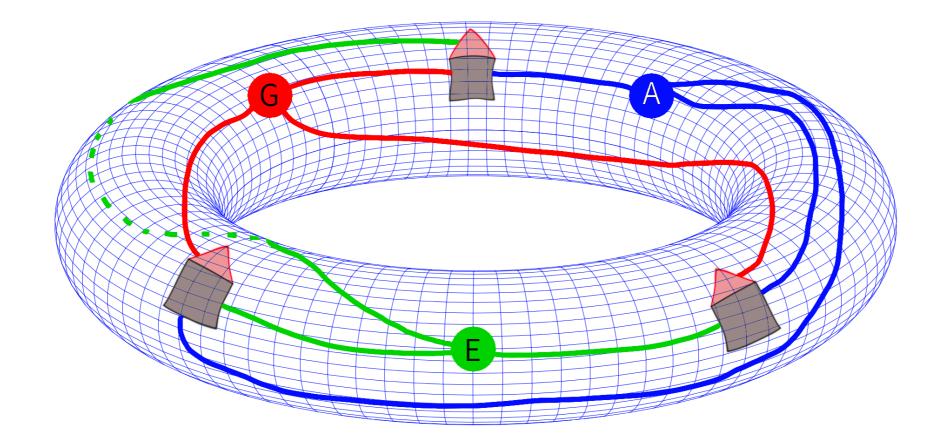
Can you connect each house to each utility without any wires crossing?

Answer: no, because K3,3 is not a planar graph



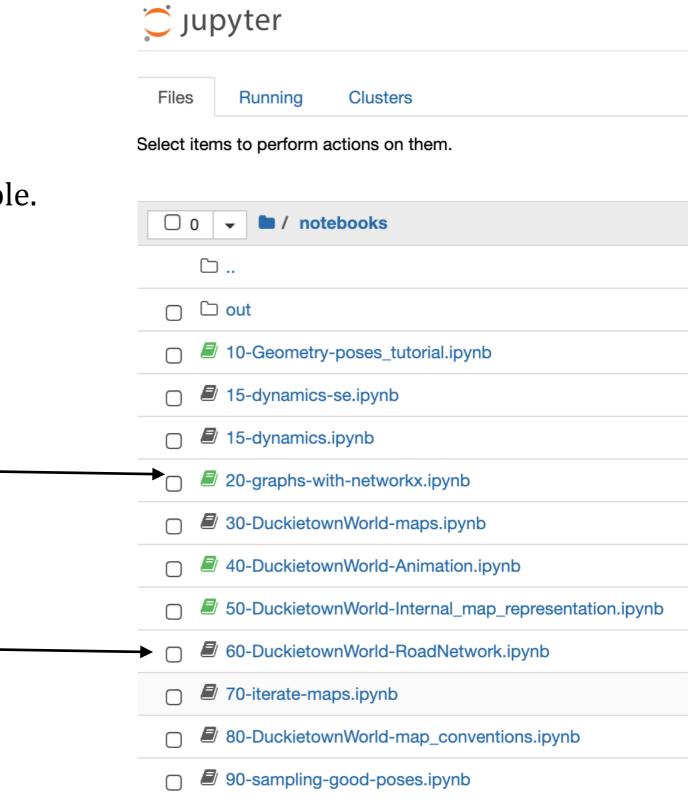
The utilities problem

• Yes, if you live on a torus.



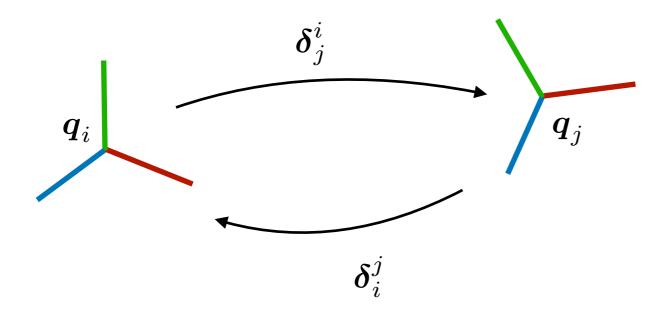
Pose graph notebook

- In duckietown-world there are several notebooks available.
- They show how to represent and manipulate Duckietown maps, road networks, pose graphs, etc.



Pose graph

- A **pose graph** is a graph where:
 - each **node** is labeled with a **pose** $q \in SE(3)$
 - each **edge** is labeled with the **difference between two poses** $\pmb{\delta}^i_j = (\pmb{q}_i)^{-1} \pmb{q}_j \in SE(3)$

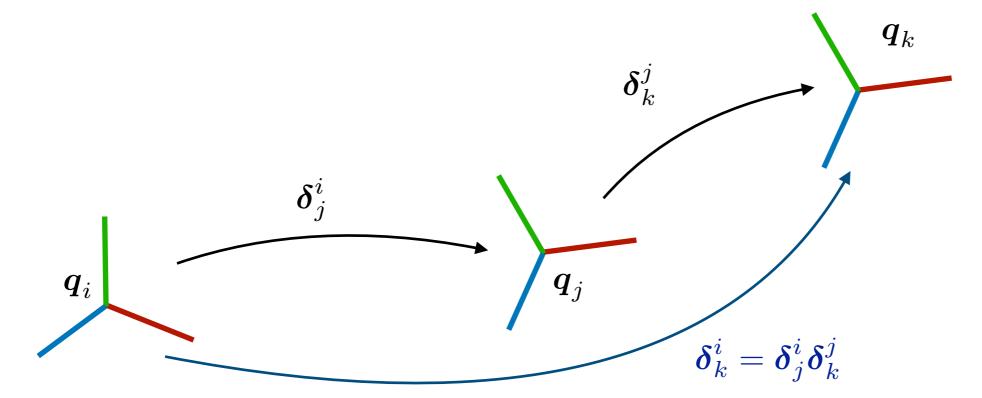


implications of definition:

$$oldsymbol{\delta}^i_j = (oldsymbol{\delta}^j_i)^{-1} \ oldsymbol{\delta}^i_i = \operatorname{\sf Id}$$

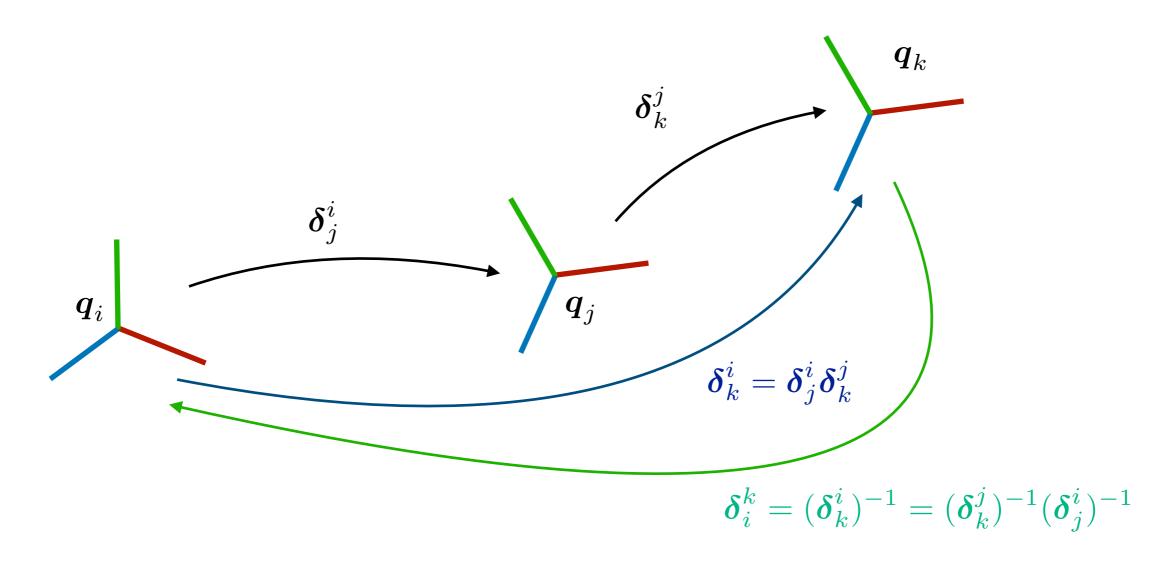
Pose graph

- If there is an edge from i to j and one from j to k,
 you can derive an edge from i to k.
- ullet Compose the differences: $oldsymbol{\delta}_k^i = oldsymbol{\delta}_j^i oldsymbol{\delta}_k^j$



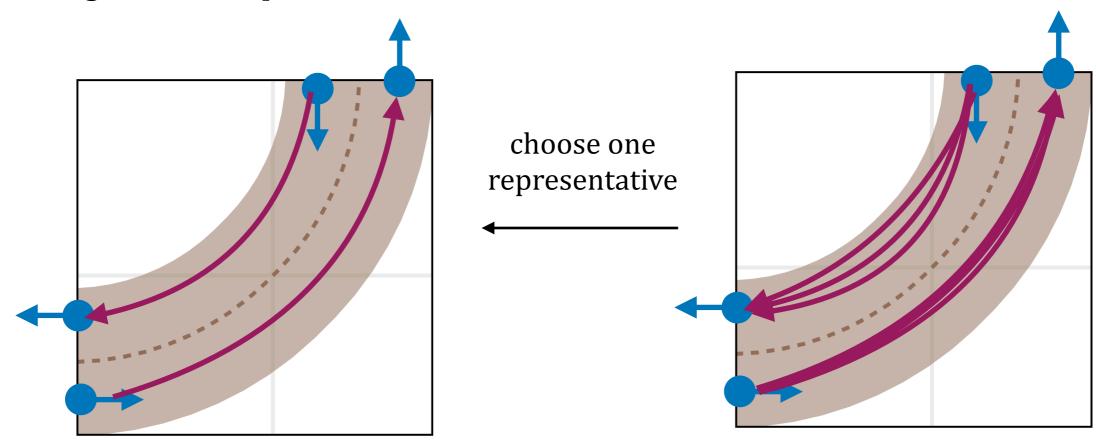
Cycles in pose graphs

- Cycles represent constraints:
 - The product of the pose differences along a cycle is the identity.
 - Think first: the sum of the position difference is 0,0,0. Generalize to SE(3).

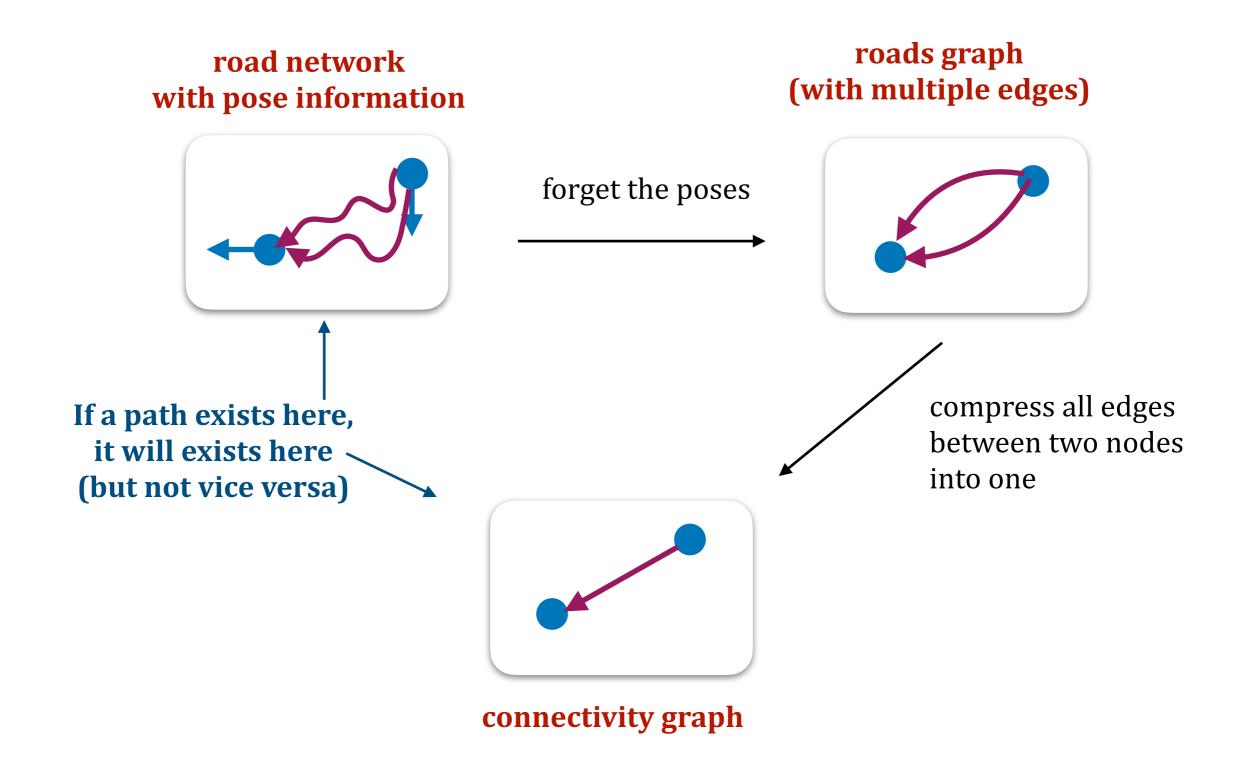


Road networks

- A **road network** is a directed graph where:
 - the **nodes** are "canonical" Duckiebot poses
 - the edges are representative trajectories to go from one pose to another



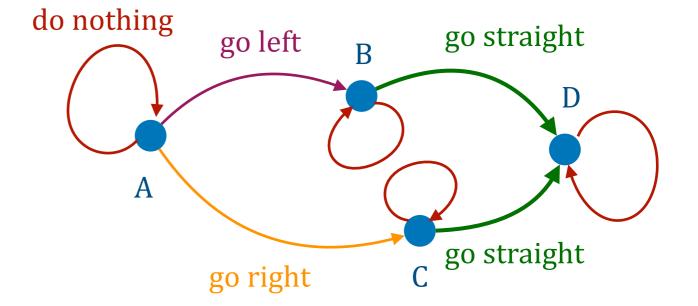
Forgetful graph transformations



Graph-based planning

- The basic graph-based abstract formalization of a planning problem:
 - Each node is a state.
 - Each edge represents the effect of an action.
 - Edges are **labeled** with the **cost** of actions.

- Notice:
 - no uncertainty for evolution
 - no uncertainty for observations
 - no continuous dynamics



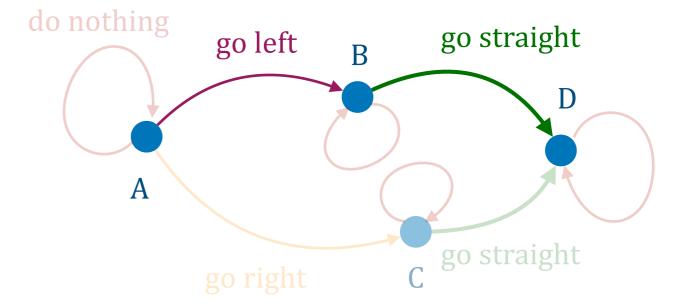
Graph-based planning

- The basic graph-based abstract formalization of a planning problem:
 - Each node is a state.
 - Each **edge** represents the effect of an **action**.
 - Edges are labeled with the cost of actions.

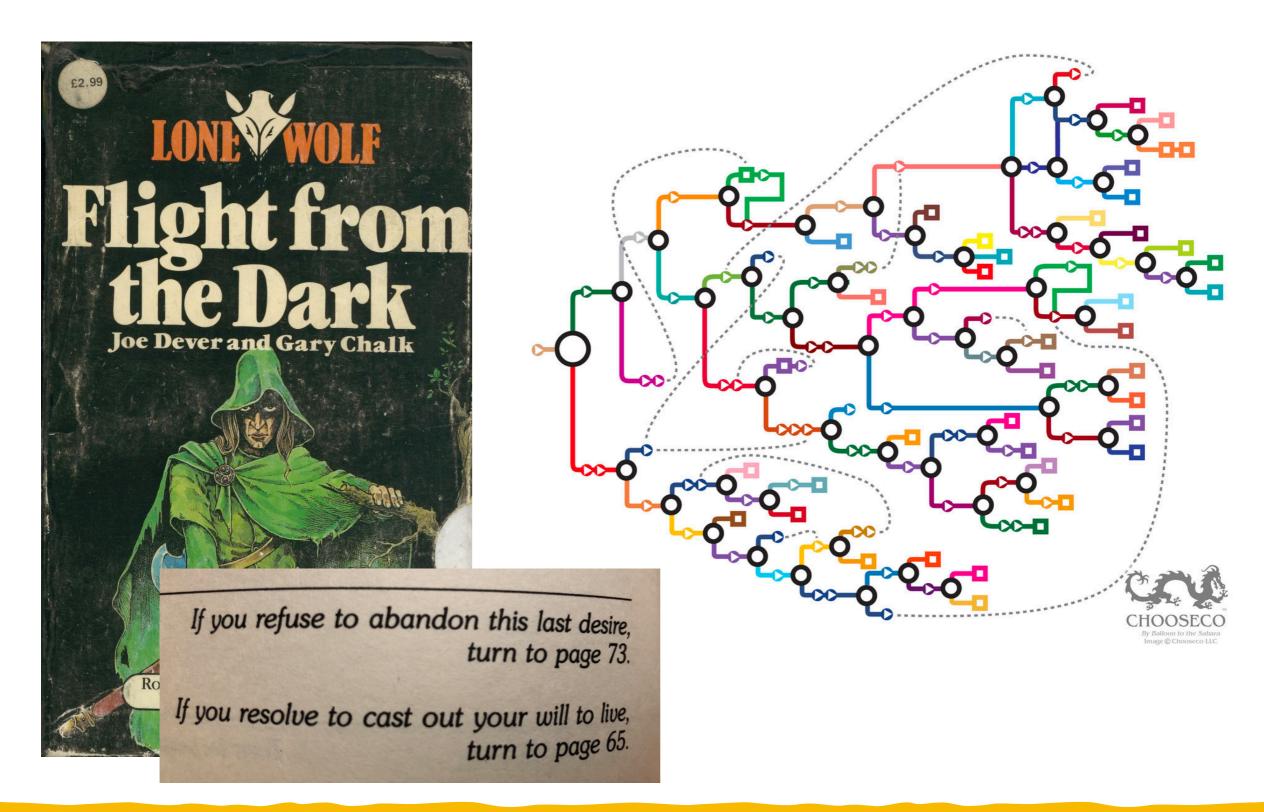
Shortest path finding:

Find a way to get from a node to another in the least amount of steps (least total cost).

• A **path** is a **plan**.



Example from the 70s: choose your own adventure books



Example from the 80s: Puzzle dependencies charts

Used to design puzzle games.

- **Liveness property**: there is a path from each node to one of the endings.
- That is, you cannot get stuck.

The Secret of Monkey Island (Lucas Arts, 1990) Part I: The Tree Trials Mêlée Island talk to important-looking pirates walk to alley, talk to sheriff → pot → hunk of meat → plants (yellow) @ Fettucini brothers → pieces of eight buy → sword buy → map buy → shovel train with Captain Smirk ▶ in grog machine talk to prisoner @ deadly piranha poodles ▶ use @ prisoner → staple remover → gopher repellent get → minutes @ gopher repellent to prisoner → cake talk to Voodoo Lady → chicken → fabulous idol, escape water

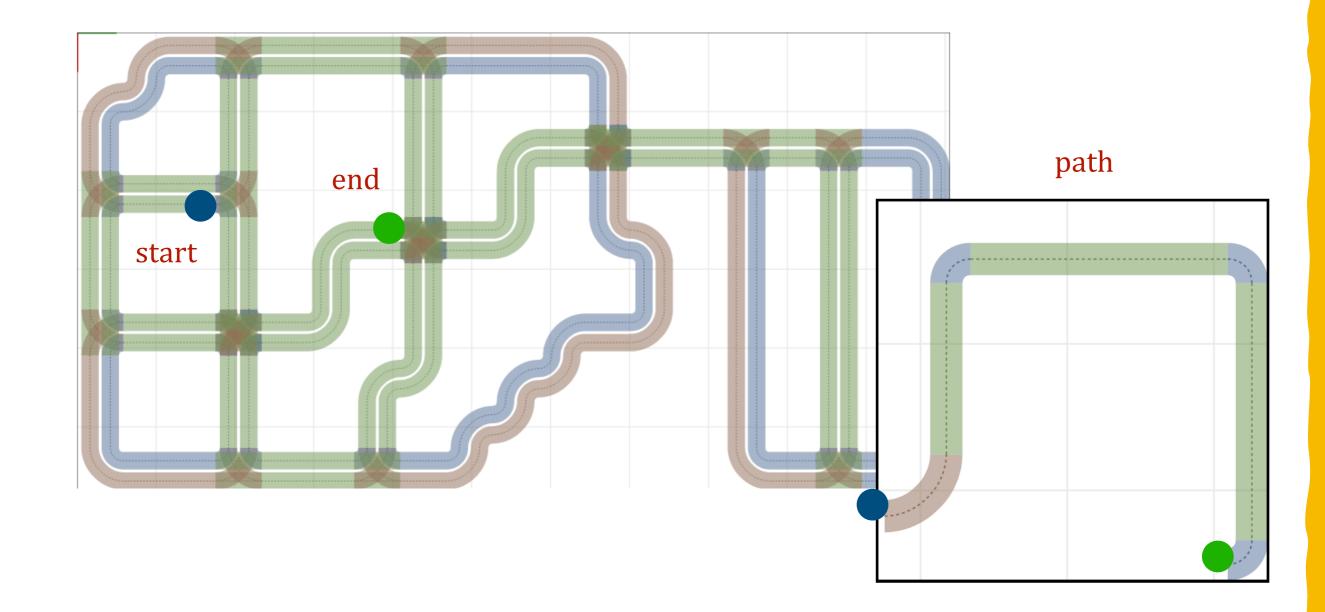
https://grumpygamer.com/puzzle_dependency_charts

How to solve a path finding problem

- There are some classical algorithms that you will find implemented in all graph libraries. In practice:
 - If your graph is small (<10,000 nodes), you're done.
 - If your graph is planar (2D, regular cells), you're done.
- **Dijkstra's algorithm**: find the shortest path from one node to every other node
 - In robotics, use the reverse: find the shortest path from any node to the goal.
- **A*** ("A star"): uses a heuristics to drive the search.
 - Very efficient, single query.
- **D***: variation of A* that allows replanning when the graph changes
 - Developed for field robotics (Stentz, CMU)

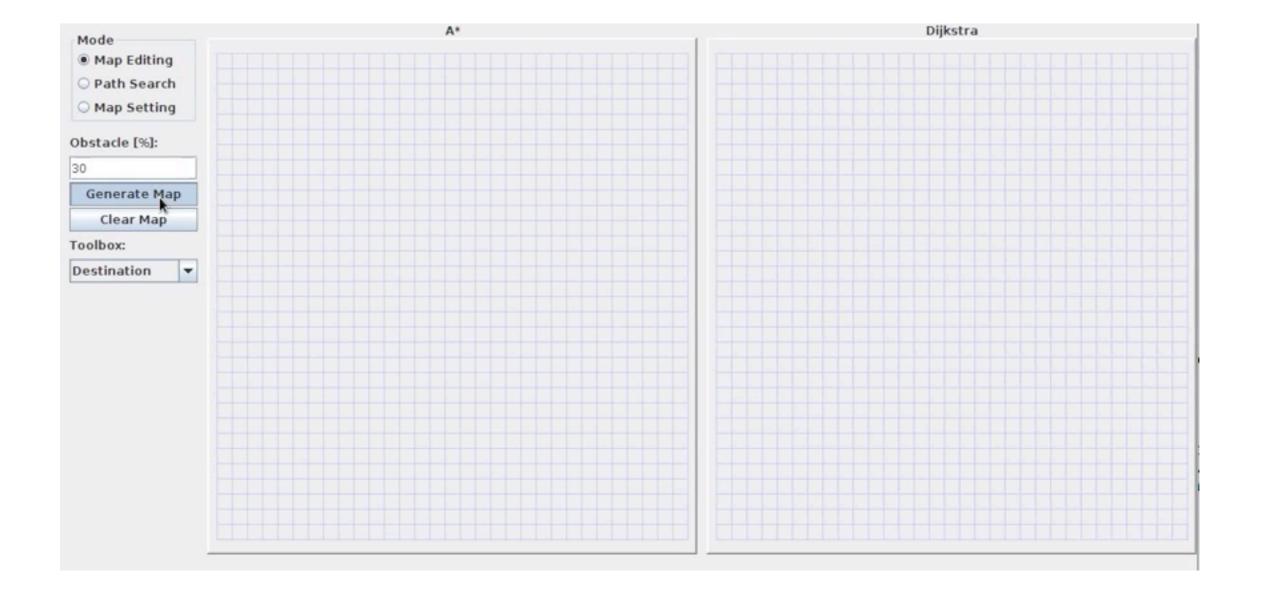
Solving a path-finding problem

• See notebook for an example of planning with the Duckietown maps:



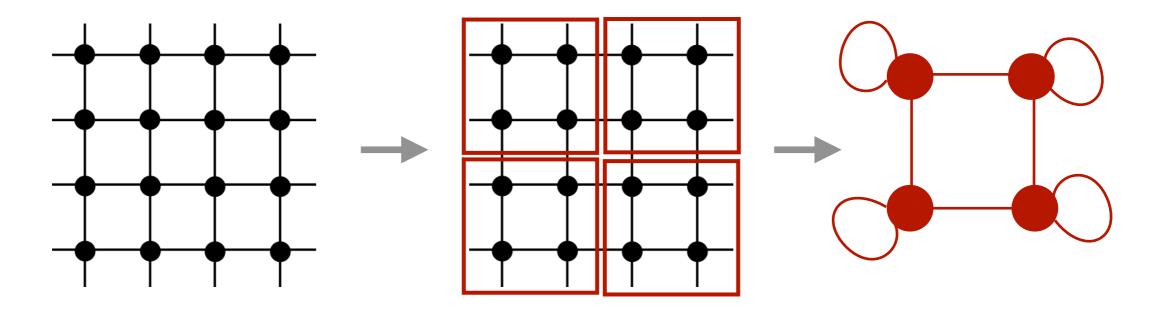
Animations of A* and Dijkstra's algorithm

• Source code / Java jar file https://github.com/kevinwang1975/PathFinder



Multi-scale planning

• Planar graphs suggest immediate approximation algorithms using a multi-scale representations and planning.



- It works because a planar graph is a triangulation of the plane. It can be extended to 3D / nD.
 - Insight: Robot motion planning is inherently continuous (you cannot teleport), therefore the graphs are triangulations.