[hcremental
sampling-based
planning methods

&

Sertac Karaman, Emilio Frazzoli

Duckietown

Overview

e Incrementally building a graph http://planning.cs.uiuc.edu

e Steering function as local planning Steven M. Lavalle

e Collision checking PLANNING
ALGORITHMS

e Optimality, completeness properties
e Algorithms:
e Probabilistic roadmaps (PRMs)
e Rapidly-exploring random trees (RRT)

e RRT* - asymptotically optimal variant

e Conclusions on motion planning Chapters 5, 14

http://planning.cs.uiuc.edu/

Ihcrementally building a graprh for planning

e The methods we consider are a random process in the space of graphs.

graph
building

—— G1,G9,Gs,. ..
(XX

G=(N,E) | °.

e Some of the methods are monotone: only add nodes and edges to the graph.

Ni C Nig & C Ein

e But, we will see that an optimality result requires “rewiring” the graph,
always adding nodes, but sometimes changing the edges.

Ihcrementally building a graprh for planning

e The methods we consider are a random process in the space of graphs.

graph —> G17G27G37°°'
building o000

G=(N,E) |

e The main ingredients:

1.

2
3
4,
5

How to “seed” the graph

How to sample a new node

How to choose which other node it might connect to
How to decide which edges to add

How to decide which edges to remove

Sampling seauences

e We need to sample a sequence of points in configuration space
e Not necessarily random.
e We want it to have low discrepancy

e Notaligned with the coordinate axes

random

quasi-random

5\“‘ \w
*".t.-“("s‘

»f:ﬁa,:}:"“

\‘\‘ 1*“{‘2:‘\0 o ﬂ“‘:‘s“‘";x;
i ﬁﬁv&“ &?ﬂh X
""“ﬁ“‘w %‘""%

M\ﬁ‘

Duckietown

Steering functions as local planning methods

e Recall: the steering function computes
a feasible path given two nodes.

e (losed form solutions for Dubins,
Reeds-Shepp, differential drive.

e O(therwise: solve a boundary value problem.

e The feasibility invariant in graph construction:
If two nodes are connected by a path,
there is a feasible path between
their corresponding points in configuration space

graph configuration space

e We will not need to remember which path.

e It's ok if the steering function is not complete,
though it will make the overall algorithm slower. homomorphism

Collision checking

e We need a way to check if a path belongs to the free configuration space.

ok m m collision

e If you know how to check if a point is in free configuration space,
then you can check a path by checking its points at a given interval.

e It's ok if your collision checking method is a bit conservative (pessimistic),
though it reduces the size of the solution set.

Example of conservative collision checking

e Assume all cows are spherical:

e Now you can collision-check your cows
by simply computing the distance between their centers.

Duckietown

What’s nice (1): working with black boxes

e The steering and collision checking functions
are used as black boxes and they are decoupled.

Planning algorithm

query solution
4 o) 4)
— > collision steering >
— checking —» » function —p
plug-in plug-in
_ J _ J

e You can make a very generic algorithm and add “plugins” for:
e new dynamics " new steering function

e new environments " new collision checking

What’s nice (2): robustness

e Within reasonable limits:

e It's okif the steering function is not complete.
e.g. only works if points are "close enough”.

e It's ok if the collision checking is conservative.

e Algorithm will be slower but still complete
if you have not pruned all feasible paths.

e You can explore the trade-off space:

e More precise steering/collision checking
but fewer overall iterations.

|

e Faster steering / collision checking
but overall more iterations

Properties of incremental algorithms

e For incremental algorithms, we have two properties of interest:

e Probabilistic completeness

we are guaranteed to find a solution,

for any robustly feasible motion planning problem.

e Asymptotic optimality = the solution will be optimal,
for any robustly feasible motion planning problem.

e Robustly feasible problem = not a pathological case

(definition in the next slide).

Robust problems and solutions

e Arobustly feasible problem is one where the solution is robust.

e Definition: A solution is robust if it remains a solution when the obstacles
are infinitesimally dilated by a small 6.

e Equivalent: if a path is a solution,
there is a neighbourhood of the path
whose points are solutions.

e Robustly optimal problem = the optimal solution
can be obtained as a limit of robust solutions.

Probabilistic completeness

e Definition: An algorithm is probabilistically complete if, for any robustly
feasible motion planning problem, it will eventually find a solution
with probability 1 as the iterations N grow:

lim Pr(algorithm finds a solution) =1
N — o0

e Note that this does not tell us much about the performance.

e Example in another domain:

A very simple sorting algorithm:
apply a random permutation to the list, then verify if it is sorted.

probabilistically complete!

Asymptotic optimality

e Definition: An algorithm is asymptotically optimal if, for any robustly optimal
problem, eventually it will find a solution with the optimal cost as the
iterations N grow:

lim Pr(cost of solution = optimum) =1
N —o00

e Note that also this doesn’t tell us much.

e Example:

To minimize any function f(x),
sample x randomly, and remember the best option.

Asymptotically optimal!

e Asymptotically optimal = probabilistically complete, but not viceversa.

Probabilistic RoadMaprs (PRM)

e Kavraki, Latombe 1996 t
e Pre-processing stage: q

e Sample n points
from the sequence a.
e Try to connect each point to
the other points in a radius R. \
e Steering function + ‘\
collision checking

e Onlyallowuptok o: sampling sequence
incoming connections.

e (Query stage:

e Connect start and end point
to the closest points on the roadmap.

e Find a path on the roadmap.

Probabilistic RoadMaprs (PRM)

e Useful for multiple queries - i

e

you can reuse the graph.

e Inefficient for single query -
the graph is independent ’
of start and end points.
e How to choose the radius R? ‘\\ [

e We can prove the following:

a: sampling sequence

e PRM is probabilistically
complete

e PRM is not asymptotically
optimal.

Probabilistic RoadMaprs (PRM)

e Complexity for N nodes is N2.

e How to improve efficiency:

Connect only to the k nearest
neighbours
= Nlog N

Variable radius: decrease the
radius R as a function of N.
How?

>~

a: sampling sequence

Tree-based search

e Idea: to make the search more efficient,
we build a tree anchored at the starting node.

e Stop when you find a path to the goal.

e Need to explore rapidly but also be dense.

J l'\

45 1terations

2345 1terations

Raridly-exploring random trees (RRT)

Picture credit: Karaman

Duckietown

Raridly-exploring random trees (RRT)

e Lavalle, Kuffner 2001

e Start with a node at |
the start configuration. o

e [terate N times:

e Sample either a random point x
or the goal with probability p~10%.

e Find the closest node y.

e Find a point z thatis closetoy
that you can connect from x.

e No “perfect” steering needed. X
e Consider adding the edge z-y.
e Check for collisions.

e Stop when you find
a path to the goal region.

Raridly-exploring random trees (RRT)

e (Good only for single query.
e Probabilistically complete.
e Very fast compared to PRMs.

e Not asymptotically optimal.

Why RRTs are fast: Voronoi Bias

e RRTs explore rapidly because of the “Voronoi bias”.

e Nodes that are more “isolated” at the edges of unexplored areas
have larger Voronoi regions and therefore more likely to be selected.

Two trees

e Idea: we grow 2 trees:
e one from the start

e one from the goal
with the inverse dynamics

e When the trees “touch”
we have found a solution.

Duckietown

Three trees?

e In some cases it might be helpful
to have more trees.

e Problem: the “fly traps”

Duckietown

Why RRTs are not optimal

e This goes against intuition: if we keep growing the graph
shouldn’t we sample all trajectories in the end?

e No: the previous samples bias the next samples.

e Note: Once a path between two nodes has been found
there will be no other path considered.

e Hence: to achieve optimality you need to rewire the graph.

.............
R
.

the better blue path will
never be considered

RRT* “RRT star”

e Karaman, Frazzoli 2010

e There are three improvements over RRT
that together make the algorithm optimal:

1. Shrinking radius for finding n: iteration

d
. . . r=vy+/(logn)/n ST : :
neighbours in a principled way. // (logn)/ d: dlm_enSIOHalt}ty
Y. environmen

2. Connect to the point that has the
best overall path cost, not the closest.

3. After adding a point, the tree is “rewired”
so that all paths are optimal.

e Very technical proof for (1) hard to understand.
The effect of (2)-(3) is more intuitive to see.

The re-wiring process ih RRT*

Duckietown

The re-wiring process in RRT*

(Assuming for simplicity perfect steering.)
1. Sample new point

2. Look for neighbors in a radius R
(adaptively changed with N)

3. Consider the paths to that point

4. Connect only to the point
with the best overall path.
? (not the closest point)

5. For the other candidates,
consider if it would be
Start better for them to connect
® to the new point instead of the
previous parent.

e Note how the rewiring improves the cost-to-come for the other vertices.

Extensions to RRT™

e There are many more variations one can formulate of RRT.
e Search “RRT* algorithm” on Youtube for many pretty videos!
e Lxtensions:
e biasing the sampling according to environment geoemtry

e dynamic environments (repair paths that become unfeasible)

e Dbetter use of additional heuristics

e Example: Informed RRT* (CMU) - next slides

[nformed RRT*

e Example: Informed RRT* (CMU)
https://www.youtube.com/watch?v=ns1-5MZfwu4

Focus on points that
can improve the solution

Informed RRT

e S

VATRS

WM

N

7 : ., /,: ‘ | \ _ .
/ 7 ‘ - \\\ \\@
7 N e

8.26 seconds, cpest = 0.76 1 sécond, Cbest = 0176

https://www.youtube.com/watch?v=nsl-5MZfwu4

Informed RRT*

e Example: Informed RRT* (CMU)

https://www.youtube.com/watch?v=ns1-5MZfwu4

//
% Jl:
200 1A

&f\\\

=7 ’ 7/ 7 \\ “.. B - *-——., = =
/ Z 7,/4)/) I \ \ —
77 AR \ X N -
N \\\

\ \ NN \
\\ N\
\

\\' \\\\

Informed RRT*

5 seconds, cpest = 114.86

https://www.youtube.com/watch?v=nsl-5MZfwu4

Conclusions for PRM, RRT, RRT*

e Sampling-based search methods are attractive because:

e Easy to implement: new collision checking and steering functions
can be plugged in for new environments and dynamics.

e Robust: can work with conservative collision checking and steering
e Scale well with dimensions
e Very cute animations
e (ons:
e Itisvery hard to make it really fast (random memory access)

e Not obvious how to parallelize

Conclusions onh motion planning

e (eneral guidance:
e Forlong-horizon, complex geometric planning:
e Single query: use Informed RRT*
e Multiple queries: PRMs or their * variant (not covered in slides)
e For short-horizon, low-latency decisions: try motion primitives
e Note: You still need to do graph planning as part of these methods.

e Also: You still want to refine the path using a local optimization method.

Are we dohe with planning?

e No, motion planning is only the simple part of the overall planning problem.

e In fact, we did not consider:

e Optimization criteria other than minimal time
e Uncertainty in state evolution
e Uncertainty in sensing
e Modeling errors
e Other agents that might be adversarial (game theory)
e Anytime planning: what to do if you have only limited computation.
motion planning in general
a feedback strategy from the
solution is a nominal path information state of the agent

playing a game with other agents

e There is no general approach for the complete problem that is computationally tractable.

