Incremental sampling-based planning methods

Sertac Karaman, Emilio Frazzoli

Overview

- Incrementally building a graph
 - Steering function as local planning
 - Collision checking
- Optimality, completeness properties
- Algorithms:
 - Probabilistic roadmaps (PRMs)
 - Rapidly-exploring random trees (RRT)
 - **RRT*** asymptotically optimal variant
- Conclusions on motion planning

http://planning.cs.uiuc.edu/

Chapters 5, 14

Incrementally building a graph for planning

• The methods we consider are a random process in the space of graphs.

Some of the methods are monotone: only add nodes and edges to the graph.

$$\mathcal{N}_i \subset \mathcal{N}_{i+1}$$
 $\mathcal{E}_i \subset \mathcal{E}_{i+1}$

 But, we will see that an optimality result requires "rewiring" the graph, always adding nodes, but sometimes changing the edges.

Incrementally building a graph for planning

• The methods we consider are a random process in the space of graphs.

- The main ingredients:
 - 1. How to "seed" the graph
 - 2. How to sample a new node
 - 3. How to choose which other node it might connect to
 - 4. How to decide which edges to add
 - 5. How to decide which edges to remove

Sampling sequences

- We need to sample a sequence of points in configuration space
 - Not necessarily random.
 - We want it to have **low discrepancy**
 - **Not aligned** with the coordinate axes

Steering functions as local planning methods

- Recall: the steering function computes a feasible path given two nodes.
 - Closed form solutions for Dubins, Reeds-Shepp, differential drive.
 - Otherwise: solve a boundary value problem.

• We will not need to remember *which* path.

• It's ok if the steering function is not complete, though it will make the overall algorithm slower.

graph configuration space

homomorphism

Collision checking

• We need a way to check if a path belongs to the free configuration space.

 If you know how to check if a **point** is in free configuration space, then you can check a path by checking its points at a given interval.

• It's **ok** if your collision checking method is *a bit* conservative (pessimistic), though it reduces the size of the solution set.

Example of conservative collision checking

• Assume all cows are spherical:

• Now you can collision-check your cows by simply computing the distance between their centers.

What's nice (1): working with black boxes

• The **steering** and **collision checking** functions are used as **black boxes** and they are decoupled.

- You can make a very generic algorithm and add "plugins" for:
 - new dynamics is new steering function

What's nice (2): robustness

- Within reasonable limits:
 - It's ok if the steering function is not complete. *e.g.* only works if points are "close enough".
 - It's ok if the collision checking is conservative.
- Algorithm will be slower but still complete if you have not pruned all feasible paths.
- You can explore the **trade-off space**:
 - More precise steering/collision checking but fewer overall iterations.

1

 Faster steering / collision checking but overall more iterations

Properties of incremental algorithms

- For **incremental algorithms**, we have two properties of interest:
 - Probabilistic completeness
 ≡ we are guaranteed to find a solution,
 for any robustly feasible motion planning problem.
 - Asymptotic optimality
 ≡ the solution will be optimal,
 for any robustly feasible motion planning problem.

Robustly feasible problem

 in not a pathological case
 (definition in the next slide).

Robust problems and solutions

- A robustly feasible problem is one where the solution is robust.
- *Definition:* A **solution is robust** if it remains a solution when the obstacles are infinitesimally dilated by a small δ .

- Equivalent: if a path is a solution, there is a neighbourhood of the path whose points are solutions.
- Robustly optimal problem

 = the optimal solution
 can be obtained as a limit of robust solutions.

Probabilistic completeness

Definition: An algorithm is probabilistically complete if, for any robustly feasible motion planning problem, it will eventually find a solution with probability 1 as the iterations N grow:

$$\lim_{N\to\infty} \Pr(\text{algorithm finds a solution}) = 1$$

- Note that this does not tell us much about the performance.
 - Example in another domain:

A very simple sorting algorithm: apply a random permutation to the list, then verify if it is sorted.

probabilistically complete!

Asymptotic optimality

 Definition: An algorithm is asymptotically optimal if, for any robustly optimal problem, eventually it will find a solution with the optimal cost as the iterations N grow:

$$\lim_{N \to \infty} \Pr(\text{cost of solution} = \text{optimum}) = 1$$

- Note that also this doesn't tell us much.
 - Example:

To minimize any function f(x), sample x randomly, and remember the best option.

Asymptotically optimal!

• Asymptotically optimal \Rightarrow probabilistically complete, but not viceversa.

Probabilistic RoadMaps (PRM)

• Kavraki, Latombe 1996

• Pre-processing stage:

- Sample n points from the sequence α .
- Try to connect each point to the other points in a radius R.
 - Steering function + collision checking
- Only allow up to k incoming connections.

α: sampling sequence

• Query stage:

- Connect start and end point to the closest points on the roadmap.
- Find a path on the roadmap.

Probabilistic RoadMaps (PRM)

- **Useful for multiple queries** you can reuse the graph.
- Inefficient for single query the graph is independent of start and end points.
- How to choose the radius *R*?
- We can prove the following:
 - PRM is probabilistically complete
 - PRM is <u>not</u> asymptotically optimal.

 α : sampling sequence

Probabilistic RoadMaps (PRM)

- Complexity for N nodes is N^2 .
- How to improve efficiency:
 - Connect only to the *k* nearest neighbours
 - $\Rightarrow N \log N$
 - **Variable radius**: decrease the radius R as a function of N. How?

 α : sampling sequence

Tree-based search

- Idea: to make the search more efficient, we build a tree anchored at the starting node.
- Stop when you find a path to the goal.
- Need to explore rapidly but also be dense.

Rapidly-exploring random trees (RRT)

Rapidly-exploring random trees (RRT)

- Lavalle, Kuffner 2001
- Start with a node at the start configuration.
- Iterate *N* times:
 - Sample either a random point x or the goal with probability $p\sim10\%$.
 - Find the closest node *y*.
 - Find a point *z* that is close to *y* that you can connect from *x*.
 - No "perfect" steering needed.
 - Consider adding the edge *z-y*.
 - Check for collisions.
- Stop when you find a path to the goal region.

Rapidly-exploring random trees (RRT)

- Good only for **single query.**
- Probabilistically complete.
- Very fast compared to PRMs.
- Not asymptotically optimal.

Why RRTs are fast: Voronoi Bias

- RRTs explore rapidly because of the "Voronoi bias".
- Nodes that are more "isolated" at the edges of unexplored areas have larger Voronoi regions and therefore more likely to be selected.

Two trees

- Idea: we grow 2 trees:
 - one from the start
 - one from the goal with the inverse dynamics
- When the trees "touch" we have found a solution.

Three trees?

- In some cases it might be helpful to have more trees.
- Problem: the "fly traps"

Why RRTs are not optimal

- This goes **against intuition**: if we keep growing the graph shouldn't we sample all trajectories in the end?
- No: the previous samples bias the next samples.
- Note: Once a path between two nodes has been found there will be no other path considered.
- Hence: to achieve optimality you **need to rewire the graph**.

26

RRT* "RRT star"

- Karaman, Frazzoli 2010
- There are three improvements over RRT that together make the algorithm optimal:
 - 1. **Shrinking radius** for finding neighbours in a principled way.

$$r = \gamma \sqrt[d]{(\log n)/n}$$

n: iterationd: dimensionality

 γ : environment

- 2. Connect to the point that has the best overall path cost, not the closest.
- 3. After adding a point, **the tree is "rewired"** so that all paths are optimal.

Very technical proof for (1) hard to understand.
The effect of (2)-(3) is more intuitive to see.

The re-wiring process in RRT*

The re-wiring process in RRT*

(Assuming for simplicity perfect steering.)

- 1. Sample new point
- 2. Look for neighbors in a radius *R* (adaptively changed with *N*)
- 3. Consider the paths to that point
- 4. Connect only to the point with the best overall path. (not the closest point)
- 5. For the other candidates, consider if it would be better for them to connect to the new point instead of the previous parent.
- Note how the rewiring improves the cost-to-come for the other vertices.

Extensions to RRT*

- There are **many more variations** one can formulate of RRT.
- Search "RRT* algorithm" on Youtube for many pretty videos!
- Extensions:
 - biasing the sampling according to environment geoemtry
 - dynamic environments (repair paths that become unfeasible)
 - better use of additional heuristics
 - Example: Informed RRT* (CMU) next slides

Informed RRT*

• Example: Informed RRT* (CMU)

https://www.youtube.com/watch?v=ns1-5MZfwu4

Focus on points that can improve the solution

Informed RRT*

Example: Informed RRT* (CMU)
https://www.youtube.com/watch?v=ns1-5MZfwu4

Conclusions for PRM, RRT, RRT*

- Sampling-based search methods are attractive because:
 - Easy to implement: new collision checking and steering functions can be plugged in for new environments and dynamics.
 - **Robust:** can work with conservative collision checking and steering
 - Scale well with dimensions
 - Very cute animations
- Cons:
 - It is very hard to make it really fast (random memory access)
 - Not obvious how to parallelize

Conclusions on motion planning

- General guidance:
 - For **long-horizon**, **complex** geometric planning:
 - **Single query:** use Informed RRT*
 - Multiple queries: PRMs or their * variant (not covered in slides)
 - For **short-horizon**, **low-latency** decisions: try motion primitives
- Note: You still need to do graph planning as part of these methods.
- Also: You still want to refine the path using a local optimization method.

34

Are we done with planning?

- No, motion planning is only the simple part of the overall planning problem.
- In fact, we did not consider:
 - Optimization criteria other than minimal time
 - Uncertainty in state evolution
 - Uncertainty in sensing
 - Modeling errors
 - Other agents that might be adversarial (game theory)
 - Anytime planning: what to do if you have only limited computation.

motion planning

in general

solution is

a nominal path

a feedback strategy from the information state of the agent playing a game with other agents

• There is no general approach for the complete problem that is computationally tractable.

Duckietown 35