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Abstract— In recent years, ultra-wideband radio technology
has become increasingly popular as a space- and cost-effective
solution to the problem of indoor localization. This paper
demonstrates how measurements of the channel impulse re-
sponse can be used to estimate a signal’s angle of arrival at a
receiving antenna. This novel method requires no additional
hardware, uses only a single antenna, and works with un-
synchronized clocks and one-way communication. We evaluate
our method on a real-dataset, and experimentally demonstrate
how a mobile robot can localize itself by measuring angles to
multiple ultra-wideband anchors.

I. INTRODUCTION
The design of small, omnidirectional ultra-wideband

(UWB) antennas is challenging, since the frequency response
of the antenna should ideally be constant over different
angles and for a wide range of frequencies [1]. Furthermore,
these antennas are often mounted on devices (e.g. robots),
whose physical construction causes signal reflection and
distortion. Non-idealities in the antenna and its surroundings
affect the channel impulse response (CIR) and reduce the
accuracy of timestamps obtained via leading edge detection.
As noted in [2], [3], this leads to systematic inaccuracies
in time-of-flight-based UWB localization systems. Existing
research has attempted to compensate for these inaccuracies
via tailored antenna designs [4], [5], or by using models to
predict and correct for systematic timestamp inaccuracies [6],
[7]. Instead of trying to reduce the effects of antenna non-
idealities, this paper proposes the opposite: use, and where
possible amplify, these non-idealities to estimate a signal’s
angle of arrival (AOA).

Historically, AOA estimation has required either a rotating,
directional antenna, or the measurement of a signal at multi-
ple locations (e.g. using an array of antennas or multiple, syn-
chronized receivers). The AOA estimation method presented
in this work requires no additional hardware, enabling the es-
timation of a signal’s AOA using a single receiving antenna.
This method can either be used in a standalone fashion,
requiring no clock synchronization between the transmitter
and the receiver, or can be used to augment existing time-of-
flight or received-signal-strength UWB localization systems
without requiring hardware changes.

A. Related Work
An overview of how the environment affects the channel

impulse response via fundamental propagation processes
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such as reflection and diffraction is given in [8]. The en-
vironment can be used in several ways in UWB localization
systems. As discussed in [9], if it is possible to obtain ground
truth measurements for a given environment, fingerprinting
techniques that make use of the environment’s channel
impulse response can be used for localization. Alternatively,
and as investigated by [10], [11], if a floor plan of reflective
surfaces is available, it is possible to localize by resolving
multipath components in the measured channel impulse
response and mapping them to known reflective surfaces.

In addition to environmental effects, the signal’s prop-
agation channel is affected by the frequency response of
both the transmitting and receiving antenna. The effects of
the antennas’ frequency responses on the accuracy of UWB
systems is investigated in [12], [13] and [14].

AOA estimation is at the core of most radar applica-
tions [15]. Overviews of AOA estimation techniques are
given in [16], [17]. Generally, the AOA is determined via
two or more antennas in a array (e.g. [18]), by rotating
antennas with a directive antenna pattern (e.g. [19]) or by
collecting measurements at multiple points in space (e.g.
[20]). The work presented herein demonstrates AOA esti-
mation using a single antenna, attached to a low-cost and
small size UWB radio. This work can be combined with time
of flight localization approaches using identical hardware;
however, we do not discuss this further in this paper. To the
best of the authors’ knowledge, this is the first time that
AOA was estimated using only one transmitting and one
receiving antenna and without relative motion between the
two antennas.

B. Outline
The paper is structured as follows. In Section II, we

discuss how CIR measurements are obtained and investigate
distortions caused by the antenna and by objects in the
antenna’s vicinity. In Section III, we explain how knowledge
of these systematic distortions can be used to estimate the
AOA of a UWB signal and how a CIR to AOA mapping
can be learned with a neural network. The quality of this
mapping is evaluated experimentally in Section IV, and the
method’s applicability to robot localization is demonstrated
in Section V, where a robot is localized solely based on AOA
estimates obtained via the CIR.

II. CHANNEL IMPULSE RESPONSE
MEASUREMENTS

A UWB communication channel is characterized by its
channel impulse response function, which is extremely dif-



Fig. 1. This figure shows a transmitting antenna sending a signal to a receiving antenna, which is mounted on a rigid body with a reflective surface
in its vicinity. As shown, a signal propagates along multiple pathways of different lengths on its way to the receiver. The signal’s multipath components
are recombined upon reception with various phase-shifts. This recombination can be noticeable in the CIR and can reduce the accuracy of leading-edge
detection methods. Each pathway in the diagram is labeled according to its contribution to the CIR, as in (1). The ellipse as given in (2) is also shown.

ficult to model accurately since many influences need to be
considered [8]. Of these influences, we explicitly discuss
two: the antenna transfer function, and objects in the en-
vironment.

The transfer functions of the transmitting and receiving
antennas are generally a function of the angle of departure
(AOD) ↵tx and AOA ↵rx, respectively. These functions can
have a large influence on the CIR, particularly if directional
antennas are used [14].

Objects in the environment which interact with the elec-
tromagnetic signals also strongly affect the CIR. We group
these objects into those objects belonging to the same rigid
body as the transmitting or receiving antennas (hereinafter
the antenna’s “local environment”), and objects belonging
to the larger environment, which are typically further away
from the antennas. This is depicted in Fig. 1.

We combine the impulse response of the transmitting and
receiving antennas with the impulse response caused by
objects in each antenna’s local environment. We denote these
combined impulse responses as htx(t,↵tx) and hrx(t,↵rx),
respectively, where ↵tx and ↵rx denote AOD and AOA.
Assuming a cascaded, linear, time invariant model, and a
UWB channel with NMP different multipath components, the
measured channel impulse response can be written as

hCIR(t) =
NMPX

n=1

htx(t,↵tx,n) ⇤ henv,n(t) ⇤ hrx(t,↵rx,n), (1)

where ⇤ is the convolution operator, where the AOD and the
AOA of the n-th multipath component are denoted by ↵tx,n,
and ↵rx,n respectively, and where henv,n denotes the transfer
function of the environment’s n-th multipath component.
This is illustrated in Fig. 1.

To investigate the effects of the antennas’ transfer func-
tions and of objects in their local environments, a UWB
module is placed at a fixed position and instructed to
transmit, while a receiving module is placed 5m from the
transmitter on a rotating platform, allowing measurement of
the CIR for different AOAs around the antenna’s azimuth
axis. The elevation angle is kept at zero throughout the
paper as we only consider a two-dimensional setup; however,

Fig. 2. The different receiver configurations for which the CIR is measured.
(a) Time Domain Broadspec Antenna, (b) Partron dielectric chip antenna,
(c) Partron dielectric chip antenna with carbon plates attached in close
proximity. Receiving antennas are placed on a rotating platform in order
to measure their CIR over a large range of AOAs.

the techniques presented herein are applicable to three-
dimensional setups. DW1000 UWB radio modules [21] are
used for both the transmitter and receiver.

The transmitting module is outfitted with a Time Domain
Broadspec antenna, and three different receiver configura-
tions are tested: a Time Domain Broadspec antenna, a Partron
dielectric surface-mount antenna, and a Partron dielectric
surface-mount antenna with reflective carbon plates mounted
in its vicinity. These three configurations are shown in Fig. 2.
The position and attitude of each antenna is recorded using
a motion capture system.

Measurement of the CIR is enabled by the DW1000,
which gives access to its measurement of the complex-
valued impulse response envelope with a resolution of Ts =
1/(2fc) ⇡ 1 ns, where fc = 499.2MHz is the chipping
frequency. The magnitude of this complex-valued impulse re-
sponse envelope is the envelope of the physical (real-valued)
CIR [15, p.281]. For simplicity, we hereinafter use CIR to
mean the complex-valued impulse response envelope. To
achieve a sub-nanosecond resolution, multiple CIRs sampled
at different times can be aligned and combined into a single,



Fig. 3. The magnitude of two accumulated CIRs, each taken at a different
AOA and based on 50 CIR measurements. In both plots, the different CIR
measurements are aligned by the first-path estimate provided by Decawave’s
proprietary leading edge detection algorithm. Different measurements are
shown in different tones of gray, with one measurement in each plot
highlighted in red. Each accumulated CIR is shown starting four samples
before the estimated first path. On each plot we note a secondary peak
caused by an environmental multi-path. When comparing the two plots, we
note that the first peak is of a slightly different shape: this is caused by
an AOA-dependent antenna transfer function, and by the overlapping of
different reflections caused by the receiving antenna’s local environment.
We tune the variable ⌧ to trim multi-path components caused by the
environment, and estimate the AOA based only on samples of a single
measurement (e.g. shown in red) within a window of the first path.

high resolution CIR. The alignment can be done based on
Decawave’s proprietary leading edge detection algorithm’s
estimate of the first path, or by solving an optimization
problem, or using ground truth measurements [22]. The
magnitude of such an accumulated CIR is shown in Fig. 3,
with tones of gray representing different measurements of
the CIR, and with one such measurement highlighted in red.

The magnitude of the accumulated CIR for the three
different configurations and across different AOAs is shown
in Fig. 4. We note that the CIR obtained with the larger
Time Domain Broadspec antenna (Fig. 4(a)) is more uniform
than the CIR obtained with the smaller Partron dielectric
antenna (Fig. 4(b)). If reflective surfaces are placed close to
the antenna, the measured CIR is further distorted (Fig. 4(c)).
Although it may at first appear contrived, in the majority of
applications antennas are mounted on or are integrated in
devices made of reflective materials such as metals or carbon
fibers, and this third situation is therefore representative of a
realistic use-case. As noted in, for example [6], [7], leading-
edge detection algorithms can be sensitive to such AOA-
dependent changes in the CIR, resulting in systematic biases
or increased noise in reception timestamps. For timestamp-
based localization, it is therefore important to minimize
these effects. To the contrary, our method demonstrates that
these AOA-dependent distortions in the CIR provide useful

Fig. 4. The magnitude of the accumulated CIR is plotted as a function of
AOA (vertical axis) for each of the different receiver configurations shown
in Fig. 2. A large magnitude is shown in white, and a small magnitude is
shown in black. The first path is at t = 0ns.

information for estimating a signal’s AOA.

III. LEARNING THE CIR TO AOA MAPPING

A. CIR Measurement and Windowing

Considering Fig. 3, we note that measurements of the CIR
taken at different AOAs show differences in the shape of
the first peak. For line-of-sight conditions, these differences
in shape can be attributed to an AOA-dependent antenna
transfer function and to changes in the delay of reflections
and disturbances caused by objects in the antenna’s local
environment.

As shown in Fig. 1 and Fig. 3, environmental multi-path
components have an additional influence on the measured
CIR. We tune the variable ⌧ to include reflections from the
antenna’s local environment, and to exclude paths more than
a certain distance c⌧ longer than the direct path. This defines
an ellipse given by

����ptx �
✓
x
y

◆����+

����prx �
✓
x
y

◆����  kprx � ptxk+ c⌧, (2)

where ptx and prx are the positions of the transmitter and
receiver respectively, || · || is used to denote the Euclidean
norm, c is the speed of light, and (x, y) are the x, y
coordinates of an arbitrary point within the ellipse. We
assume that the ellipse formed between each transmitting
anchor and each position within the robot’s operating area
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Fig. 5. A standard neural network with three hidden layers is used to predict the probability distribution of the AOA given a CIR. As shown in Fig. 3, a
single measurement of the complex CIR envelope is windowed starting two samples before the estimated first path and finishing ten samples (⌧ = 10 ns)
after the first path. The magnitude and phase of these thirteen samples are fed to the input layer of the neural network. The outputs of the neural network
are the unnormalized log probabilities of the received signal’s AOA corresponding to each of the Nbin bins.

is free from environmental objects, and thus assume that
a CIR measurement trimmed after ⌧ seconds of the first
path is entirely a function of the impulse responses of
the transmitting and receiving antennas’ local environment:
htx(t,↵tx) and hrx(t,↵rx), respectively.

Unfortunately, as shown in Fig. 4 the mapping of CIR
to AOA is not always one-to-one: a similar CIR might
be obtained for different AOAs due to these AOAs having
similar antenna transfer functions. Despite this, it is possible
to learn the probability that the measured CIR is a result
of convolving htx ⇤ henv with hrx(t,↵rx). We approach this
modeling using a neural network trained on a large dataset of
CIR measurements paired to their ground-truth AOA which
were obtained by a motion capture system.

B. The Network Structure

Given these CIR AOA pairs, the conditional probability
distribution p(↵rx|hCIR(t)) is learned in a supervised learning
framework by minimizing the cross-entropy between the
training data and the model distribution [23, p. 173]. The
AOA is discretized into Nbin = 256 bins and a neural net-
work is trained to predict the unnormalized log probabilities
that a signal is received with an AOA corresponding to
a certain bin. The neural network consists of three, fully
connected, hidden layers of size 800, 400 and 400, and layer
outputs are passed through the rectified linear unit activation
function (ReLU, [23, p. 168]). The network’s structure is
shown in Fig. 5. The input to the neural network is a 13-
sample window of the complex-valued CIR envelope, starting
two samples before the location of the first-path sample and
ending 10 samples (⌧ = 10ns) after the first path sample.
This corresponds to an ellipse with c⌧ = c · 10 ns = 3m as
defined in (2). The magnitude and phase of the 13 complex-
valued samples (contained in the vector hCIR 2 C13) are
fed to the input layer of the neural network. Denoting
with z 2 RNbin the output of the neural network, the
normalized probability that the signal’s AOA belongs to bin

i 2 {1, 2, . . . , Nbin} is

p(bin = i|hCIR) =
exp(z[i])

PNbin
j=1 exp(z[j])

. (3)

We train the network to minimize the cross-entropy loss

J(↵rx,hCIR) = � log p(bin = bin(↵rx)|hCIR), (4)

where bin(↵rx) denotes the ground-truth bin of the training
sample.

C. Training

The network is implemented using Tensorflow [24] and
trained on Ntrain = 453000 (↵rx,hCIR) pairs using the
ADAM optimizer [23, p. 301] and the cost function given
in (4). This data is collected with a setup as shown in
Fig. 6, where transmitters are placed around a rectangle
measuring approximately 4m ⇥ 3m. A receiver mounted
on a moving platform (a Roomba robot) drives around in
a random fashion within the space. The transmitters use
the Time Domain Broadspec antenna (Fig. 2(a)), and the
receiver uses a Partron dielectric chip antenna with two
carbon plates placed in its local environment (Fig. 2(c)). Each
transmitter sends messages at random times to the receiver,
and the receiver records the associated CIR measurement.
The random transmission interval allows receivers to measure
the CIR at an average frequency of 360 Hz. The slow
data logging routine limits this frequency, which could be
substantially increased if position estimation was performed
directly on the robot.

The (↵rx,hCIR) pairs are randomly shuffled and split into
a training and a validation dataset. Training is stopped once
the accuracy in the validation datasets stops improving.
Additionally, an independent test dataset is collected in
which the moving platform covers positions and orientations
not visited in the training dataset.



Fig. 6. In order to measure the CIR for different AOAs, different AODs and different distances, a UWB receiver is mounted on a moving, rotating
platform (Roomba). Transmitters send signals in a random fashion to the receiver, which measures the associated CIR. Both receiver and transmitter are
equipped with markers which can be seen by the overhead motion capture system for purposes of gathering ground-truth data.

IV. RESULTS
This section describes the performance of the neural

network described in the previous section on the test data
set. If the estimated AOA is defined to be the maximum
a-posteriori estimate predicted by the network, i.e.

cbin := argmax
i21,...,Nbin

p(bin = i|hCIR) (5)

b↵rx := 2⇡
cbin � 1

Nbin
, (6)

a cumulative distribution plot of the error in the AOA can
be made as shown in blue in Fig. 7. In this plot, we see
that roughly 80% of the maximum a-posteriori estimates
show an absolute error of less than 25�. By collecting
10 consecutive measurements sampled at different times
hCIR(1), . . . ,hCIR(10) from the same transmitter, and pre-
dicting the AOA as

cbin := argmax
i21,...,Nbin

10X

j=1

p (bin = i|hCIR (j)) (7)

we see an increase in prediction accuracy. The cumulative
distribution of this error is shown in orange in Fig. 7, and
shows that more than 90% of the predictions have an absolute
error of less than 25�.

The output of the neural network is, however, not a
single probability or bin estimate, but rather a probability
distribution across all bins. This distribution is visualized
in Fig. 8 for measurements taken by a robot moving in the
environment shown in Fig. 9. We note that the distribution is
bimodal for the CIR measurements obtained around t = 71 s,
and that although the maximum a-posteriori estimate of the
AOA may be incorrect, the probability assigned by the neural
network to the correct bin is still quite high.

V. APPLICATION TO LOCALIZATION SYSTEMS
Any UWB localization system based on time of flight

measurements, or based on received signal strength can
be augmented by AOA estimation. Such hybrid UWB lo-
calization approaches are for example discussed in [25].
In the following, and in order to show the potential of
the proposed AOA estimation technique for localization,
we localize a robot based solely on the a-posteriori AOA
probability distribution p(↵rx|hCIR), provided by the trained
neural network.

Fig. 7. The cumulative probability of the error in the estimated, maximum
a-posteriori AOA. In blue, the maximum a-posteriori estimate given a single
CIR measurement; in orange, the maximum a-posteriori estimate given 10
consecutive CIR measurements.

A. A Simple Localization Problem

We consider the problem of localizing the mobile robot
(Roomba) used for collecting the training and test data
as described in Section III-C. The robot moves in a 2-D
environment with randomly transmitting anchors placed at
known positions. The robot’s state in the inertial reference
frame is given by x = (xR, yR, ✓R), where xR and yR
are the robot’s Cartesian coordinates, and ✓R is the angle
describing its orientation (see Fig. 9). Using wheel odometry,
the robot measures the distance travelled �p and the change
of its orientation �✓ every 15ms. Using these measurements
as system inputs u = (�p,�✓), the robot’s discrete time
process model x(k+1) := q(x(k),u(k),⌘(k)) with process
noise ⌘ = (⌘x, ⌘y, ⌘✓) for a sampling period of 15ms is
described by the following equations

xR(k + 1) = xR(k)� sin (✓R (k))�p(k) + ⌘x(k) (8)
yR(k + 1) = yR(k) + cos (✓R (k))�p(k) + ⌘y(k) (9)
✓R(k + 1) = ✓(k) +�✓(k) + ⌘✓(k), (10)

where k = 1, 2, . . ., and where the process noise is assumed
to have a zero mean normal distribution

⌘(k) ⇠ N (0,⌃) ,⌃ =

0

@
(2mm)2 0 0

0 (2mm)2 0
0 0 (1.5�)2

1

A .

(11)

The robot is equipped with a UWB receiver, which
measures the CIR whenever a signal is received from one



Fig. 8. This figure shows the probability distribution over the AOA given
by the neural network for a single transmitter during one minute of the
test dataset. The ground truth AOA is indicated with a red dashed line.
It is visible that at t = 71 s the distribution is bi-model. The position and
orientation of the receiver for this part of the test dataset is labeled in Fig. 9,
and a circle used to mark the transmitter from which the CIR is measured.

of the randomly transmitting anchors at time k. This CIR
measurement is passed through a trained neural network to
obtain the estimated binned probability density function of
the AOA p(↵rx(k)|hCIR(k)).

B. Particle Filter

Due to the potential multi-modality of the a-posteriori
AOA probability distribution, a particle filter is used to track
the robot’s state estimate. The particle filter framework is
briefly outlined in the following, and the reader is referred
to [26] for a more in depth introduction.

1) Initialization: The particle filter is initialized with
NPF = 1000 particles xp, p 2 {1, 2, . . . , NPF} whose
initial orientations are drawn from the uniform distribution
U✓(�⇡,⇡) and whose initial coordinates are drawn from
UxR(�0.5m, 4.5m) and UyR(�0.5m, 3.5m).

2) Prediction step: At each iteration, the process model
of (8)-(10) is used to update to each particle xp as

xp(k + 1) = q(xp(k),u(k),⌘p(k)) (12)

3) Measurement update: When a UWB signal is received,
each particle is weighted according to the a-posteriori prob-
ability distribution, given by the neural network, i.e.

wp(k) = p(↵p
rx(k)|hCIR(k)), (13)

Fig. 9. This figure shows the transmitter positions (H) and the path travelled
by the robot in the test dataset (gray line). Only 60 seconds of this test is
shown in black to improve plot clarity and facilitate comparison with the
estimate of the particle filter over this same period (blue line). The tracking
results across the entire 600 second experiment are plotted in Fig. 10. The
AOA ↵rx with respect to one transmitter is labeled at 71 s, and is additionally
marked in Fig. 8 for purposes of comparison over the same 60 seconds.

where the expected AOA ↵p
rx of each particle p is

↵p
rx(k) = atan2

�
ytx � ypR(k), xtx � xp

R(k)
�
� ✓pR(k), (14)

wherein xtx and ytx are the x and y coordinates of the trans-
mitter from which a signal was received. After the particle
weights have been calculated, the particles are resampled to
get NPF posterior particles, all with equal weights.

C. Results
The performance of the particle filter was evaluated using

the test dataset described in Section IV. Fig. 9 shows a 60
second segment of the path travelled by the robot in black
(only 60 seconds are plotted to increase clarity of the plot,
the full 600 second experiment is shown in Fig. 10). The path
estimated by the particle filter is shown in blue (calculated
as the mean of the x, y coordinates of the particles). The
root-mean-squared error in the estimated position and the
estimated orientation are 0.26m and 2.9�, respectively.

To investigate whether it is also possible to estimate the
state of an object with unknown dynamics using the AOA
estimate, a second particle filter was run using a random
walk process model, i.e.

xR(k + 1) = xR(k) + ⌘x(k) (15)
yR(k + 1) = yR(k) + ⌘y(k) (16)
✓R(k + 1) = ✓(k) + ⌘✓(k). (17)



Fig. 10. The robot’s path is shown in black, the mean of the state estimate
generated by the particle filter with the process model given in (8)-(10)
is shown in blue, and the mean of the state estimate of the particle filter
employing the process model given in (15)-(17) is shown in orange.

Since this process model is driven solely by the zero mean
process noise, the noise’s covariance is increased to

⌃ = diag
�
(12mm)2 , (12mm)2 , (5.4�)2

�
, (18)

in order to track the robot’s motion. The mean of the state
distribution generated by this particle filter is shown in
orange in Fig. 10. It is clear the evolution of the estimated
state is not as smooth as for the case with the correct process
model, particularly in positions where the AOA distribution
is multi-modal (e.g. at approx. t = 71 s). Nevertheless, the
filter is able to track the robot’s state with a root-mean-
squared error in the estimated position of 0.37m and in the
estimated orientation of 3.6�.

VI. CONCLUSION
This paper discusses how the AOA of a UWB signal can

be estimated based on a measurement of the CIR, which is
a function of the angle-dependent antenna transfer function.
To the best knowledge of the authors this approach is a novel
one, with this paper serving as a proof of concept. However,
the results presented in this paper only scratch the surface
of this novel sensor modality and more research is needed
to evaluate its applicability to real-world problems.
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