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I. BACKGROUND

To fulfill their potential in the manufacturing and retail sec-
tors of the modern world, autonomous machines must be able
to perceive and react to contact with their surroundings, both
to enhance their capabilities and increase operational safety.
To this end, my research focuses on the contact sensing
problem of robotic systems, pivoting on the development
of a vision-based tactile sensing principle that provides rich
feedback upon physical interaction with the environment.

In the last decade, the robotics community has experienced
extensive growth in tactile sensing research [13, 21], neces-
sitating at least three fundamental aspects to be investigated:
i) The scalability and versatility of modern tactile sensors for
generic robotic tasks; ii) the processing of raw tactile data
to extract quantities of interest for the tasks at hand; iii) the
use of raw or processed tactile data for high-level control and
estimation tasks. The remainder of this section describes my
contributions to addressing the first two aspects. The third
aspect is discussed in Section II, where our latest results and
future research directions are discussed. Research videos are
linked via footnotes, listed at the end of the references.

1) Vision-based tactile sensors for arbitrary surfaces: With
the objective of inferring distributed contact information, I
designed and fabricated a tactile sensor [8] that is potentially
scalable to larger and more complex surfaces. The sensing
technique is based on an internal camera that tracks fluorescent
particles 1, which are densely and randomly distributed within
a soft elastomer. This is in contrast to most vision-based tactile
sensors [17, 19, 20], which exhibit regular or sparse patterns.
Specifically, the denseness of the particle patterns is effective
at creating information about the strain of the soft material
at each pixel of the resulting image, and their randomness
simplifies manufacture. The simplicity of the fabrication tech-
nique enables a straightforward design of sensing surfaces with
different shapes and geometry [1, 14], as it does not make any
assumptions about the sensing surface, as long as this can be
fully captured by an internal camera. My research has shown
how larger sensing surfaces2 can be covered with the use of
multiple cameras and efficient data-processing strategies [14].

2) Learning to estimate the contact force distribution:
Vision-based tactile sensors provide rich, qualitatively inter-
pretable tactile images. However, extracting relevant physical
quantities from such images is challenging, as this generally
requires modeling the behavior of the soft materials involved,
as well as the optics of the internal camera. Leveraging the
high-resolution information provided by the sensor, I devel-
oped a machine learning-based data processing framework
[10]. This is essentially a calibration procedure that utilizes a
deep neural network to map the raw tactile images to the three-

Fig. 1: The shear (first two maps) and pressure (third) components of the force
distribution measured during generic contact by the tactile sensor I developed.

dimensional force distribution applied to the sensing surface,
with the spatial resolution of a human fingertip.

3) Calibrating vision-based tactile sensors in simulation:
The main concerns typically raised about learning-based ap-
proaches to data processing, such as the one I developed for
extracting force distribution measurements, are data efficiency
and cross-task generalization. To address these issues, I have
proposed a solution to generate rich and highly accurate
training data in a simulation [11], [9] based on finite-element
models and including the camera projection. Hence, the deep
neural network described above is entirely trained with syn-
thetic data, avoiding the need for real-world data collection.
Employing a strategy based on classical computer vision, the
neural network is transferred from simulation to reality, where
high sensing accuracy in real time3 is retained across a variety
of contact scenarios, see for example Fig. 1. In addition, I
proposed a technique to transfer the calibration mapping across
real-world sensors of the same type without further training.

4) Discussion: The data processing framework leverages
on the fact that, by design, the tactile sensor I developed
is well-suited for simulation. In fact, the randomness of the
particle patterns tracked by the internal camera requires data
processing algorithms that are robust to the pattern variations,
such as those introduced when generating synthetic tactile
images. In addition, the dense spread of particles showed
to considerably improve the contact localization accuracy [8]
compared to tracking markers placed at sparser locations on
the sensing surface. Finally, the emphasis of my work on
estimating general physical quantities, as opposed to directly
using the raw camera output, also targets a reusability issue in
tactile sensing, where the software and algorithms developed
are typically tailored to the specific sensors employed. The
estimation of the force distribution provides a physical abstrac-
tion from the raw tactile data that aims to facilitate the transfer
of high-level robotics algorithms across systems that rely on
different tactile sensing principles (e.g., resistive, capacitive,
vision-based), which, as such, provide different raw tactile data
(e.g., electrical current, capacitance, pixel intensities). The next
section provides examples of where such a general abstraction
may be leveraged for downstream tasks.

II. CURRENT AND FUTURE RESEARCH

1) Tactile control and estimation for dexterous manipula-
tion: To date, most of the achievements using tactile sensing



in robotics have focused on showcasing the potential of
such a sensory feedback on specific applications [4, 12, 16]
based on task-dependent strategies and heuristics. However,
the potential of high-resolution tactile sensors for dexterous
manipulation can only be fulfilled by developing tailored
feedback control strategies that efficiently incorporate the
tactile information and can cope with the complex effects
arising during non-trivial motions. In this regard, the force
distribution abstraction proved to be very practical for planning
higher-level robotic tasks. In [1], I led the research on a high-
performance manipulation task, where a parallel-jaw gripper
provided with tactile sensing and moved by a linear motor aims
to swing a pendulum up to a vertical position. Such a proof-
of-concept system is similar to a classical inverted pendulum
scenario, but rather than being attached to a pivot point, the
pendulum (which has unknown physical characteristics) is free
to escape the grip at any time. We achieved the task with an
off-the-shelf reinforcement learning algorithm, entirely trained
on a simulator of the system that we developed. The simulator
was based on efficient finite-element and contact modeling
techniques, which leveraged the availability of distributed
forces. The resulting control policy was successfully trans-
ferred to the real-world system4 without further adaptation.

In such a low-dimensional setting, knowledge about the sys-
tem was exploited to extract relevant quantities (total force and
angular information) from the force distribution, which were
then used as inputs to the policy. However, for generic tasks,
it may be more challenging to identify such key information
beforehand. Therefore, I plan to investigate strategies based on
representation learning [15] to automatically extract such spe-
cialized features from the general force distribution readings
depending on the task of interest. Accurate simulations will
remain crucial to alleviate the training requirements of such
techniques. As an alternative to representation learning, I will
investigate classical filtering techniques, which are relatively
unexplored in the field of tactile sensing and may facilitate
control tasks by systematically condensing high-resolution
tactile information into a state representative of the system
considered.

2) Real-time force monitoring for grasping applications:
Humans are able to maintain a firm grasp on objects by
constantly monitoring slippage and refining the necessary grip-
ping force without damaging such objects. Similarly, tactile
sensors show promise to estimate slippage during robotic
manipulation tasks to achieve safe and reliable operations. The
three-dimensional force distribution provided by the sensor I
developed enables the estimation of the stick ratio, defined
as the ratio between the sticking and the slipping regions of
the sensing surface in contact with an external object. This
ratio provides an indication of incipient slip, which can be
employed to anticipate the actual slippage of the object. In
a recent work [2], this was able to considerably improve
the performance in slip prediction5 compared to standard
approaches in a variety of scenarios, including those involving
rotational slippage. The force distribution abstraction is fully
leveraged in this approach, providing a means to bypass the
deformation of the sensor, solely based on the estimated force

field. Building on these results, I plan to develop strategies
that can adjust the gripping force in real-time based on the
available slippage information. In addition, I will further study
the case of unsuccessful grasps [3], where I will investigate
novel approaches to exploit the history of tactile data and
accordingly correct the grasping strategies for the subsequent
attempts.

3) Interdisciplinary connections: Only machines enabled
with multiple and complementary sensing modalities will
be able to ultimately approach a human-level versatility in
complex interactive tasks, such as those involving grasping and
manipulation. While robotic systems have typically planned
most of these tasks pivoting on the availability of rich visual
feedback from the environment [7], tactile feedback remains of
the utmost importance when it comes to reducing uncertainty
during interactions with small or fragile objects, for fine
manipulation tasks, or in conditions where visual information
deteriorates or is insufficient, such as when coping with the
occlusions naturally caused by a grasping motion. In addition
to providing force and torque information during contact with
external bodies, the force distribution readings also provide
local information about the pose of such bodies. The system-
atic fusion of this information with that provided by vision
on a larger scale (such as shown in the context of classical
force sensors [6]), will be a necessary step to address the next
challenges in the development of autonomous systems that
interact with the environment.

However, the applications of tactile sensing extend beyond
the development of autonomous robots and have a great po-
tential for human-machine interaction. Haptic feedback tech-
nologies are continuously improving the way in which humans
interact with machines. As an example, surgical robots can
be teleoperated remotely using such technologies, ultimately
targeting underdeveloped regions where specialized medical
care is not directly available. In fact, surgeons can greatly ben-
efit from touch and haptic feedback [5] during teleoperations,
to get a direct sense of the forces they are exerting on the
patient, in addition to visual feedback. Finding a connection
between distributed tactile forces (as measured through the
sensor discussed in this statement) and the corresponding
haptic stimuli may provide medical specialists with rich force
feedback on their hands, which would further advance their
teleoperation capabilities. Similarly, applications of such a
connection may find a place in augmented reality systems,
by allowing the user to feel haptic stimuli while exploring a
virtual environment.

Not only robots and machines benefit from the development
of an artificial sense of touch. In fact, the achievements in
the miniaturization of tactile sensors, and their scalability
to large and arbitrary surfaces [14], will make possible the
development of electronic skins that may find applications
in smart prosthetic systems [18]. Leveraging advances in
neuroscience research, the potential conversion of the tactile
feedback to corresponding stimulations in humans may open
possibilities to restore tactile sensations to people who have
lost limbs.
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2 Video 2: https://youtu.be/lbavqAlKl98
3 Video 3: https://youtu.be/dvOk2XrSmLE
4 Video 4: https://youtu.be/In4jkaHzJLc
5 Video 5: https://youtu.be/YeotGbKVWcY
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