
Application of an Approximate Model Predictive Control Scheme on an
Unmanned Aerial Vehicle

Matthias Hofer, Michael Muehlebach, and Raffaello D’Andrea

Abstract— An approximate model predictive control ap-
proach is applied on an unmanned aerial vehicle with limited
computational resources. A novel method using a continuous
time parametrization of the state and input trajectory is used to
derive a compact description of the optimal control problem.
Different first order methods for the online optimization are
discussed in terms of memory requirements and execution time.
The generalized fast dual gradient method, as presented in
[1], is implemented on the aerial vehicle. The approximate
model predictive control algorithm runs on an embedded
platform with a STM32 Cortex M4 processor. Simulation
studies show that the model predictive controller outperforms a
linear quadratic regulator in aggressive maneuvers. The model
predictive control approach is evaluated in practice and shown
to yield satisfactory flight behavior.

I. INTRODUCTION

Model Predictive Control (MPC) provides the possibility
to systematically incorporate input and state saturations
imposed by the physical system. Penalizing state and input
deviations from reference trajectories allows for an intuitive
tuning of the control strategy. These benefits come with an
increased computational demand compared to other control
algorithms such as proportional-integral-derivative control.
An extensive overview about MPC can be found for example
in [2] and [3]. Recently, significant progress has been made in
terms of real-time capability. However, for systems with fast
dynamics, the required sampling rates are still challenging,
particularly for resource-constrained embedded platforms.

A. Related Work

A method to avoid the online computational burden is to
use explicit MPC, [4]. Multiparametric programming allows
the offline precomputation of a lookup table from initial state
to optimal control input, which has to be evaluated online.
This approach is viable for small problem sizes (up to around
5 states), but becomes prohibitive for higher state and input
spaces due to rapidly growing memory requirements.

When it comes to online MPC, second order methods
incorporate the advantage of a reduced number of iterations
through the usage of curvature information of the objective
function. However, the computational effort per iteration
increases, and upper bounds on the number of iterations
needed, tend to be conservative.

The authors of [5] suggest an interior point method, which
exploits the specific problem structure inherent to the MPC
formulation. Software frameworks (CVXGEN, FORCES) are

*This work was supported by ETH-Grant 0-20125-15.
The authors are with the Institute for Dynamic Systems and Control, ETH

Zurich. Email correspondence to hofermat@ethz.ch.
{hofermat,michaemu,rdandrea}@ethz.ch.

introduced in [6] and [7], which allow for the generation
of real-time solvers for embedded hardware, tailored to a
family of optimization problems. In [8], FORCES is applied
to control autonomous racing cars of scale 1:43. The online
solver is running at 50 Hz on an embedded platform using
an ARM A9 chip (1.7 GHz).

An alternative to second order methods tailored to specific
problem structures are first order methods. An efficient
evaluation and straightforward implementation are beneficial,
with the major drawback being large iteration numbers espe-
cially for ill-conditioned problems. In [9], the fast gradient
method, [10], is applied to linear quadratic MPC problems.
Lower iteration bounds are derived for getting a solution of
predefined suboptimality. An alternative to the fast gradient
method represents the generalized fast dual gradient method,
which is introduced in [1].

MPC has been previously applied in the field of UAVs.
In [11], MPC is used for state interception maneuvers of
a quadrocopter. The MPC is running offboard, while a
rate controller is employed onboard. A decoupled model of
the dynamics is used to generate interception trajectories
at 50 Hz. A learning-based MPC controller is proposed in
[12]. The quadratic programming solver is running on an
onboard computer including an Intel Atom processor. The
authors of [13] apply robust MPC to UAVs using a multi-
parametric approach. The control law is computed explicitly
and evaluated onboard on a computer with an Intel Atom
processor.

While the common approach is to discretize the dynamics
and truncate the time horizon, [14] introduces a different
paradigm. The derivative of the control input is described by
polynomial basis functions over a finite prediction horizon.

Similarly, this paper proposes a continuous time approx-
imation of the control and state trajectory, but over an
infinite horizon. The quadratic programming solver routine is
running purely onboard, on a STM32 Cortex M4 processor
(168 MHz) with 265 KB RAM. The full model of the system
including 12 states and 4 inputs is incorporated into the MPC
design.

B. Outline

The continuous time approximate MPC approach is in-
troduced in Section II. Section III discusses two first order
methods used for the online optimization. In Section IV, the
aerial vehicle used for experimental evaluation is described
and results from simulation and practical experiments are
presented in Section V. Concluding remarks are made in
Section VI.

For ease of notation, vectors are expressed as n-tuples,
with stacking clear from the context. Moreover, the two norm
is denoted by ‖·‖2, and Im ∈ Rm×m denotes the identity
matrix.

II. CONTINUOUS TIME MODEL PREDICTIVE CONTROL

In this section, a continuous-time approximation to the
following infinite horizon optimal control problem is derived:

J∞ :=min
u(t)

∫ ∞
0

1

2
x(t)TQx(t) +

1

2
u(t)TRu(t) dt

s.t. ẋ(t) = Ax(t) +Bu(t), x(0) = x0

umin ≤ u(t) ≤ umax, ∀t ∈ [0,∞)

x ∈ L2([0,∞),Rn), u ∈ L2([0,∞),Rm),

(1)

where umin ∈ Rm and umax ∈ Rm define lower and
upper bound constraints on u(t), Q is positive semidefinite
(Q � 0), and R is positive definite (R � 0). Note that we
deliberately consider box-constraints only, since they lead to
a significant simplification and speed-up of the optimization
routines used in Sec. III.

The simplification of (1) consists of three steps: 1) repre-
senting input and state trajectories as linear combinations
of basis functions, 2) simplifying the dynamics using a
variational formulation (Galerkin method), 3) simplifying the
constraints using constraint sampling. These three steps will
be discussed in the remainder of this section.

A. Laguerre Functions

We represent state and input trajectories as linear combi-
nations of Laguerre functions, see e.g. [14]. That is,

x̃(t) = (In ⊗ τ(t)T)ηx, ũ(t) = (Im ⊗ τ(t)T)ηu, (2)

with τ(t) := (l1(t), l2(t), . . . , ls(t))
T, for all t ∈ [0,∞), and

li(t) :=
√
2λ exp(−λt)

i−1∑
k=0

(
n

k

)
(−1)k

k!
(2λt)k. (3)

The exponential decay of the basis functions is described by
the parameter λ > 0, which will be used as a tuning parame-
ter in a later stage. The basis functions are square integrable
and orthogonal, in the sense that

∫∞
0
τ(t)τ(t)Tdt = Is.

Moreover, they fulfill the first-order differential equation

τ̇(t) =Mλτ(t), ∀t ∈ [0,∞), (4)

where Mλ ∈ Rs×s (see e.g. [14]). These properties will be
used in the following.

B. Approximation of the Dynamics

We use a variational formulation of the dynamics. Due
to the fundamental lemma of the calculus of variations the
dynamics ẋ(t) = Ax(t) + Bu(t) for all t ∈ [0,∞) together
with the initial condition x(0) = x0, are equivalent (almost
everywhere) to∫ ∞

0

δp(t)T (Ax(t) +Bu(t)− ẋ(t)) dt

− δp(0)T(x(0)− x0) = 0,

(5)

∀δp ∈ L2([0,∞),Rn), where L2([0,∞),Rn) denotes the
space of square integrable functions, mapping from [0,∞)
to Rn. By restricting the variations δp to be linear combi-
nations of basis functions, i.e. δp̃(t) = (In ⊗ τ(t)T)ηp, with
ηp ∈ Rns, and inserting the parametrized input and state
trajectories, (5) is simplified to

δηTp

[∫ ∞
0

(In ⊗ τ(t))
(
Ax̃(t) +Bũ(t)− ˙̃x(t)

)
dt

−(In ⊗ τ(0))(x̃(0)− x0)
]
= 0, ∀δηp ∈ Rns.

(6)

Combined with (2), this results in a linear relationship
between the parameters ηu, ηx, and the initial condition x0,
i.e.

Axηx +Buηu = Fx0, (7)

where

Ax :=A⊗ Is − In ⊗Mλ,

Bu :=Ins, F := In ⊗ τ(0).
(8)

C. Constraint Sampling

The input constraints are relaxed from being enforced over
the full interval [0,∞) to only certain time instances ti,
called the constraint sampling instances. Accordingly, the
input constraints are reduced to

umin ≤
[
Im ⊗ τ(ti)T

]
ηu ≤ umax, i = 1, 2, . . . , s.

(9)
To simplify notation, the s constraints are stacked together
in a matrix, which leads to

Tηu ∈ U := [umin, umax]
s, (10)

with

T =

Im ⊗ τ(t1)T
Im ⊗ τ(t2)T

...
Im ⊗ τ(ts)T

 ∈ Rms×ms. (11)

To apply the fast gradient method and the generalized fast
dual gradient method, see Sec. III, the projection onto the
constraint set U should be particularly simple and computa-
tionally efficient. More precisely, the following projections
need to be evaluated

proxX⊗IsT−1U (ηu) := argmin
η∗u∈T−1U

1

2
(η∗u − ηu)T(X ⊗ Is)(η∗u − ηu),

(12)
where X = R in the case of the generalized fast dual gradient
method, and X = Im in the case of the fast gradient method.
Using the change of variables η̂∗u = Tη∗u, the projection can
be reformulated as

proxX⊗IsT−1U (ηu) = T−1prox
T−T(X⊗Is)TT

U (Tηu). (13)

Note that the matrix T−T(X ⊗ Is)TT can be simplified to
X ⊗ T̂ , where T̂ ∈ Rs×s has the following components

T̂ij = τ(ti)
Tτ(tj). (14)

This yields the equivalence

proxX⊗IsT−1U (ηu) = T−1proxX⊗T̂U (Tηu). (15)

For an efficient evaluation of (15), X ⊗ T̂ must be diagonal,
since in that case (15) simplifies to

T−1 min(max(Tηu,1s ⊗ umin),1s ⊗ umax), (16)

where 1s = (1, 1, . . . , 1) ∈ Rs. For the fast gradient method,
this means that T̂ must be diagonal. For the generalized fast
dual gradient method this means that T̂ and X = R must
be diagonal. Therefore, we require the constraint sampling
instants to fulfill

τ(ti)
Tτ(tj) = 0, ∀i 6= j. (17)

It turns out, that for the basis functions given in (2), such time
instants exist and are uniquely defined, once t1 is set. In order
to guarantee a feasible control input at t = 0, we choose t1 =
0 and calculate the remaining constraint sampling instants in
order to fulfill (17). For s = 4 and λ = 5 s−1 this yields
t1 = 0 , t2 = 0.094 s, t3 = 0.331 s, t4 = 0.776 s.

D. Non-Condensed Formulation

Summarizing, (1) is therefore simplified to

min
ηx,ηu

1

2

[
ηTx ηTu

] [Q⊗ Is 0
0 R⊗ Is

]
︸ ︷︷ ︸

:=Hncf

[
ηx
ηu

]

s.t. E

[
ηx
ηu

]
= Fx0 Tηu ∈ U ,

(18)

with E :=
[
Ax Bu

]
. This problem formulation, where the

parameters of the state trajectory and the parameters of the
input trajectory are both kept as optimization variables, will
be solved using the generalized fast dual gradient method, see
Sec. III. To simplify the required projections, i.e. efficiently
evaluate (15) using (16), we restrict the matrix R to be
diagonal.

E. Condensed Formulation

In order to apply the fast gradient method, the equality
constraints are eliminated using ηx = A−1

x (Fx0 −Buηu).
Rearranging the expressions results in a quadratic objective
function in ηu, that is

min
ηu

1

2
ηTuHcf ηu + xT0Gηu

s.t. Tηu ∈ U ,
(19)

with

Hcf := BT
uA
−T
x (Q⊗ Is)A−1

x Bu +R⊗ Is,
G := −FTA−Tx (Q⊗ Is)A−1

x Bu.
(20)

III. QUADRATIC PROGRAMMING SOLVER METHODS

The Parametric Model Predictive Control (PMPC) ap-
proach presented in Sec. II results either in a quadratic
optimization problem with linear equality and box constraints
in the non-condensed formulation or a quadratic optimiza-
tion problem with box constraints only, in the condensed

formulation. The execution time of the optimization routine
is essential for ensuring real-time capability.

Due to the usage of an embedded platform with lim-
ited computational resources (see Section IV), second order
methods tend to be less suitable because of the larger
computational effort at each iteration. Therefore, the focus
lies on two first order methods, which are discussed in the
following.

A. Fast Gradient Method

A well-known first order method is the fast gradient
method (FGM), [10]. The optimization problem is required
to be in condensed form as defined in (19), meaning that the
equality constraints are used to eliminate the optimization
variables corresponding to the state trajectory. The benefit
of a reduced problem size comes at the cost of an increased
condition number of the Hessian. The major memory require-
ment is caused by the Hessian with dimensions ms times
ms.

B. Generalized Fast Dual Gradient Method

A more elaborate and less known first order routine is the
generalized fast dual gradient method (GFDGM), [1]. The
starting point is the optimization problem in non-condensed
form (18). Dual variables are introduced for imposing the
equality constraints. The key property of the method is the
computation of a tight upper bound on the negative dual
objective function. This bound allows specific information
about the curvature to be incorporated and not only a
worst case upper bound across dimensions. As a result,
the convergence speed in the dual variables is increased. A
learning rate comparable to the one of the FGM is introduced
for further speed-up. The resulting algorithm is shown by
Alg. 1.

In accordance with [1, eq.(30)], step 5 of Algo-

Algorithm 1 Generalized Fast Dual Gradient Method [1]

Initialize: z0 = λ0 ∈ Rns, y0 ∈ R(n+m)s,
L−1

λ = (EH−1

ncfE
T)−1

1: while ||zi+1 − zi||2 > tol do
2: pi = −H−1

ncfE
Tzi

3: ui =
[
0 T

]
pi

4: vi =
[
Ins 0

]
pi

5: wi = T−1proxT
−THncfT

−1

U (ui)

6: yi =

[
vi
wi

]
7: λi+1 = zi + L−1

λ (Eyi − Fx0)

8: ti+1 =
1+
√

1+4(ti)2

2

9: zi+1 = λi+1 +
(
ti−1
ti+1

)
(λi+1 − λi)

10: end while

rithm 1 can be implemented efficiently as wi =
max {min {ui, umax} , umin}, if the primal Hessian is di-
agonal. The matrices L−1

λ = (EH−1ET)−1 and H−1ET

are computed offline and stored as parameters. The largest

1 2 3 4 5 6 7 8 9 10 11 12
100

101

102

103

104

105

106

107

108

109

Order of Laguerre Polynomials s

N
r.

of
ite

ra
tio

ns
;

C
on

di
tio

n
nr

.o
f

H
es

si
an FGM cond. nr.

GFDGM cond. nr.
FGM iter. nr.
GFDGM iter. nr.

Fig. 1: The blue line indicated by (4) shows the condition
number of the optimization problem in condensed formu-
lation as required for the FGM for increasing polynomial
orders s. The condition number resulting from the non-
condensed formulation required by the GFDGM is depicted
by the red line (×). The resulting iteration numbers for
the FGM and GFDGM are shown by the blue line (◦),
respectively the red line (�).

matrices have dimensions (n + m)s times ns, namely ET

and H−1ET.

C. Comparison of the two Methods

The performance of the two first order methods are as-
sessed using MATLAB for the optimization problem given
by (18), resp. (19). The condition number of the Hessian
and the number of iterations required by each method are
computed for different polynomial orders s. The dependency
on the initial state is addressed by averaging the results for
each order over 1000 randomly chosen initial states, x0. The
relative tolerance of the method is set to 10−8.

As can be seen in Fig. 1, the condition number of the FGM
grows rapidly for increasing polynomial orders (scales with
the 5th order). The GFDGM shows equal condition number
for all polynomial orders, since the condition number for
the problem in non-condensed form is purely determined by
the ratio of the largest over the smallest entry of the tuning
matrices Q and R.

The FGM also shows a strong dependency on the poly-
nomial order in terms of the number of iterations (scales
cubically), as shown in Fig. 1. The GFDGM, on the other
hand, exhibits a peak at low orders, but converges to a certain
value for increasing orders. Overall the GFDGM requires
significantly less iterations compared to the FGM.

The computational effort for both methods is not only
determined by the number of iterations, but also through the
complexity of a single iteration. The cost of one iteration is
incorporated by computing the number of floating point op-

Ty1

Tz Ty2

Tz

Fig. 2: Simplified drawing of the vehicle. Three electric
ducted fans are attached to a connecting lightweight plat-
form. A support frame allows for takeoff and landing from
the ground. The electric ducted fans are numbered counter-
clockwise from 1 to 3. The control inputs are shown for fan
1 and 2. The same convention is used for the third fan.

erations (FLOPs) for both methods required in the hardware
implementation. The analysis is carried out for a polynomial
order of 4, as used in Section V.

Table I summarizes the number of iterations, the number
of FLOPs for one iteration and the total number of FLOPs
for both methods. The more sophisticated GFDGM requires
approximately 175 times less iterations, but 10 times more
FLOPs for a single iteration compared to the FGM. In total,
this leads to around 17 times less FLOPs for the GFDGM.
For smaller polynomial orders (s ∈ {1, 2, 3}), the GFDGM
becomes even more efficient in terms of FLOPs per iteration
compared to the FGM.

Iter. FLOPs single iter. Total FLOPs
FGM 5’096 2’164 11.03 · 106
GFDGM 29 19’764 0.57 · 106

TABLE I: Number of iterations and number of FLOPs for
the FGM and the GFDGM for a polynomial order of 4.

The analysis carried out in this section shows the clear
advantages of the GFDGM. Therefore, the GFDGM is used
as online solver routine.

IV. THE FLYING PLATFORM

This section briefly introduces the Flying Platform, an
unmanned aerial vehicle used for the experimental testing
of the previously described control algorithm.

A. Hardware

The Flying Platform consists of three electric ducted fans
which are attached to a light-weight frame. A flap is attached
below the exit nozzle of each fan, which allows for thrust
vectoring in a single direction. A PX4FMU1 is used as
flight controller. It includes a 32 bit STM32F405 Cortex M4
processor, with a 168 MHz clock rate, 256 KB RAM, 2 MB
flash memory, and a floating point unit. The sampling time
of the controller is set to 50 Hz.

1www.pixhawk.org

Position and attitude information is provided by a Vicon
motion capture system2. Linear and angular velocities are
obtained by offboard state estimation techniques and the
onboard measurements from the inertial measurement unit.
Offboard state information can be sent to the vehicle via
wireless communication.

B. Software

All matrices defining the optimization problem described
in Section II are computed offboard. The matrices are loaded
as parameters for the online solver routine, which is imple-
mented using the arm matrix class. This class provides basic
functionality for the required matrix algebra. The onboard
code is compiled with the GNU GCC ARM Embedded
compiler using the optimization option -O3.

C. Linear Time Invariant Model

The nonlinear model is derived from first principles
and linearized around hover. The linearization is carried
out in a yaw fixed coordinate system leading to a model,
which is valid for all yaw orientations. The states are
position, attitude, linear and angular velocity resulting
in a total number of 12 states. The four thrust forces
(Ty1, Ty2, Ty3, Tz) depicted in Fig. 2 are chosen as control
inputs. The horizontal thrust component of each fan is
denoted by Tyi, the vertical component, Tz , is equal for all
fans. The full mechanical model is incorporated into the
MPC scheme. The numerical values of the continuous-time
state space representation of the linearized dynamics are
given by

A =

0 I3 0 0
0 0 A23 0
0 0 0 I3
0 0 0 0

A23 =

 0 9.81 0
−9.81 0 0
0 0 0

B =

0
−0.041 −0.145 0.160 0
0.195 −0.078 −0.050 0
0 0 0 0.396

0
1.640 −0.691 −0.655 0
0.161 1.322 −1.540 0
−0.984 −0.883 −0.950 0

.

The force inputs are then translated into the corresponding
servo commands (actuating the flaps) and turbine duty cycles.
The maximum thrust Tmax produced by each fan is limited,
as well as the maximum pivoting angle of the flaps, ψmax.
Therefore, the force inputs are subject to saturation limits,
which can be expressed as

‖Tyi + Tz‖2 ∈ [0, Tmax] , (21)

c · arctan
(
Tyi
Tz

)
∈ [−ψmax, ψmax] , (22)

where c denotes a proportional constant between thrust angle
and servo angle and is identified from measurements. Both
constraints depend on Tyi as well as Tz . However, by
assuming Tyi � Tz and replacing Tz with the hover thrust

2http://www.vicon.com/

Tz,0, (21) and (22) can be approximated as

Tz ∈ [0, Tmax] , (23)

Tyi ∈
[
−Tz,0 tan

(
ψmax

c

)
, Tz,0 tan

(
ψmax

c

)]
. (24)

The input constraints (23) and (24) are box constraints
matching the structure of the optimization problem (1) as
introduced in Section II.

V. RESULTS

The same settings (s, λ,Q,R) are used to evaluate the
controller in simulation and experiments. The order of the
Laguerre polynomials s is set to 4, resulting in the largest
problem formulation without exceeding the RAM capacity of
the embedded platform.3 The decay rate λ is chosen as 5s−1

which corresponds to the averaged real-parts of the closed-
loop poles resulting from an LQR design. The following
tuning matrices showed good performance in simulation and
experimental tests:

position︷ ︸︸ ︷ lin. velocity︷ ︸︸ ︷ attitude︷ ︸︸ ︷ ang. velocity︷ ︸︸ ︷
Q= diag

(
50, 50, 10, 10, 10, 10, 40, 40, 10, 10, 10, 5

)
R= diag

(
0.085, 0.085, 0.085, 0.01

)
.︸ ︷︷ ︸

horizontal thrust
︸︷︷︸

vertical thrust

The emphasis for the state variables is put on accurate
position tracking with stabilizing weights on the pitch and
roll angle. The weights on the first three control inputs are
chosen such that no saturation occurs when hovering. The
last weight, corresponding to the thrust in vertical direction,
is tuned for fast tracking of vertical set-point changes, while
avoiding oscillations due to the neglected turbine dynamics.

A. Simulation Results

A set-point shift of 0.65 m in positive x-direction is used
to compare the MPC and LQR controller. Figure 3 illustrates
the different behavior of the two controllers. The initial
response of the two controllers is similar. Both controllers
react with maximum inputs for Ty2 and Ty3 and show a
similar braking maneuver. However, after a first overshoot
in the x coordinate, the MPC acts earlier than the LQR
controller. Due to the lack of information about the input
saturations, the LQR is overestimating the available control
input and hence, reacting later. This results in additional
oscillations leading to instability.

B. Experimental Results

The reliable performance of the MPC controller can be
shown in practice, where it is tested for disturbance rejection
(see Fig. 4).4 The experiments were conducted in the Flying
Machine Arena5.

3We did not account for sparsity.
4The interested reader is referred to the video attachment to get an

impression of the conducted experiment and a detailed illustration of the
experimental setup.

5http://flyingmachinearena.org/

0 1 2 3 4 5 6 7 8

x
[m

]

0

0.65
1

0 1 2 3 4 5 6 7 8

T
y
1
[N

]

-3

0

3

0 1 2 3 4 5 6 7 8

T
y
2
[N

]

-3

0

3

[s]
0 1 2 3 4 5 6 7 8

T
y
3
[N

]

-3

0

3

Fig. 3: Simulation results for a set-point shift of 0.65 m in
positive x direction. The x coordinate and control inputs
Ty1, Ty2, Ty3 of the MPC are depicted in red. The corre-
sponding trajectories of the LQR controller are shown in
blue (dotted line).

0 1 2 3 4 5 6 7

A
tt
.[
◦
]

-10

0

10

α

β

0 1 2 3 4 5 6 7A
n
g
.v
el
.[
◦
/
s]

-50
0

50
α̇

β̇

0 1 2 3 4 5 6 7

T
y
1
[N

]

-3

0

3

0 1 2 3 4 5 6 7

T
y
2
[N

]

-3

0

3

0 1 2 3 4 5 6 7

T
y
3
[N

]

-3

0

3

[s]
0 1 2 3 4 5 6 7E

x
.t
im

e
[m

s]

0

10

20

Fig. 4: Experimental evaluation of the MPC controller for
disturbance rejection. The setpoint is temporarily shifted in
positive y direction (0.5 m for 0.3 s) to excite the vehicle.
The Euler angles α (roll, red line) and β (pitch, dotted blue
line) are shown in the first plot, the angular velocities α̇ (red
line) and β̇ (dotted blue line) are shown in the second plot.
The control inputs Ty1, Ty2, Ty3 are depicted in the third,
fourth and fifth plot and the execution time is shown in the
last plot.

The vehicle tilts approximately 8 ◦ in the positive β direc-
tion, but can be stabilized by the MPC controller. The control
inputs Ty2 and Ty3, which are involved in this maneuver,
reach their saturation limits. The execution time of the
optimization routine is approximately 2 ms when hovering,
but increases up to 20 ms when input constraints are hit. In
rare cases, the solution routine is stopped prematurely.

VI. CONCLUSION

A parametric MPC approach has been successfully im-
plemented on a resource constrained embedded platform.
The MPC controller was evaluated in practice and yielded
satisfactory flight behavior.

ACKNOWLEDGMENT

The authors would like to thank Marc-Andrè Corzillius,
Michael Egli and Tobias Meier for their contribution to the
development of the Flying Platform.

The experiments of this research were carried out in the
Flying Machine Arena. The Flying Machine Arena builds
upon prior contributions by numerous collaborators. A list
of past and present participants is available at http://
flyingmachinearena.org/people/.

REFERENCES

[1] P. Giselsson, “Improved Fast Dual Gradient Methods for Embedded
Model Predictive Control,” Proceedings of 2014 IFAC World Congress,
2014.

[2] M. Morari and J. H. Lee, “Model predictive control: Past, present
and future,” Computers & Chemical Engineering, vol. 23, no. 4, pp.
667–682, 1999.

[3] E. F. Camacho and C. Bordons, Model predictive control. Springer
Science & Business Media, 2013.

[4] A. Bemporad and M. Morari, “The Explicit Linear Quadratic Regu-
lator for Constrained Systems,” Automatica, vol. 38, no. 1, pp. 3–20,
2002.

[5] Y. Wang and S. Boyd, “Fast Model Predictive Control Using Online
Optimization,” IEEE Transaction on Control Systems Technology,
vol. 18, no. 2, pp. 267–278, 2010.

[6] J. Mattingley and S. Boyd, “CVXGEN: a code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1,
pp. 1–27, 2012.

[7] A. Domahidi, A. Zgraggen, M. N. Zeilinger, M. Morari, and C. N.
Jones, “Efficient Interior Point Methods for Multistage Problems Aris-
ing in Receding Horizon Control,” in IEEE Conference on Decision
and Control, Maui, HI, USA, Dec. 2012, pp. 668 – 674.

[8] A. Liniger, A. Domahidi, and M. Morari, “Optimization-Based Au-
tonomous Racing of 1:43 Scale RC Cars,” Optimal Control Applica-
tions and Methods, Oct. 2013.

[9] S. Richter, C. D. Jones, and M. Morari, “Computational Complexity
Certification for Real-Time MPC With Input Constraints Based on
the Fast Gradient Method,” IEEE Transactions on Automatic Control,
vol. 57, no. 6, pp. 1391–1403, 2012.

[10] Y. Nesterov, Introductory Lectures on Convex Optimization. A Basic
Course. New York, USA: Springer, 2004.

[11] M. W. Mueller and R. D’Andrea, “A model predictive controller
for quadrocopter state interception,” in European Control Conference
(ECC), Zurich, Switzerland, Jul. 2013, pp. 1383 – 1389.

[12] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-Based Model
Predictive Control on a Quadrocopter: Onboard Implementation and
Experimental Results,” in IEEE International Conference on Robotics
and Automation, Minnesota, USA, May 2012, pp. 279 – 284.

[13] C. Papachristos, K. Alexis, and A. Tzes, “Dualauthority thrustvector-
ing of a tritiltrotor employing model predictive control,” Journal of
Intelligent and Robotic Systems, pp. 1–34, 2015.

[14] L. Wang, Model Predictive Control System Design and Implementation
Using MATLAB, 1st ed. Springer, 2009.

