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Abstract— This paper presents a vision-based sensing ap-
proach for a soft linear actuator, which is equipped with an
internal camera. The proposed vision-based sensing pipeline
predicts the three-dimensional tip position of the actuator. To
train and evaluate the algorithm, predictions are compared to
ground truth data from an external motion capture system. An
off-the-shelf distance sensor is integrated in a second actuator
of the same type, providing only the vertical component of
the tip position and used as a baseline for comparison. The
camera-based sensing pipeline runs at 40 Hz in real-time on
a standard laptop and is additionally used for closed loop
elongation control of the actuator. It is shown that the approach
can achieve comparable accuracy to the distance sensor for
measuring the linear expansion of the actuator, but additionally
provide the full three-dimensional tip position.

I. INTRODUCTION

Due to their intrinsic properties, inflatable soft robotic
systems show promise in overcoming barriers encountered
with classic rigid robotic systems [1]. Soft materials provide
robots with intrinsic compliance and the ability to interact
with their surroundings in a safer and more resilient way.
However, these soft systems typically result in a high number
of degrees of freedom [2]. Furthermore, modeling dynamic
behavior is challenging due to the non-linear material prop-
erties. Therefore, sensory feedback is crucial for the control
of soft robots [3].

Proprioception in robotics refers to sensing the robot’s own
internal state, and is an active field of research in soft robotic
systems. The state of a soft robot can comprise a single point
of interest (e.g. [4]) or the high-dimensional shape of a soft
object (e.g. [5]).

A number of different approaches are investigated for
retrieving the shape of a soft robot relying only on internal
sensors [3]. In the context of optical sensors, stretchable
strain sensors based on optical waveguides are employed,
where the light transmission properties change when the
waveguide is deformed [6]. The changing light intensity due
to deflection is used in [7]. The idea is to attach a flexible
circuit board, housing a light sensor and various photodiodes,
to a soft object. When the object deforms it causes the
flexible circuit board to bend and, as a consequence, the
light intensity to change. A similar idea is proposed in
[8], where an LED and a phototransistor are mounted on
the opposing ends of an inflatable linear actuator. When
the actuator is inflated, the light intensity measured by the
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Fig. 1. Left: Manually deflected inflatable linear soft actuator with
integrated camera. Markers for an external motion capture system are
mounted on top for the acquisition of ground truth data. Right: Image from
the integrated camera showing the employed pattern. The proposed sensing
method is used to predict the tip position located on the grip, using only
images from the integrated camera.

photodiode decreases as a function of the elongation of the
actuator.

Vision-based sensing relying on a camera to measure
the deformation of a soft material is a promising approach
investigated actively in the field of tactile sensing. Rich visual
information about the strain of the sensor’s soft surface is
provided by a camera tracking markers embedded in a soft
material ([9], [10]) or observing the reflection of light on a
deformed surface [11].

Vision-based sensing is promising for two reasons. Firstly,
the sensor (i.e. the camera) is not required to mechanically
interact with the soft material of the robot. Therefore, the
sensor does not need to match the compliance of the soft
material employed, in order to avoid stress concentrations
or a degradation of the overall compliance of the system.
Secondly, vision-based approaches provide high spatial reso-
lution and minimal wiring [12]. However, the use of a camera
generally leads to a bulkier structure and requires the points
of interest to be in the field of view of the camera.

An approach that combines vision-based tactile sensing
with pneumatic actuation is demonstrated in [13]. An in-
ternally mounted camera tracks markers attached to a soft
membrane, which can be deformed by increasing the internal
pressure. The authors of [14] present the three-dimensional
shape reconstruction of soft objects based on a self-observing
camera. Ground truth data from two external depth cameras
is used to train an artificial neural network that runs on a
GPU and predicts the object shape from the self-observing



camera images. A method to sense the two-dimensional
displacement of the tip position of a soft link is presented in
[15]. This also relies on a built-in camera.

In this paper, we present an approach for sensing the tip
position of an inflatable, fabric-based, bellow actuator relying
on the integration of an RGB camera into the actuator. A
distinctive pattern is applied to the interior of the actuator
during manufacturing. A number of computationally cheap
features are extracted from the raw camera image and used
as inputs to a support vector regressor (SVR), where ground
truth data from a motion capture system are used to train the
model. The proposed approach does not suffer from sensor
dynamics that are challenging to model, such as hysteresis.
Note that, as opposed to the system presented in [13], the
inflatable bellow actuator inherently shows pattern occlusion,
which hinders straightforward implementation of classical
computer vision approaches. The method presented here can
deal with such occlusions, and the lightweight nature of
the features employed facilitates real-time implementation.
Additionally, the SVR exhibits lower training complexity
compared to end-to-end deep learning approaches.

The performance of the camera-based approach is com-
pared to an infrared time-of-flight sensor serving as the
baseline for measuring the linear expansion of the soft
actuator. It is shown that the camera-based approach can
track the tip position of the actuator with high accuracy.
Finally, the camera-based state prediction is used in closed
loop to control the elongation of the inflatable actuator. The
pipeline runs in real-time at 40 Hz on the CPU of a standard
laptop, showing the computational efficiency of the approach
proposed. This work originates from the preprint version
[16].

The remainder of this paper is organized as follows:
The manufacturing of the actuator including the pattern and
the integration of the camera is discussed in Section II.
The feature extraction from the raw camera image and the
applied machine learning pipeline is outlined in Section III.
Experimental results of the real-time position estimation and
the closed loop elongation control are presented in Section
IV. Finally, a conclusion is drawn in Section V.

II. HARDWARE

The design and fabrication of the actuator, the integration
of the sensors and the test setup used in this paper are
presented in this section.

A. Actuator

The actuator consists of four circular cushions with a
diameter of 140 mm when collapsed. Inflating these cushions
causes the actuator to expand longitudinally. Two actuators
are manufactured for the two sensors subject to comparison.
A camera is integrated in the interior of the first actuator
(denoted as actuator 1) and a visual pattern is applied to the
fabric layers in its line of sight. A time-of-flight sensor is
integrated into a second actuator (denoted as actuator 2) with
no pattern applied to the interior surface. Three reflective
markers (required by the motion capture system) are attached

to a grip which is glued (using Loctite 4850) to the top
bellow of each actuator. The assembled system with actuator
1 comprising the internal camera can be seen in Fig. 1.

Both actuators have the same dimensions. They are man-
ufactured using the fabrication procedure described in [17].
To summarize: Each actuator is built from sheets of fabric
material that have a sandwich structure. This material is com-
posed of two layers of poplin fabric (polyester cotton blend
65/35) stacked above and below a layer of thermoplastic
polyurethane (TPU) film (HM65-PA, 0.1 mm by perfectex)
that are fused in a heat press. The resulting processed fabric
is inextensible.

The four cushions of the actuator are composed of multiple
disc pieces and a lid at the top end. The fabric pieces and
additional TPU ring-shaped seam pieces are all cut using a
laser cutter. The cushions are constructed by stacking the
processed fabric parts with the TPU seams in-between and
fusing them sequentially in a heat press. A more detailed
description of the fabrication is given in [17] (Layered
Manufacturing-Type I).

Before the single fabric pieces of actuator 1 (comprising
the camera) are combined, a pattern is applied to the fabric
layers on the interior of the actuator that are visible to the
integrated camera. This is done to provide the camera with
visual features to track. The pattern is applied with white
textile spray paint (319921 textile spray paint by Dupli-
Color) to provide a high contrast to the black fabric. First, the
pattern is cut from adhesive stencil film (S380 by ASLAN)
with a laser cutter. In a second step, the stencil is attached
to the relevant fabric layers of the bellows and the pattern
is applied in four successive, light coats. It is important to
keep the paint layers thin, to prevent them from smearing
in the heat press during assembly. The pattern consists of
white dashed rings around the circular cut-outs and dots
with a diameter of 2 mm scattered on the disk and lid pieces
(approximately 150 dots for the disc pieces and 200 dots for
the lid). The idea behind the rings is to make the individual
bellows easily distinguishable from the camera’s perspective.
The dots are supposed to provide detailed information about
the local bending of the fabric. The size of the dots is
bounded below by the spray method employed. Compared
to manually applying the dots with a brush, the applied
approach is faster and leads to a reproducible result. The
applied pattern can be seen in Fig. 2. While the pattern
employed indeed captures relevant information about the
actuator deformation (as will be shown in Section IV-B) it
has not been optimized. There might be different patterns
that allow for further improvement of the resulting prediction
performance. The employed method relying on stencil film
and spray painting provides a large design space.

A 3D printed flange (made from PA12, as all 3D printed
parts) is glued to the first bellow (using Loctite 4850) for
either actuator as an interface for the sensors. The camera
and time-of-flight sensor are attached to a separate 3D printed
fixture that is connected to the flange of the actuators with
six screws to ensure airtightness, see Fig. 3 for the camera
example. Pressurized air is supplied to the actuator through



Fig. 2. Pattern applied to the fabric layers of the actuator, which are visible
to the integrated camera before assembly. The left image shows one of the
disc pieces with the applied pattern and the right image shows the lid piece
with the applied pattern. White spray color is used to provide high contrast
to the black fabric.

Fig. 3. Left: Camera fixture that is screwed to the bottom of the actuator.
It features a USB camera with a 180◦ fisheye lens and a LED board to
illuminate the interior of the actuator. Air to drive the actuator is supplied
through the blue tubing. Right: Rendering of the actuator in exploded view.
A two-part 3D printed flange is glued to the opening of the first bellow.
The camera fixture is secured to it with six screws to ensure airtightness.
When assembled, the camera does not protrude beyond the flange.

two blue hoses that are glued to openings in the camera
fixture (using Loctite 4850).

B. Camera

The commercial camera used (USBFHD01M-L180 by
ELP) is fixed-focus, has a 180◦ fisheye lens, a resolution
of 640x480 and can provide up to 100 frames per second.
An LED board is placed around the lens to control the
illumination of the interior surface of the actuator and the
pattern. Positioning this board on the same plane as the lens
eliminates potential shadows. Note that both the camera and
LED board are attached to the same end of the actuator,
which simplifies integration (i.e. cabling and air tightness)
compared to the case where either the lighting source is
attached to the other end or multiple cameras are being used.

C. Time-of-flight Sensor

A time-of-flight distance sensor (VL6180X by STMicro-
electronics) is integrated into actuator 2 for comparison. As
mentioned before the actuator is constructed identically to
the first one, with no pattern applied to the interior surface.
The convergence time of a single measurement of the time-
of-flight sensor (consequently also the sampling time of the

sensor) depends on the amount of reflected light. A smaller
convergence time is achieved if more light is reflected.
Therefore, a piece of reflective tape (Scotchlite 7610 by 3M)
is attached to the lid piece facing the time-of-flight sensor
and forming the last cushion.

D. Test Setup

The test setup for the actuators includes all required
peripherals used to measure and control the internal pressure
as well as the motion capture system used as ground truth.

The pressure in the actuators can be controlled in two
different ways. Manually, using an analog pressure reg-
ulator and automated, using a proportional flow control
valve (MPYE-5-1/8-HF-010-B from Festo). The pressure is
measured with pressure sensors (8230 from Bürkert) in the
actuator and at the source. An embedded platform (con-
sisting of an STM32 Nucleo-144 development board with
STM32F413ZH MCU from STMicroelectronics) is used to
interface the pressure sensors and valve by analog communi-
cation. It will also be used to execute the pressure controller
discussed in Section IV-C. Communication between the
embedded hardware and the host laptop is implemented over
serial communication.

The camera can directly be connected to the host laptop
by USB and the time-of-flight sensor is interfaced with a
LabJack T7 Pro device. A motion capture system (using
T40-S cameras by Vicon) with sub-millimeter accuracy is
employed to obtain ground truth data at 200 Hz.

III. METHOD

The sensing pipeline based on the integrated camera is
discussed in this section. First, a motivation of the general
approach is provided in Section III-A and the extraction of
features from the images is presented in Section III-B. The
application of SVR is discussed in Section III-C and the data
collection and model training are discussed in Sections III-
D and III-E. The integration of the time-of-flight sensor is
straightforward and requires little postprocessing. Therefore,
it is briefly discussed in Section IV-A.

A. Motivation

The goal of the proposed camera-based sensing approach
is to reconstruct in real-time the 3D tip position of the
actuator using only images from the internal camera. This
tip point is located on the grip in the center of the marker
frame attached to the top cushion of the actuator (see Fig.
5, left image). An inertial Cartesian coordinate system I is
introduced with the origin O directly above the camera lens.
Let r denote the vector pointing from O to the point of
interest, namely the tip position, and Ir = (x, y, z) ∈ R3

being its components in the inertial coordinate frame I , see
Fig. 5.

As shown in Fig. 4, during the operation of the actuator
the markers can become occluded by the bellows at different
vertical coordinates. This is a consequence of the pattern
chosen. As an example, using a single large dot on the top
layer would solve the occlusion problem, but also reduce



the information about the local deformation. The availability
of local information provides more flexibility to extend the
current approach and potentially enables the tracking of
multiple points and the full orientation of the actuator tip,
whereas a pattern with a single dot would for example not
be able to capture a rotation of the grip around the z-axis. As
a consequence of the occlusion, the use of classical tracking
algorithms, e.g. optical flow, would not be straightforward.
On the other hand, the re-detection of single markers at each
frame for further processing is not feasible due to the limited
time and resources available in real-time. Therefore in this
paper, a supervised learning approach is proposed, given the
availability of ground truth data from the motion capture
system.

Fig. 4. Example images recorded by the integrated camera with the tip
position at different locations. The point of interest is located approximately
in the middle of the center ring from the camera’s perspective. It can be seen
from the images that the number of dashed rings (indicating the different
cushions) changes depending on the elongation state and the rings can be
cut by the field of view of the camera. Some of the dots are occluded by
the fabric layers closer to the camera depending on the state of the actuator.

We first perform a series of feature construction steps [18,
Ch. 6] to extract computationally inexpensive data from the
images, providing local information that is not impaired from
occlusion. The features are computed by applying different
computer vision filters (e.g. Canny edge detection, dilation,
etc.) in parallel to the original image. Average pooling is ap-
plied to reduce the dimensionality from the camera resolution
to a 3×3 grid of elements. In a second step, r is predicted by
evaluating SVR models on the extracted features. Compared
to end-to-end learning approaches, which bypass the feature
engineering step, the SVR generally exhibits short training
time and lower data requirements, while retaining real-time
prediction capabilities. Note that this approach can deal with
parts of the pattern being slightly out of focus, since this
effect is inherently compensated for by the learning pipeline.

B. Feature Extraction

The raw image is first cropped to a square image with
a resolution of 480x480 pixels. The following procedure
is employed to obtain the features from a single image:
First, the image is converted to a grayscale image G. In a
second step, G is passed through an array of five image filters
producing a total of six images including G. Fig. 6 illustrates
how these filters are applied. An adaptive thresholding filter
is applied to G, producing A. The result is then dilated and
eroded, yielding D and E . A Canny edge detector is applied
to G, resulting in C. The last image M is obtained by using
a binary thresholding filter on G. The threshold of this filter
is chosen to be the average of the pixel values of G, denoted

by µ̄G , plus an offset bM. The OpenCV1 implementation of
the above-mentioned filters is used with the parameters listed
in the Appendix.

The features are then computed by splitting every image
into 3×3 evenly-sized quadratic regions and averaging the
pixel values across these regions (average pooling). The
choice of the number of grid points can be considered as
a tuning parameter. Different numbers of grid elements were
investigated and it can be concluded that the prediction
accuracy generally increases with an increasing number of
elements. A grid of 3×3 elements turned out to be a good
compromise between prediction accuracy and computational
complexity.

The feature vector µ ∈ R6·3·3 is obtained by concatenating
the six individual feature values for each grid element.
Finally, the individual entries of µ are normalized by sub-
tracting the mean and dividing by the empirical standard
deviation. In order to give a better understanding of the
employed features, two exemplary features are shown over
time with the corresponding ground truth position as a
reference in Fig. 7. Note the different behavior of the two
features when the actuator is moved in different directions.

Note that the average pooling step following the com-
putation of the six filters is not equivalent to a direct
subsampling of the original camera image. Evaluating the
filters on the original, high resolution image and applying the
average pooling in a second step provides more information
than first subsampling the raw image and then applying
different filters. An example for the preservation of the
information content after the average pooling step can be
seen in Fig. 5 by the clearly differing grid element intensity
values resulting for two different features. The support vector
regression model discussed in the next subsection relates
such differences in the feature vector to different actuator
states.

C. Support Vector Regression

To find a mapping between the features µ and r, kernelized
support vector regression with a radial basis function (RBF)
kernel is used. This is done by using three regressors to
predict the three components of r separately. Every regressor
has three hyperparameters that need to be tuned. Namely: ε,
the parameter that controls the ε-insensitive loss function, K,
the weighting factor that determines the relative cost between
the loss function and the L2-Regularization, and γ the kernel
parameter that determines the width of the RBF. More details
on support vector regression can be found in [19].

D. Data Collection

To evaluate, train and tune the proposed pipeline, two
separate image data sets are collected. This is done by
manually inflating the actuator to different elongations (using
the analog pressure regulator) and manually moving the grip
in the x- and y-directions (see Fig. 5) while simultaneously
recording the images from the integrated camera and the

1https://opencv.org/
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ground truth from the motion capture system at a rate
of 20 Hz. Ten minutes of data are collected along a first
trajectory corresponding to a data set of 12000 images
and the associated ground truth information. This data set
is called Dtrain. A second data set, Dval, is collected for
validation over two minutes and consists of 2400 images
and the corresponding ground truth.

E. Model Learning

In order to choose the subset of the six features yielding
the best trade-off between accurate prediction and computa-
tional efficiency, a greedy forward feature selection algorithm
is applied. We start with choosing the first feature. For each
of the six features, the x, y and z-regressors are trained on
the data set, Dtrain. The hyperparameters ε, K and γ for each
of the regressors are optimized using 4-fold cross-validation
on the training set. The hyperparameter space is extensively
searched on a fixed grid. Training a set of three regressors
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Fig. 7. Two normalized features (gray scale G in blue and adaptive
thresholding A in orange) are shown as a function over time with the
corresponding x-y-z ground truth position measurement. The features
shown are extracted from the center element of the 3×3 grid. It can be
seen that if the actuator is deflating (decreasing z-position) the orange curve
stays approximately constant while the blue curve is increasing. During an
inflation, the behavior is the opposite, with the orange curve increasing and
the blue curve staying approximately constant. The movement in x-direction
causes an increase in the blue curve and sharp decrease when the actuator
returns back to the center position. The behavior of the two features indicates
that they capture independent information about the actuator’s state.

takes about 30 seconds on the CPU of the employed laptop2.
Once the optimal hyperparameters are determined, the

models are evaluated on the validation data set, Dval, and the
feature yielding the smallest validation error is chosen. The
same procedure is repeated for the second feature where only
the five remaining features are considered. Continuing this
procedure gives the greedy forward feature selection for six
candidate models relying on one to six features. The resulting
validation errors are shown in Fig. 8. The model with five
features is chosen because it gives a good trade-off between

2Intel Core i7-8550U @ 1.80GHz



accuracy and computational efficiency. The final model uses
the feature set {M,G,A, E ,D} and the feature vector µ is
adjusted accordingly. The optimal hyperparameters for the
model with five features are summarized in Table I. The
training of the SVR models is performed in Python with the
scikit-learn library3.

1 2 3 4 5 6

4

6

8

10

Number of Features [-]

R
m
se

[m
m

]

pred. error on Dval

Fig. 8. Evaluation of the six candidate models on the validation data
set. The models are obtained using the greedy forward feature selection
algorithm. The combined Rmse error shows a decreasing trend over the
number of features used.

TABLE I
HYPERPARAMETERS FOR THE MODEL USING FIVE FEATURES

Regressor ε K γ

x 2.5 120 0.01
y 2.5 120 0.01
z 2.5 160 0.01

IV. EXPERIMENTS

In this section the camera-based sensing approach is
evaluated. A performance baseline is established with a time-
of-flight distance sensor. The vision-based approach is then
used in two different settings. First, the prediction of r is
computed in real-time while the actuator is moved manually.
In a second experiment, the proposed sensing approach is
used for closed loop elongation control of the actuator. The
root-mean-squared error is used as the evaluation metric for
the experiments. All the data presented in this section has not
been seen during training. In the following the subscript GT
refers to ground truth data from the motion capture system.

A. Performance Baseline

The time-of-flight sensor is chosen as a reference, be-
cause it presents a straightforward solution to measuring the
one-dimensional elongation of a linear actuator in a non-
interacting fashion. The sensor is first calibrated by finding
an approximate mapping from the raw sensor readings to the
ground truth data using linear regression. The calibrated mea-
surements from the time-of-flight (TF) sensor are denoted by

3https://scikit-learn.org/
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Fig. 9. A time-of-flight distance sensor is integrated into an actuator and
calibrated to measure the z-component of r. The calibrated measurements,
zTF, are compared to ground truth data from the motion capture system
(zGT). Two scenarios can be observed in the plots. First the actuator is left
undisturbed. After 19 seconds the grip on the actuator is manually moved
in x- and y-directions. The Rmse in z-direction is 1.37mm on the first
part of the trajectory (undisturbed) and 6.19mm on the remainder of the
trajectory (disturbed).

zTF. The actuator is not moved in x- and y-directions during
calibration as the sensor can only measure distance, without
discerning between horizontal and vertical displacement. The
sensor is then evaluated on a separate trajectory shown in
Fig. 9. The first part of the trajectory (time ∈ [0, 19 s)) only
includes vertical movement of the actuator leading to an
Rmse of 1.37 mm. During the second part of the trajectory
(time ∈ [19, 42 s)), the actuator is also moved laterally. As
expected, it can clearly be seen that the performance degrades
significantly, yielding an Rmse of 6.19 mm.

B. Real-Time Prediction

To observe the performance and the real-time capability of
the camera-based sensing approach, the actuator is inflated
(using the analog pressure regulator) and moved manually
in the x- and y-directions. The reader is referred to the
video attachment to gain an impression of the experiments
conducted.

The resulting sensing pipeline runs reliably at 40 Hz on a
laptop4. The resulting performance on a sample trajectory
is shown in Fig. 10. Predictions from the camera-based
pipeline are denoted by the subscript CM. The Rmse in
the individual components are 4.01 mm in x, 4.52 mm in y
and 2.56 mm in z-direction. It can be seen that the camera-
based approach can also reliably predict the 3D tip position,
when the actuator is moved laterally. The performance is

4Intel Core i7-7600 @ 2.80 GHz



−40

−20

0

20

40
x

[m
m

]
xGT
xCM

−40

−20

0

20

40

y
[m

m
]

yGT
yCM

0 5 10 15
0

50

100

150

Time [s]

z
[m

m
]

zGT
zCM

Fig. 10. Prediction of r computed at 40 Hz from camera images while the
actuator is moved laterally. The predictions are plotted against ground truth
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considerably reduced if the actuator is elongated less than
20 mm. Upon inspection of training images recorded at or
below this elongation, it is seen that the lighting conditions
are drastically different to the images recorded at elongations
above 20 mm. This issue is a current limitation of the
approach.

C. Elongation Control

The linear elongation of the actuator (in z-direction) is
controlled using the camera-based prediction as sensory
feedback. The x- and y-components of the tip position of
the linear bellow actuator can not be controlled by adjusting
the internal pressure of the actuator and therefore, are disre-
garded for this experiment. A cascaded control architecture
is used that separates the faster pressure dynamics from the
elongation dynamics (see Fig. 11). A proportional-integral
(PI) position controller with a quadratic feed forward com-
ponent computes a pressure setpoint based on the elongation
prediction by the camera and a given desired elongation. The
pressure setpoint is then tracked in an inner control loop by
a proportional-integral-derivative (PID) controller. Based on
pressure feedback from a sensor connected to the actuator,
it adjusts the spool position of the valve. Since the required
pressures to cause an elongation of the actuator are very
close to ambient pressure, a bypass is installed between the
valve and the actuator, which releases air to the environment.
This increases the required output pressure of the valve
slightly and therefore simplifies pressure control (see [20]
for a detailed discussion of the topic). The position controller
is implemented in C++ and executed at 50 Hz in the same
thread as the sensing pipeline. The predictions of the x- and

zGT

1kHzEmbedded
Hardware

Laptop 50Hz

Elongation
Controller ValvesPressure

Controller Actuator

Pressure
Sensor

Vision-Based
Sensing Pipeline Camera Image

zSP

zCM

Fig. 11. The elongation of the actuator is controlled using a cascaded
control architecture. The faster pressure dynamics are controlled in an
inner control loop running at 1 kHz on an embedded hardware (indicated
by the light red area). A proportional-integral-derivative (PID) controller
adjusts the valve position to track the pressure setpoint computed in the
outer control loop. The elongation is controlled in the outer control loop
running at 50 Hz. The camera-based sensing pipeline predicts the current
elongation (zCM) which is fed to a proportional-integral (PI) controller.
Given a desired actuator elongation of the actuator, the controller computes
a pressure setpoint which is sent to the inner control loop. The sensing
pipeline and the elongation controller are executed on a laptop computer
(indicated by the light blue area). A motion capture system provides ground
truth measurement of the elongation (zGT).
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Fig. 12. Elongation control using the camera-based sensing pipeline for
feedback. The z-component zCM of the position r is predicted from camera
images at 50Hz and used for feedback control. Note that zSP denotes
the setpoint trajectory. The Rmse between zGT and the prediction zCM
is 2.49 mm.

y-components of r are disabled to increase the sampling
rate of the z prediction (from 40 to 50 Hz). The pressure
controller is implemented in C and executed at 1000 Hz on
the embedded platform. Data is logged in a separate thread
running at 100 Hz and the serial communication with the
embedded hardware is also implemented in a separate thread.

The results of a series of elongation steps are shown in
Fig. 12. It can be seen from the results that the setpoint
trajectory can reliably be tracked with the camera-based
sensing pipeline as feedback. Note that the slight mismatches
between predictions and ground truth, which are elongation
dependent, contribute to a similar Rmse as in the real-time
experiment shown in Fig. 10.

Smaller elongations in the range of 20 mm to 40 mm can
also be measured by the camera-based sensing pipeline.
However, the required pressures for controlling the elon-
gation in this range are too close to ambient pressure for
reliable tracking. Note that this is not a limitation of the
sensing approach, but of the valves employed, and could be
addressed by using a dedicated pressure control valve for a
very small range.



V. CONCLUSION

A camera-based sensing approach for an air-driven linear
soft actuator has been presented as a proof of concept. The
proposed sensing pipeline first extracts features from images
generated with an integrated camera using classical image
filters and average pooling. The resulting average intensity
values are then used as input features for three SVR models
that predict the tip position of the actuator, r. The proposed
approach performs similarly to a performance baseline made
with an off-the-shelf distance sensor used to measure the
linear extension. Additionally, the camera-based approach
benefits from the rich visual information of the pattern, which
allows it to predict the full 3D tip position. Moreover, it was
demonstrated that the pipeline presented can successfully be
used for closed loop elongation control of the actuator.

In order to extend the feasible range of the camera-based
prediction to values below 20 mm, the lighting conditions for
such elongations should be adjusted. This could for example
be done by using an adaptive lighting strategy at these ranges
(currently the LED light intensity is fixed) and is subject for
future work.

As a proof of concept, the sensing approach presented
in this work has been applied to track a single point of
interest. However, since the internal pattern provides rich
visual information spanning all the bellows, the approach is
promising for the simultaneous tracking of multiple points,
assuming that ground truth data is available for each of these
points. Future work will investigate the generalization to
multiple points, the prediction of the orientation beside the
position, the application of similar approaches to different
actuator types (e.g. angular or twisting actuators), as well
as the integration of the sensing approach into a complete
system such as used in [21]. The white pattern applied to the
interior surface of the actuator was arbitrarily designed and
its optimization with respect to a tailored metric may provide
additional information about the quantities of interest and
hence further improve the prediction performance, especially
for a wider range of applications.

At the current state the sensing algorithm is only robust to
interactions applied on the grip. General types of interactions
were not considered in this paper and will be the subject of
future work.
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APPENDIX
A. Filter Parameters

The OpenCV framework was employed for the image
processing with the following image filter parameters. The
adaptive thresholding filter (A) uses maxValue of 255, adap-
tiveMethod Gaussian, thresholdType Binary, Blocksize of 57
and a C of 2. The binary thresholding (M) uses maxValue
of 255, bM of 100, Threshold of µ̄G + bM where µ̄G is
the average across all entries of µG (see Fig. 6) and a

Type of Binary. The Canny edge detection filter (C) has the
lowThreshold set to 100, the highThreshold set to 130 and
a kernelSize of 3. The dilation filter (D) uses a kernelShape
square and kernelSize of 5×5. The erosion filter (E) also uses
a kernelShape square and kernelSize of 5×5.
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