Addendum to: Event-Based State Estimation with Variance-Based Triggering

Technical Report

Sebastian Trimpe and Raffaello D'Andrea
\{strimpe,rdandrea\}@ethz.ch
Institute for Dynamic Systems and Control (IDSC)
ETH Zurich

29 August 2012

Abstract

This report states the proofs of Propositions 1 to 6 and Corollary 2 in [1]. All references (equations, propositions, etc.) continue those in [1].

Preprint. Manuscript to be submitted to a journal.

1 Proof of Proposition 1

Proof. Recall the definitions of h and g in (23) and (24). Notice that

$$
\begin{equation*}
p_{1}=h(\bar{p}+\delta)=g(\bar{p}+\delta)<\bar{p}+\delta<a^{2}(\bar{p}+\delta)+1=p_{2} \tag{44}
\end{equation*}
$$

We first show that

$$
\begin{equation*}
h\left(p_{1}\right)>h\left(p_{2}\right) \tag{45}
\end{equation*}
$$

which is useful later. Let $\tilde{p}:=\bar{p}+\delta$. With (44),

$$
\begin{align*}
h\left(p_{1}\right) & =a^{2} p_{1}+1=a^{2} g(\tilde{p})+1 \\
& =a^{4} \tilde{p}+a^{2}+1-\frac{a^{4} c^{2} \tilde{p}^{2}}{c^{2} \tilde{p}+1} \quad \text { and } \tag{46}\\
h\left(p_{2}\right) & =g\left(p_{2}\right)=g\left(a^{2} \tilde{p}+1\right) \\
& =a^{4} \tilde{p}+a^{2}+1-\frac{a^{2} c^{2}\left(a^{2} \tilde{p}+1\right)^{2}}{c^{2}\left(a^{2} \tilde{p}+1\right)+1} \tag{47}
\end{align*}
$$

Hence,

$$
\begin{align*}
h\left(p_{1}\right)-h\left(p_{2}\right) & =-\frac{a^{4} c^{2} \tilde{p}^{2}}{c^{2} \tilde{p}+1}+\frac{a^{2} c^{2}\left(a^{2} \tilde{p}+1\right)^{2}}{c^{2}\left(a^{2} \tilde{p}+1\right)+1} \\
& =\frac{-a^{4} c^{2} \tilde{p}^{2}\left(c^{2}\left(a^{2} \tilde{p}+1\right)+1\right)+a^{2} c^{2}\left(a^{2} \tilde{p}+1\right)^{2}\left(c^{2} \tilde{p}+1\right)}{\left(c^{2} \tilde{p}+1\right)\left(c^{2}\left(a^{2} \tilde{p}+1\right)+1\right)} \\
& =\frac{a^{4} c^{4} \tilde{p}^{2}+a^{4} c^{2}\left(a^{2}-1\right) \tilde{p}^{2}+a^{2} c^{4} \tilde{p}+2 a^{4} c^{2} \tilde{p}+a^{2} c^{2}}{\left(c^{2} \tilde{p}+1\right)\left(a^{2} c^{2} \tilde{p}+c^{2}+1\right)} \tag{48}
\end{align*}
$$

For the assumed parameter values $(|a|>1, c \neq 0)$, the numerator and denominator are strictly greater than 0 . Hence, $h\left(p_{1}\right)-h\left(p_{2}\right)>0$, from which (45) follows.

Next, we prove the statements of the proposition.
(iv), (v): For $p \in\left[p_{1}, \bar{p}+\delta\right)$,

$$
\begin{equation*}
h(p)=a^{2} p+1 \tag{49}
\end{equation*}
$$

which is a continuous and strictly monotonic increasing function of p because $|a|>1$. Furthermore, h is differentiable for $p \in\left(p_{1}, \bar{p}+\delta\right)$ with $h^{\prime}(p)=a^{2}$. For $p \in\left[\bar{p}+\delta, p_{2}\right]$,

$$
\begin{equation*}
h(p)=g(p)=a^{2} p+1-\frac{a^{2} c^{2} p^{2}}{c^{2} p+1}=\frac{a^{2} p+c^{2} p+1}{c^{2} p+1} \tag{50}
\end{equation*}
$$

which is continuous since the denominator has no zero for positive p. Since, for $p \in(0, \infty), g$ is differentiable with

$$
\begin{equation*}
g^{\prime}(p)=\frac{a^{2}}{\left(c^{2} p+1\right)^{2}}>0 \tag{51}
\end{equation*}
$$

h is strictly monotonic increasing on $\left[\bar{p}+\delta, p_{2}\right]$ and differentiable on $\left(\bar{p}+\delta, p_{2}\right)$.

Preprint. Manuscript to be submitted to a journal.
(iii): h is injective on each of the intervals $\left[p_{1}, \bar{p}+\delta\right)$ and $\left[\bar{p}+\delta, p_{2}\right)$ separately by continuity and monotonicity (iv). Furthermore, by strict monotonicity,

$$
\begin{align*}
h\left(\left[p_{1}, \bar{p}+\delta\right)\right) & =\left[h\left(p_{1}\right), \lim _{p \nearrow \bar{p}+\delta} h(p)\right) \\
& =\left[h\left(p_{1}\right), a^{2}(\bar{p}+\delta)+1\right)=\left[h\left(p_{1}\right), p_{2}\right), \quad \text { and } \tag{52}\\
h\left(\left[\bar{p}+\delta, p_{2}\right)\right) & =\left[h(\bar{p}+\delta), \lim _{p \nearrow p_{2}} h(p)\right)=\left[p_{1}, h\left(p_{2}\right)\right), \tag{53}
\end{align*}
$$

where $p \nearrow \bar{p}+\delta$ denotes the left-sided limit, i.e. p approaches $\bar{p}+\delta$ from below. From (45), $\left[p_{1}, h\left(p_{2}\right)\right) \cap\left[h\left(p_{1}\right), p_{2}\right)=\emptyset$. Therefore, h is injective on $\left[p_{1}, p_{2}\right)$.
(i): Follows from (52), (53), and (45).
(ii): Consider three cases for $p \in[0, \infty)$:

- $p \in\left[0, p_{1}\right)$. We first show that the sequence $h^{k}(p), k \geq 0$ eventually is greater than p_{1}. For $h^{k}(p) \in\left[0, p_{1}\right), h^{k+1}(p)=a^{2} h^{k}(p)+1>a^{2} h^{k}(p)$. Hence, for $p, h(p), \ldots, h^{k-1}(p) \in\left[0, p_{1}\right)$, $h^{k}(p)>a^{2 k} p$. But, since $\lim _{k \rightarrow \infty} a^{2 k} p=\infty$, there exists an $m \in \mathbb{N}$ such that

$$
\begin{equation*}
h^{m-1}(p) \in\left[0, p_{1}\right) \quad \text { and } \quad h^{m}(p) \in\left[p_{1}, \infty\right) \tag{54}
\end{equation*}
$$

Next, notice that

$$
\begin{equation*}
h\left(\left[0, p_{1}\right)\right)=\left[h(0), h\left(p_{1}\right)\right)=\left[1, h\left(p_{1}\right)\right) \subseteq\left[1, p_{2}\right) \tag{55}
\end{equation*}
$$

because $h\left(p_{1}\right)<p_{2}$ by (i). Since $h^{m-1}(p) \in\left[0, p_{1}\right)$, it follows that $h^{m}(p)=h\left(h^{m-1}(p)\right) \in\left[1, p_{2}\right)$. Together with (54), this implies that $h^{m}(p) \in\left[p_{1}, \infty\right) \cap\left[1, p_{2}\right)=\left[p_{1}, p_{2}\right)$.

- $p \in\left[p_{1}, p_{2}\right)$. Take $m=1$ and the claim follows from (i).
- $p \in\left[p_{2}, \infty\right)$. Since $h(p)=g(p)$, the sequence $h^{k}(p)=g^{k}(p)$ evolves as for the full communication Kalman filter. By the convergence properties of the full communication Kalman filter, [2], $\lim _{k \rightarrow \infty} g^{k}(p)=\bar{p}$ and, by $(44), \bar{p}<\bar{p}+\delta<p_{2}$. Hence, there exists an $m \in \mathbb{N}$ such that

$$
\begin{equation*}
h^{m-1}(p) \in\left[p_{2}, \infty\right) \quad \text { and } \quad h^{m}(p) \in\left[0, p_{2}\right) \tag{56}
\end{equation*}
$$

Since

$$
h\left(\left[p_{2}, \infty\right)\right) \subseteq\left[h\left(p_{2}\right), \infty\right)=\left[h\left(a^{2}(\bar{p}+\delta)+1\right), \infty\right) \underset{(\mathrm{iv})}{\subseteq}[h(\bar{p}+\delta), \infty)=\left[p_{1}, \infty\right)
$$

$h^{m}(p)=h\left(h^{m-1}(p)\right) \in\left[p_{1}, \infty\right)$. Therefore, $h^{m}(p) \in\left[0, p_{2}\right) \cap\left[p_{1}, \infty\right)=\left[p_{1}, p_{2}\right)$.

2 Proof of Proposition 2

Proof. (i): By Assumption 1, the sequence $\left\{d_{1}, d_{2}, \ldots\right\}$ defined by Algorithm 1 is finite and equal to \mathcal{D}_{N-1}. Therefore, $d_{i} \in \operatorname{dom}\left(h^{-1}\right)$ for all $i<N-1$ and $d_{N-1} \notin \operatorname{dom}\left(h^{-1}\right)$. From dom $\left(h^{-1}\right)=$ $\left[p_{1}, h\left(p_{2}\right)\right) \cup\left[h\left(p_{1}\right), p_{2}\right)$ (see (28)), it follows directly that $d_{i} \notin\left[h\left(p_{2}\right), h\left(p_{1}\right)\right)$ for all $i<N-1$. Since h^{-1} maps to $\left[p_{1}, p_{2}\right)$ (see (28)), we have $d_{N-1}=h^{-1}\left(d_{N-2}\right) \in\left[p_{1}, p_{2}\right)$. Together with $d_{N-1} \notin \operatorname{dom}\left(h^{-1}\right)$, this implies that $d_{N-1} \in\left[p_{1}, p_{2}\right) \backslash\left(\left[p_{1}, h\left(p_{2}\right)\right) \cup\left[h\left(p_{1}\right), p_{2}\right)\right)=\left[h\left(p_{2}\right), h\left(p_{1}\right)\right)$.

Preprint. Manuscript to be submitted to a journal.
(ii): First, we prove by induction that h^{i} is continuous on $\left[p_{1}, p_{2}\right) \backslash \mathcal{D}_{i}$ for all $i \leq N-1$. From Proposition 1, (iv), it follows that the statement is true for $i=1$. Assume the statement holds for $i \in\{1, \ldots, N-2\}$ (induction assumption (IA)). Consider

$$
\begin{equation*}
h^{i+1}(p)=h\left(h^{i}(p)\right), \quad p \in\left[p_{1}, p_{2}\right) \tag{57}
\end{equation*}
$$

If h^{i} is continuous at p and h is continuous at $h^{i}(p)$, then the composition h^{i+1} is continuous at $p,[3]$. Hence, h^{i+1} is continuous on $\left[p_{1}, p_{2}\right.$) except for the points \mathcal{D}_{i} (discontinuities of h^{i} by IA) and the point \tilde{p} with $h^{i}(\tilde{p})=d_{1}\left(d_{1}\right.$ is the discontinuity of $\left.h\right)$. But $h^{i}(\tilde{p})=d_{1} \Leftrightarrow \tilde{p}=h^{-i}\left(d_{1}\right)=d_{i+1}$ (since $i \leq N-2$, the i times application of the inverse map is defined). Therefore, h^{i+1} is continuous on $\left[p_{1}, p_{2}\right) \backslash\left(\mathcal{D}_{i} \cup\left\{d_{i+1}\right\}\right)=\left[p_{1}, p_{2}\right) \backslash \mathcal{D}_{i+1}$.

Next, we prove that h^{N} is continuous on $\left[p_{1}, p_{2}\right) \backslash \mathcal{D}_{N-1}$. For this, consider

$$
\begin{equation*}
h^{N}(p)=h\left(h^{N-1}(p)\right), \quad p \in\left[p_{1}, p_{2}\right) \tag{58}
\end{equation*}
$$

By the same argument as above, h^{N} is continuous on $\left[p_{1}, p_{2}\right.$) except for the points \mathcal{D}_{N-1} and the point \tilde{p} with $h^{N-1}(\tilde{p})=d_{1} \Leftrightarrow h(\tilde{p})=h^{N-1-(N-2)}(\tilde{p})=h^{-(N-2)}\left(d_{1}\right)=d_{N-1}$. But a point \tilde{p} with $h(\tilde{p})=d_{N-1}$ does not exist in $\left[p_{1}, p_{2}\right)$ since $d_{N-1} \in\left[h\left(p_{2}\right), h\left(p_{1}\right)\right)$ (by (i)), which is not in the domain of h^{-1} (see (28)). Therefore, h^{N} is continuous on $\left[p_{1}, p_{2}\right) \backslash \mathcal{D}_{N-1}$.
(iii): Proof by contradiction. Assume there exist $d_{i}, d_{j} \in \mathcal{D}_{N-1}$ with $i \neq j$ and $d_{i}=d_{j}$. Assume w.l.o.g. $j>i$ and let $M:=j-i \leq N-2$. Then, from Algorithm 1,

$$
\begin{equation*}
d_{i}=d_{j}=h^{-1}\left(d_{j-1}\right)=h^{-2}\left(d_{j-2}\right)=\cdots=h^{-M}\left(d_{i}\right) \tag{59}
\end{equation*}
$$

It follows that, for all $\ell \in\{0, \ldots, M-1\}$,

$$
\begin{equation*}
d_{i+\ell}=h^{-\ell}\left(d_{i}\right)=h^{-\ell}\left(h^{-M}\left(d_{i}\right)\right)=h^{-M}\left(h^{-\ell}\left(d_{i}\right)\right)=h^{-M}\left(d_{i+\ell}\right) \tag{60}
\end{equation*}
$$

that is, the sequence $\left\{d_{i}, d_{i+1}, \ldots\right\}$ is periodic with period M. But then, for all $\ell \in\{0, \ldots, M-1\}$ and $m \in \mathbb{N}$,

$$
\begin{equation*}
d_{i+\ell+m M}=h^{-m M}\left(d_{i+\ell}\right)=d_{i+\ell} \tag{61}
\end{equation*}
$$

that is, Algorithm 1 never terminates, which contradicts with Assumption 1.

3 Proof of Proposition 3

Proof. The intervals are disjoint by construction.
Because of Proposition 2, (iii), the intervals in (36) are not empty. Since for all $d_{i} \in \mathcal{D}_{N-1}$, $d_{i} \in\left[p_{1}, p_{2}\right)$, which implies $d_{\bar{i}}<p_{2}$; and, therefore, interval $I_{\bar{i}}$ in (37) is not empty. To see that I_{N} in (38) is not empty, consider the case where it is and show that this leads to a contradiction. From $\left[p_{1}, d_{\underline{i}}\right)=\emptyset$ it follows that $p_{1}=d_{\underline{i}}\left(p_{1}>d_{\underline{i}}\right.$ is not possible since $\left.d_{\underline{i}} \in\left[p_{1}, p_{2}\right)\right)$. From $d_{\underline{i}}=p_{1} \in \operatorname{dom}\left(h^{-1}\right)$, it follows that $d_{\underline{i}+1}$ is defined by Algorithm 1: $d_{\underline{i}+1}=h^{-1}\left(d_{\underline{i}}\right)=h^{-1}\left(p_{1}\right)=$ $h^{-1}(h(\bar{p}+\delta))=\bar{p}+\delta=d_{1}$. But $d_{\underline{i}+1}=d_{1}$ with $\underline{i} \geq 1$ contradicts with Proposition 2, (iii).

Preprint. Manuscript to be submitted to a journal.

4 Proof of Proposition 4

We first state two lemmas and one corollary that are used in the proof of Proposition 4 at the end of this section.

Lemma 1. Let $\mathcal{I}=\left\{I_{1}, I_{2}, \ldots, I_{N}\right\}$ be a collection of nonempty, mutually disjoint intervals $I_{i}:=$ $\left[a_{i}, b_{i}\right)\left(\right.$ or $\left.I_{i}:=\left(a_{i}, b_{i}\right)\right)$ for $a_{i}, b_{i} \in \mathbb{R} . A$ unique representation of \mathcal{I} is given by the sets

$$
\begin{align*}
\mathcal{L} & =\left\{a_{1}, a_{2}, \ldots, a_{N}\right\} \quad \text { and } \tag{62}\\
\mathcal{U} & =\left\{b_{1}, b_{2}, \ldots, b_{N}\right\} \tag{63}
\end{align*}
$$

of all lower and upper bounds, respectively, in the following sense: the collection $\overline{\mathcal{I}}$ of intervals defined by

$$
\begin{equation*}
\overline{\mathcal{I}}:=\left\{\bar{I}_{1}, \bar{I}_{2}, \ldots, \bar{I}_{N}\right\}, \quad \bar{I}_{i}:=\left[\alpha_{i}, \beta_{i}\right)\left(\text { or } \bar{I}_{i}:=\left(\alpha_{i}, \beta_{i}\right)\right), \alpha_{i} \in \mathcal{L}, \beta_{i} \in \mathcal{U} \tag{64}
\end{equation*}
$$

such that, for all i, j with $1 \leq i \leq N, 1 \leq j \leq N$,

$$
\begin{equation*}
\bar{I}_{i} \neq \emptyset, \quad \text { and } \quad \bar{I}_{i} \cap \bar{I}_{j}=\emptyset \tag{65}
\end{equation*}
$$

exists and it is unique, and $\overline{\mathcal{I}}=\mathcal{I}$.
This lemma is useful, since it allows to work with the (unordered) set of interval bounds \mathcal{L} and \mathcal{U} instead of the actual intervals. The unique relationship between the bounds (which lower bound belongs to which upper bound) essentially follows from all intervals being disjoint and nonempty.

Proof. ${ }^{3}$ Since, for all $i \leq N, I_{i} \in \mathcal{I}$ is nonempty, $a_{i}<b_{i}$. Since the intervals \mathcal{I} are mutually disjoint, there exists a permutation of indices $\tilde{\Pi}:\{1, \ldots, N\} \rightarrow\{1, \ldots, N\}$ such that

$$
\begin{equation*}
a_{\tilde{\Pi}(1)}<b_{\tilde{\Pi}(1)} \leq a_{\tilde{\Pi}(2)}<b_{\tilde{\Pi}(2)} \leq \cdots \leq a_{\tilde{\Pi}(N)}<b_{\tilde{\Pi}(N)} \tag{66}
\end{equation*}
$$

Assume w.l.o.g. (by renaming of the intervals in \mathcal{I}) that

$$
\begin{equation*}
a_{1}<b_{1} \leq a_{2}<b_{2} \leq \cdots \leq a_{N}<b_{N} \tag{67}
\end{equation*}
$$

Notice that the choice $\overline{\mathcal{I}}_{1}=\left\{\bar{I}_{1}, \bar{I}_{2}, \ldots, \bar{I}_{N}\right\}$ with $\bar{I}_{i}=\left[a_{i}, b_{i}\right)\left(\bar{I}_{i}=\left(a_{i}, b_{i}\right)\right)$ satisfies $(64)-(65)$, and $\overline{\mathcal{I}}_{1}=\mathcal{I}$. Hence, a collection of intervals $\overline{\mathcal{I}}$ according to (64)-(65) exists. It remains to show that $\overline{\mathcal{I}}_{1}$ is unique; that is, $\overline{\mathcal{I}}_{1}$ is the only collection of intervals satisfying (64)-(65).

First notice that, for any $a_{i} \in \mathcal{L}$, there is exactly one interval in $\overline{\mathcal{I}}$ that has a_{i} as a lower bound. We will show this by contradiction.

- Assume there is more than one interval with a_{i} as a lower bound; that is, there are $\left[a_{i}, b_{j}\right)$, $\left[a_{i}, b_{\ell}\right) \in \overline{\mathcal{I}}\left(\left(a_{i}, b_{j}\right),\left(a_{i}, b_{\ell}\right) \in \overline{\mathcal{I}}\right)$ with $b_{j}, b_{\ell} \in \mathcal{U}$ and $b_{j}>a_{i}, b_{\ell}>a_{i}$ (otherwise the intervals would be empty, which contradicts with (65)). But then,

$$
\begin{align*}
{\left[a_{i}, b_{j}\right) \cap\left[a_{i}, b_{\ell}\right) } & =\left[a_{i}, \min \left(b_{j}, b_{\ell}\right)\right) \neq \emptyset \tag{68}\\
\left(\left(a_{i}, b_{j}\right) \cap\left(a_{i}, b_{\ell}\right)\right. & \left.=\left(a_{i}, \min \left(b_{j}, b_{\ell}\right)\right) \neq \emptyset\right)
\end{align*}
$$

which contradicts with (65).

[^0]Preprint. Manuscript to be submitted to a journal.

- Assume there is no interval in $\overline{\mathcal{I}}$ that has a_{i} as a lower bound. Then, there can only be $N-1$ intervals in total, since it follows from the previous discussion that each of the remaining $a_{j} \in \mathcal{L} \backslash\left\{a_{i}\right\}$ can be chosen at most once as a lower bound. This contradicts with (64) (the collection $\overline{\mathcal{I}}$ having N elements).

Similarly, note that for any $b_{i} \in \mathcal{U}$, there is exactly one interval in $\overline{\mathcal{I}}$ that has b_{i} as an upper bound.

- Assume there is more than one interval with b_{i} as an upper bound; that is, there are $\left[a_{j}, b_{i}\right),\left[a_{\ell}, b_{i}\right) \in \overline{\mathcal{I}}\left(\left(a_{j}, b_{i}\right),\left(a_{\ell}, b_{i}\right) \in \overline{\mathcal{I}}\right)$ with $a_{j}, a_{\ell} \in \mathcal{L}$ and $a_{j}<b_{i}, a_{\ell}<b_{i}$ (otherwise the intervals would be empty). But then,

$$
\begin{align*}
{\left[a_{j}, b_{i}\right) \cap\left[a_{\ell}, b_{i}\right) } & =\left[\max \left(a_{j}, a_{\ell}\right), b_{i}\right) \neq \emptyset \tag{69}\\
\left(\left(a_{j}, b_{i}\right) \cap\left(a_{\ell}, b_{i}\right)\right. & \left.=\left(\max \left(a_{j}, a_{\ell}\right), b_{i}\right) \neq \emptyset\right)
\end{align*}
$$

which contradicts with (65).

- Assume there is no interval in $\overline{\mathcal{I}}$ that has b_{i} as an upper bound. Then, there can only be $N-1$ intervals in total, since each of the remaining $b_{j} \in \mathcal{U} \backslash\left\{b_{i}\right\}$ can be chosen at most once as an upper bound. This contradicts with (64).

Now, take any $a_{i} \in \mathcal{L}$. From the discussion above, it follows that there is an interval $\left[a_{i}, b_{j}\right) \in \overline{\mathcal{I}}$ $\left(\left(a_{i}, b_{j}\right) \in \overline{\mathcal{I}}\right), b_{j} \in \mathcal{U}$. We prove by contradiction that this implies $b_{j}=b_{i}$, and, hence, that $\tilde{\mathcal{I}}_{1}=\overline{\mathcal{I}}$ is unique.

Let $b_{i} \in \mathcal{U}$ and assume $b_{j} \neq b_{i}$. Then, from the above discussion, there exists also an interval $\left[a_{\ell}, b_{i}\right) \in \overline{\mathcal{I}}\left(\left(a_{\ell}, b_{i}\right) \in \overline{\mathcal{I}}\right), a_{\ell} \in \mathcal{L}$. For $\left[a_{i}, b_{j}\right)\left(\left(a_{i}, b_{j}\right)\right)$ to be nonempty, it follows that

$$
\begin{equation*}
a_{i}<b_{j} \quad \underset{(67)}{\Rightarrow} \quad b_{i} \leq b_{j} \tag{70}
\end{equation*}
$$

and, for $\left[a_{\ell}, b_{i}\right)\left(\left(a_{\ell}, b_{i}\right)\right)$ to be nonempty,

$$
\begin{equation*}
a_{\ell}<b_{i} \quad \underset{(67)}{\Rightarrow} \quad a_{\ell} \leq a_{i} \tag{71}
\end{equation*}
$$

But then,

$$
\begin{align*}
{\left[a_{i}, b_{j}\right) \cap\left[a_{\ell}, b_{i}\right) } & =\left[a_{i}, b_{i}\right) \neq \emptyset \tag{72}\\
\left(\left(a_{i}, b_{j}\right) \cap\left(a_{\ell}, b_{i}\right)\right. & \left.=\left(a_{i}, b_{i}\right) \neq \emptyset\right)
\end{align*}
$$

which contradicts (65).
Corollary 3. Let $\mathcal{I}_{1}, \mathcal{I}_{2}$ be two collections of nonempty and mutually disjoint intervals. Let \mathcal{L}_{1} and \mathcal{U}_{1} be the sets of lower and upper bounds, respectively, of \mathcal{I}_{1}; and let \mathcal{L}_{2} and \mathcal{U}_{2} be the sets of lower and upper bounds, respectively, of \mathcal{I}_{2}. If $\mathcal{L}_{1}=\mathcal{L}_{2}$ and $\mathcal{U}_{1}=\mathcal{U}_{2}$, then $\mathcal{I}_{1}=\mathcal{I}_{2}$.

Proof. Let $\overline{\mathcal{I}}_{1}$ be constructed from \mathcal{L}_{1} and \mathcal{U}_{1} according to (64)-(65). Then $\overline{\mathcal{I}}_{1}=\mathcal{I}_{1}$ by Lemma 1 . Furthermore, let $\overline{\mathcal{I}}_{2}$ be constructed from \mathcal{L}_{2} and \mathcal{U}_{2} according to (64)-(65). Then $\overline{\mathcal{I}}_{2}=\mathcal{I}_{2}$ by Lemma 1.

Since $\overline{\mathcal{I}}_{1}$ and $\overline{\mathcal{I}}_{2}$ are unique, $\mathcal{L}_{1}=\mathcal{L}_{2}$ and $\mathcal{U}_{1}=\mathcal{U}_{2}$ implies $\overline{\mathcal{I}}_{1}=\overline{\mathcal{I}}_{2}$, and, therefore, $\mathcal{I}_{1}=\mathcal{I}_{2}$.

Preprint. Manuscript to be submitted to a journal.

We give two definitions that are used in the following Lemma and in subsequent sections.
Definition 3. Let f be a function, and let $\mathcal{I}_{1}, \mathcal{I}_{2}$ be collections of intervals. We write

$$
\begin{equation*}
\mathcal{I}_{1} \stackrel{f}{\rightarrow} \mathcal{I}_{2} \tag{73}
\end{equation*}
$$

to denote

$$
\begin{equation*}
\forall I_{1} \in \mathcal{I}_{1}, \exists I_{2} \in \mathcal{I}_{2}: f\left(I_{1}\right) \subseteq I_{2} \tag{74}
\end{equation*}
$$

Definition 4. Define the binary operator ' $-_{N}$ ' as follows: for $\alpha, \beta \in \mathbb{Z}$ and $N \in \mathbb{N}$,

$$
\alpha-{ }_{N} \beta= \begin{cases}\bmod (\alpha-\beta, N) & \text { if } \bmod (\alpha-\beta, N)>0 \tag{75}\\ N & \text { if } \bmod (\alpha-\beta, N)=0\end{cases}
$$

where $\bmod (\gamma, N) \in\{0, \ldots, N-1\}$ is the (positive) remainder of $\gamma \in \mathbb{Z}$ divided by N. Hence, ' $-_{N}$ ' is the subtraction with subsequent modulo N operation, except that a resulting 0 is replaced by N.

Lemma 2. Consider the collection $\mathcal{I}=\left\{I_{1}, I_{2}, \ldots, I_{N}\right\}$ of intervals I_{i} defined by (36)-(38); and let $\mathcal{I}_{\text {int }}:=\left\{\operatorname{int}\left(I_{1}\right), \ldots, \operatorname{int}\left(I_{N}\right)\right\}$. The following statements hold:
(i) $\mathcal{I} \xrightarrow{h} \mathcal{I}$.
(ii) $\mathcal{I}_{\text {int }} \xrightarrow{h} \mathcal{I}_{\text {int }}$.
(iii) $I_{\bar{i}-N 1}= \begin{cases}{\left[d_{\bar{i}-1}, d_{N-1}\right)} & \bar{i}>1 \\ {\left[p_{1}, d_{N-1}\right)} & \bar{i}=1 .\end{cases}$
(iv) $\operatorname{int}\left(I_{N-1}\right)= \begin{cases}\left(d_{N-1}, d_{\underline{i}-1}\right) & \underline{i}>1 \\ \left(d_{N-1}, p_{2}\right) & \underline{i}=1\end{cases}$

Statements (i) and (ii) are used in the proof of Proposition 4 later in this section. Statements (iii) and (iv) are used in Sec. 5.

Proof. (i), (ii) ${ }^{4}$: By Proposition 3, the intervals

$$
\begin{align*}
\mathcal{I} & =\left\{I_{1}, I_{2}, \ldots, I_{N}\right\} \\
& =\left\{\left[p_{1}, d_{\Pi(1)}\right),\left[d_{\Pi(1)}, d_{\Pi(2)}\right), \ldots,\left[d_{\Pi(N-1)}, p_{2}\right)\right\} \tag{76}
\end{align*}
$$

are mutually disjoint and nonempty. Therefore, also the intervals

$$
\begin{align*}
\mathcal{I}_{\text {int }} & =\left\{\operatorname{int}\left(I_{1}\right), \operatorname{int}\left(I_{2}\right), \ldots, \operatorname{int}\left(I_{N}\right)\right\} \\
& =\left\{\left(p_{1}, d_{\Pi(1)}\right),\left(d_{\Pi(1)}, d_{\Pi(2)}\right), \ldots,\left(d_{\Pi(N-1)}, p_{2}\right)\right\} \tag{77}
\end{align*}
$$

are mutually disjoint and nonempty. Hence, by Lemma $1, \mathcal{I}\left(\mathcal{I}_{\text {int }}\right)$ is uniquely represented by

$$
\begin{align*}
& \mathcal{L}=\left\{p_{1}, d_{\Pi(1)}, \ldots, d_{\Pi(N-1)}\right\} \tag{78}\\
& \mathcal{U}=\left\{p_{1}, d_{1}, \ldots, d_{N-1}\right\} \tag{79}\\
&=\left\{d_{\Pi(1)}, \ldots, d_{\Pi(N-1)}, p_{2}\right\}=\left\{p_{2}, d_{1}, \ldots, d_{N-1}\right\}
\end{align*}
$$

[^1]Preprint. Manuscript to be submitted to a journal.
and (64)-(65) (note that (64) is a different definition for \mathcal{I} and $\mathcal{I}_{\text {int }}$).
Define

$$
\begin{align*}
\mathcal{I}_{h} & :=\left\{h\left(\left[p_{1}, d_{\Pi(1)}\right)\right), h\left(\left[d_{\Pi(1)}, d_{\Pi(2)}\right)\right), \ldots, h\left(\left[d_{\Pi(N-1)}, p_{2}\right)\right)\right\} \tag{80}\\
\left(\mathcal{I}_{\text {int }, h}\right. & \left.:=\left\{h\left(\left(p_{1}, d_{\Pi(1)}\right)\right), h\left(\left(d_{\Pi(1)}, d_{\Pi(2)}\right)\right), \ldots, h\left(\left(d_{\Pi(N-1)}, p_{2}\right)\right)\right\}\right), \tag{81}
\end{align*}
$$

the collection of images of h on $\mathcal{I}\left(\mathcal{I}_{\text {int }}\right)$. Hence, by definition,

$$
\begin{gather*}
\mathcal{I} \xrightarrow{h} \mathcal{I}_{h} \tag{82}\\
\left(\mathcal{I}_{\text {int }} \xrightarrow{h} \mathcal{I}_{\text {int }, h}\right) . \tag{83}
\end{gather*}
$$

Since, by Proposition 1 , (iv), h is continuous and strictly monotonic increasing on each $I_{i} \in \mathcal{I}$ $\left(I_{i} \in \mathcal{I}_{\text {int }}\right)$, the sets of lower and upper bounds of $\mathcal{I}_{h}\left(\mathcal{I}_{\text {int }, h}\right)$ are given by

$$
\begin{align*}
\mathcal{L}_{h}:=\{h(a) \mid a \in \mathcal{L}\} & =\left\{h\left(p_{1}\right), h\left(d_{1}\right), h\left(d_{2}\right), \ldots, h\left(d_{N-1}\right)\right\} \\
& =\left\{h\left(p_{1}\right), p_{1}, d_{1}, \ldots, d_{N-2}\right\} \tag{84}\\
\mathcal{R}_{h}:=\left\{\lim _{p \nearrow b} h(p) \mid b \in \mathcal{U}\right\} & =\left\{h\left(p_{2}\right), \lim _{p \nearrow d_{1}} h(p), h\left(d_{2}\right), \ldots, h\left(d_{N-1}\right)\right\} \\
& =\left\{h\left(p_{2}\right), p_{2}, d_{1}, \ldots, d_{N-2}\right\}, \tag{85}
\end{align*}
$$

where we used the facts that h is continuous from the right at all $a \in \mathcal{L}$ and continuous from the left at all $b \in \mathcal{U} \backslash\left\{d_{1}\right\}$; and that

$$
\begin{align*}
h\left(d_{1}\right) & =h(\bar{p}+\delta)=p_{1} & & \left(\text { by definition of } p_{1}\right) \tag{86}\\
h\left(d_{i}\right) & =d_{i-1}, \quad \forall i \in\{2, \ldots, N-1\} & & \left(d_{i}=h^{-1}\left(d_{i-1}\right) \text { from Alg. } 1\right) \tag{87}\\
\lim _{p \nearrow d_{1}} h(p) & =\lim _{p \nearrow \bar{p}+\delta} h(p)=a^{2}(\bar{p}+\delta)+1=p_{2} & & \left(\text { by definition of } p_{2}\right) \tag{88}
\end{align*}
$$

Since h is injective (Proposition 1, (iii)), $h\left(I_{1} \cap I_{2}\right)=h\left(I_{1}\right) \cap h\left(I_{2}\right)$ holds for any $I_{1}, I_{2} \subseteq\left[p_{1}, p_{2}\right)$, [4]. From this and the intervals $\mathcal{I}\left(\mathcal{I}_{\text {int }}\right)$ being disjoint, it follows that the mapped intervals \mathcal{I}_{h} $\left(\mathcal{I}_{\text {int }, h}\right)$ are also disjoint. Furthermore, since h is not constant on any interval $I \in \mathcal{I}$ (it is strictly monotonic increasing by Proposition 1 , (iv)), the intervals $\mathcal{I}_{h}\left(\mathcal{I}_{\text {int, } h}\right)$ are all nonempty. Hence, by Lemma $1, \mathcal{I}_{h}\left(\mathcal{I}_{\text {int,h }}\right)$ is uniquely represented by \mathcal{L}_{h} and \mathcal{U}_{h}.

Notice that \mathcal{L}_{h} and \mathcal{U}_{h} have the same elements as \mathcal{L} and \mathcal{U} except for $h\left(p_{1}\right)$ and $h\left(p_{2}\right)$ in \mathcal{L}_{h} and \mathcal{U}_{h}, and d_{N-1} in \mathcal{L} and \mathcal{U}. We show next that the intervals $\mathcal{I}_{h}\left(\mathcal{I}_{\text {int }, h}\right)$ are contained in $\mathcal{I}\left(\mathcal{I}_{\text {int }}\right)$.

To see this, notice first that the elements of $\mathcal{L}_{h} \cup \mathcal{U}_{h} \cup \mathcal{L} \cup \mathcal{U}=\left\{p_{1}, p_{2}, h\left(p_{1}\right), h\left(p_{2}\right), d_{1}, \ldots, d_{N-1}\right\}$ have the following order relation:

$$
\begin{equation*}
p_{1} \leq \underbrace{\cdots \cdots \cdots}_{\text {other } d_{i} \text { 's }}<h\left(p_{2}\right) \leq d_{N-1}<h\left(p_{1}\right) \leq \underbrace{\ldots \ldots \ldots}_{\text {other } d_{i} \text { 's }}<p_{2} \tag{89}
\end{equation*}
$$

because

$$
\begin{aligned}
p_{1} & <h\left(p_{2}\right) & & (\text { by }(44) \text { and Propositic } \\
h\left(p_{1}\right) & <p_{2} & & (\text { by Proposition 1, (i)) }, \\
h\left(p_{2}\right) & \leq d_{N-1}<h\left(p_{1}\right) & & \text { (by Proposition 2, (i)), } \\
d_{i} & \in\left[p_{1}, h\left(p_{2}\right)\right) \cup\left[h\left(p_{1}\right), p_{2}\right), \forall i \in\{1, \ldots, N-2\} & & \text { (by Proposition 2, (i)). }
\end{aligned}
$$

Preprint. Manuscript to be submitted to a journal.

Therefore, the upper bound of $\left[*, h\left(p_{2}\right)\right) \in \mathcal{I}_{h}\left(\left(*, h\left(p_{2}\right)\right) \in \mathcal{I}_{\text {int }, h}\right)$ can be changed to d_{N-1}, and the lower bound of $\left[h\left(p_{1}\right), *\right) \in \mathcal{I}_{h}\left(\left(h\left(p_{1}\right), *\right) \in \mathcal{I}_{\text {int }, h}\right)$ to d_{N-1}, without affecting the mutual disjointness and non-emptiness of the intervals. This is illustrated in Fig. 10.

Figure 10: Illustration of the enlargement of the intervals $\left[\underline{d}, h\left(p_{2}\right)\right)$ and $\left[h\left(p_{1}\right), \bar{d}\right)$ to $\left[\underline{d}, d_{N-1}\right)$ and $\left[d_{N-1}, \bar{d}\right)$. The points unspecified are elements from $\left\{d_{1}, \ldots, d_{N-2}\right\}$. All intervals remain nonempty and mutually disjoint.

Let \underline{d} be the lower bound of $\left[*, h\left(p_{2}\right)\right) \in \mathcal{I}_{h}\left(\left(*, h\left(p_{2}\right)\right) \in \mathcal{I}_{\text {int }, h}\right)$, and let \bar{d} be the upper bound of $\left[h\left(p_{1}\right), *\right) \in \mathcal{I}_{h}\left(\left(h\left(p_{1}\right), *\right) \in \mathcal{I}_{\text {int }, h}\right)$ (cf. Fig. 10). Note that \underline{d} and \bar{d} are unique since by the disjointness and nonemptiness of the intervals, there is exactly one interval with $h\left(p_{2}\right)$ as an upper bound, and there is exactly one interval with $h\left(p_{1}\right)$ as a lower bound. Then, define

$$
\begin{align*}
\tilde{\mathcal{I}}_{h}:= & \left\{I \in \mathcal{I}_{h} \mid I \neq\left[\underline{d}, h\left(p_{2}\right)\right) \text { and } I \neq\left[h\left(p_{1}\right), \bar{d}\right)\right\} \\
& \cup\left\{\left[\underline{d}, d_{N-1}\right),\left[d_{N-1}, \bar{d}\right)\right\}, \tag{90}
\end{align*}
$$

that is, $\tilde{\mathcal{I}}_{h}$ has the same elements as \mathcal{I}_{h} except for the replacements $\left[\underline{d}, h\left(p_{2}\right)\right) \rightarrow\left[\underline{d}, d_{N-1}\right)$ and $\left[h\left(p_{1}\right), \bar{d}\right) \rightarrow\left[d_{N-1}, \bar{d}\right)$. Similarly, define

$$
\begin{align*}
\tilde{\mathcal{I}}_{\text {int }, h}:= & \left\{I \in \mathcal{I}_{\text {int }, h} \mid I \neq\left(\underline{d}, h\left(p_{2}\right)\right) \text { and } I \neq\left(h\left(p_{1}\right), \bar{d}\right)\right\} \\
& \cup\left\{\left(\underline{d}, d_{N-1}\right),\left(d_{N-1}, \bar{d}\right)\right\} . \tag{91}
\end{align*}
$$

Since $\left[\underline{d}, h\left(p_{2}\right)\right) \subseteq\left[\underline{d}, d_{N-1}\right)\left(\left(\underline{d}, h\left(p_{2}\right)\right) \subseteq\left(\underline{d}, d_{N-1}\right)\right)$ and $\left[h\left(p_{1}\right), \bar{d}\right) \subseteq\left[d_{N-1}, \bar{d}\right)\left(\left(h\left(p_{1}\right), \bar{d}\right) \subseteq\right.$ $\left.\left(d_{N-1}, \bar{d}\right)\right)$, it follows from (82) and (83) that

$$
\begin{gather*}
\mathcal{I} \xrightarrow{h} \tilde{\mathcal{I}}_{h} \tag{92}\\
\left(\mathcal{I}_{\text {int }} \xrightarrow{h} \tilde{\mathcal{I}}_{\text {int }, h}\right) . \tag{93}
\end{gather*}
$$

The lower and upper bounds of $\tilde{\mathcal{I}}_{h}\left(\tilde{\mathcal{I}}_{\text {int }, h}\right)$ are given by

$$
\begin{align*}
\tilde{\mathcal{L}}_{h} & :=\left\{d_{N-1}, p_{1}, d_{1}, \ldots, d_{N-2}\right\} \tag{94}\\
\tilde{\mathcal{U}}_{h} & :=\left\{d_{N-1}, p_{2}, d_{1}, \ldots, d_{N-2}\right\} . \tag{95}
\end{align*}
$$

Since the intervals $\tilde{\mathcal{I}}_{h}\left(\tilde{\mathcal{I}}_{\text {int }, h}\right)$ are nonempty and mutually disjoint, and $\tilde{\mathcal{L}}_{h}=\mathcal{L}$ and $\tilde{\mathcal{U}}_{h}=\mathcal{U}$, it follows from Corollary 3 that $\tilde{\mathcal{I}}_{h}=\mathcal{I}\left(\tilde{\mathcal{I}}_{\text {int }, h}=\mathcal{I}_{\text {int }}\right)$. Using this result, the claim follows from (92) ((93)).

Preprint. Manuscript to be submitted to a journal.
(iii): First, notice that $\bar{i} \in\{1, \ldots, N-1\}$ and

$$
h\left(I_{\bar{i}}\right) \underset{(37)}{=} h\left(\left[d_{\bar{i}}, p_{2}\right)\right)=\left[h\left(d_{\bar{i}}\right), h\left(p_{2}\right)\right) \underset{(86),(87)}{=} \begin{cases}{\left[d_{\bar{i}-1}, h\left(p_{2}\right)\right)} & \text { if } \bar{i}>1 \tag{96}\\ {\left[p_{1}, h\left(p_{2}\right)\right)} & \text { if } \bar{i}=1\end{cases}
$$

Since $h\left(I_{\bar{i}}\right) \in \mathcal{I}_{h}$, it follows that

$$
\underline{d}= \begin{cases}d_{\bar{i}-1} & \text { if } \bar{i}>1 \tag{97}\\ p_{1} & \text { if } \bar{i}=1\end{cases}
$$

and, from (90),

$$
\left.\begin{array}{ll}
{\left[d_{\bar{i}-1}, d_{N-1}\right)} & \text { if } \bar{i}>1 \tag{98}\\
{\left[p_{1}, d_{N-1}\right)} & \text { if } \bar{i}=1
\end{array}\right\} \in \tilde{\mathcal{I}}_{h}=\mathcal{I}
$$

Since, for $\bar{i}>1$, the only interval in \mathcal{I} with lower bound $d_{\bar{i}-1}$ is $I_{\bar{i}-1}$, and the only interval in \mathcal{I} with lower bound p_{1}, is I_{N},

$$
I_{\bar{i}-N}=\left\{\begin{array}{ll}
I_{\bar{i}-1} & \text { if } \bar{i}>1 \\
I_{N} & \text { if } \bar{i}=1
\end{array}= \begin{cases}{\left[d_{\bar{i}-1}, d_{N-1}\right)} & \text { if } \bar{i}>1 \\
{\left[p_{1}, d_{N-1}\right)} & \text { if } \bar{i}=1\end{cases}\right.
$$

(iv): Notice that $\underline{i} \in\{1, \ldots, N-1\}$ and

$$
\begin{align*}
& h\left(\operatorname{int}\left(I_{N}\right)\right) \underset{(38)}{=} h\left(\left(p_{1}, d_{\underline{i}}\right)\right) \underset{(87),(88)}{=} \begin{cases}\left(h\left(p_{1}\right), d_{\underline{i}-1}\right) & \text { if } \underline{i}>1 \\
\left(h\left(p_{1}\right), \lim _{p \nearrow d_{1}} h(p)\right) & \text { if } \underline{i}=1\end{cases} \\
&= \begin{cases}\left(h\left(p_{1}\right), d_{\underline{i}-1}\right) & \text { if } \underline{i}>1 \\
\left(h\left(p_{1}\right), p_{2}\right) & \text { if } \underline{i}=1\end{cases} \tag{99}
\end{align*}
$$

Since $h\left(\operatorname{int}\left(I_{N}\right)\right) \in \mathcal{I}_{\text {int }, h}$, it follows that

$$
\bar{d}= \begin{cases}d_{\underline{i}-1} & \text { if } \underline{i}>1 \tag{100}\\ p_{2} & \text { if } \underline{i}=1\end{cases}
$$

and, from (91),

$$
\left.\begin{array}{ll}
\left(d_{N-1}, d_{\underline{i}-1}\right) & \text { if } \underline{i}>1 \tag{101}\\
\left(d_{N-1}, p_{2}\right) & \text { if } \underline{i}=1
\end{array}\right\} \in \tilde{\mathcal{I}}_{\text {int }, h}=\mathcal{I}_{\text {int }}
$$

Since the only interval in $\mathcal{I}_{\text {int }}$ with lower bound d_{N-1} is $\operatorname{int}\left(I_{N-1}\right)$,

$$
I_{N-1}= \begin{cases}\left(d_{N-1}, d_{\underline{i}-1}\right) & \text { if } \underline{i}>1 \\ \left(d_{N-1}, p_{2}\right) & \text { if } \underline{i}=1\end{cases}
$$

Proof of Proposition 4.

Proof. ${ }^{5}$ By Lemma 2, (i) and (ii), we know that, for any $I \in \mathcal{I}\left(I \in \mathcal{I}_{\text {int }}\right), h(I)$ is contained in an interval of $\mathcal{I}\left(\mathcal{I}_{\text {int }}\right)$. Since the intervals are disjoint (Proposition 3), there is exactly one interval

[^2]Preprint. Manuscript to be submitted to a journal.
that contains $h(I)$. Therefore, it suffices to only consider the lower bound of an interval to identify where the interval is mapped to.

Notice that by Proposition 1, (iv), for all $[a, b) \in \mathcal{I}\left((a, b) \in \mathcal{I}_{\text {int }}\right)$,

$$
\begin{align*}
h([a, b)) & =\left[h(a), \lim _{p \nearrow b} h(p)\right) \tag{102}\\
(h((a, b)) & \left.=\left(h(a), \lim _{p \nearrow b} h(p)\right)\right) .
\end{align*}
$$

From Algorithm 1, it follows that $h\left(d_{i}\right)=d_{i-1}$ for all $i \in\{2, \ldots, N-1\}$. Therefore (there is exactly one interval in $\mathcal{I}\left(\mathcal{I}_{\text {int }}\right)$ with d_{i-1} as lower bound),

$$
\begin{align*}
h\left(I_{i}\right)=h\left(\left[d_{i}, *\right)\right) & =\left[d_{i-1}, *\right) \subseteq I_{i-1} & & \forall i \in\{2, \ldots, N-1\} \tag{103}\\
\left(h\left(\operatorname{int}\left(I_{i}\right)\right)=h\left(\left(d_{i}, *\right)\right)\right. & =\left(d_{i-1}, *\right) \subseteq \operatorname{int}\left(I_{i-1}\right) & & \forall i \in\{2, \ldots, N-1\})
\end{align*}
$$

Similarly, since $h\left(d_{1}\right)=h(\bar{p}+\delta)=p_{1}$ by the definitions of d_{1} and p_{1}, it follows that

$$
\begin{align*}
h\left(I_{1}\right)=h\left(\left[d_{1}, *\right)\right) & =\left[p_{1}, *\right) \subseteq I_{N} \tag{104}\\
\left(h\left(\operatorname{int}\left(I_{1}\right)\right)=h\left(\left(d_{1}, *\right)\right)\right. & \left.=\left(p_{1}, *\right) \subseteq \operatorname{int}\left(I_{N}\right)\right)
\end{align*}
$$

From (89), it follows that $h\left(p_{1}\right) \in\left[d_{N-1}, *\right)=I_{N-1}\left(h\left(p_{1}\right) \in\left(d_{N-1}, *\right)=I_{N-1}\right)$. Therefore,

$$
\begin{align*}
& h\left(I_{N}\right)=h\left(\left[p_{1}, *\right)\right)=\left[h\left(p_{1}\right), *\right) \tag{105}\\
& \subseteq I_{N-1} \\
&\left(h\left(\operatorname{int}\left(I_{N}\right)\right)=h\left(\left(p_{1}, *\right)\right)=\left(h\left(p_{1}\right), *\right) \subseteq \operatorname{int}\left(I_{N-1}\right)\right) .
\end{align*}
$$

5 Proof of Proposition 5

Proof. To show existence of the intervals $\tilde{\mathcal{I}}=\left\{\tilde{I}_{1}, \ldots, \tilde{I}_{N}\right\}$, we define intervals \tilde{I}_{i} and prove that the properties (i)-(iv) hold for these. Let $m_{1}:=\bar{i}+1(>1)$. We define recursively

$$
\begin{align*}
\tilde{I}_{N-1} & :=h^{m_{1}}\left(\left[d_{\bar{i}}, p_{2}\right]\right), \tag{106}\\
\tilde{I}_{i-{ }_{N} 1} & :=h\left(\tilde{I}_{i}\right) \quad \forall i \in\{1, \ldots, N-1\} \tag{107}
\end{align*}
$$

where ' $-N$ ' is as defined in Definition 4. Notice that (106) is the map of a closed interval.
We first show that (i)-(iii) hold for \tilde{I}_{N-1}. Notice that $\bar{i} \in\{1, \ldots, N-1\}$. We have

$$
\begin{array}{rlr}
h\left(\left[d_{\bar{i}}, p_{2}\right]\right) & =\left[h\left(d_{\bar{i}}\right), h\left(p_{2}\right)\right] & \text { (by Prop. 1, (iv)) } \\
& = \begin{cases}{\left[d_{\bar{i}-1}, h\left(p_{2}\right)\right]} & \text { if } \bar{i}>1 \\
{\left[p_{1}, h\left(p_{2}\right)\right]} & \text { if } \bar{i}=1\end{cases} \\
& \subseteq \begin{cases}{\left[d_{\bar{i}-1}, d_{N-1}\right)} & \text { if } \bar{i}>1 \\
{\left[p_{1}, d_{N-1}\right)} & \text { if } \bar{i}=1\end{cases} & \text { (by Assump. 2) } \\
& =I_{\bar{i}-N 1} & \text { (by Lemma 2, (iii)). } \tag{109}
\end{array}
$$

From Proposition 4, it follows that, for all $i \in\{1, \ldots, N\}$ and for all $m \in\{0,1,2, \ldots\}$,

$$
\begin{align*}
h^{m}\left(I_{i}\right) & \subseteq I_{i-{ }_{N} m} \tag{110}\\
h^{m}\left(\operatorname{int}\left(I_{i}\right)\right) & \subseteq \operatorname{int}\left(I_{i-{ }_{N} m}\right) \tag{111}
\end{align*}
$$

Preprint. Manuscript to be submitted to a journal.

With this,

$$
\begin{equation*}
h^{\bar{i}}\left(\left[d_{\bar{i}}, p_{2}\right]\right)=h^{\bar{i}-1}\left(h\left(\left[d_{\bar{i}}, p_{2}\right]\right)\right) \underset{(109)}{\subseteq} h^{\bar{i}-1}\left(I_{\bar{i}-N_{N} 1}\right) \underset{(110)}{\subseteq} I_{\left(\bar{i}-N_{N} 1\right)-{ }_{N}(\bar{i}-1)}=I_{N}, \tag{112}
\end{equation*}
$$

and

$$
\begin{array}{rlrl}
\tilde{I}_{N-1} & =h^{m_{1}}\left(\left[d_{\bar{i}}, p_{2}\right]\right)=h^{\bar{i}+1}\left(\left[d_{\bar{i}}, p_{2}\right]\right) \subseteq h\left(I_{N}\right) & & (\text { by }(112)) \\
& =h\left(\left[p_{1}, d_{\underline{\underline{i}}}\right)\right. & & \text { (by (38)) } \\
& = \begin{cases}{\left[h\left(p_{1}\right), d_{\underline{i}-1}\right)} & \text { if } \underline{i}>1 \\
{\left[h\left(p_{1}\right), p_{2}\right)} & \text { if } \underline{i}=1\end{cases} & & \text { (by Prop. 1, (iv)) } \\
& \subseteq \begin{cases}\left(d_{N-1}, d_{\underline{i}-1}\right) & \text { if } \underline{i}>1 \\
\left(d_{N-1}, p_{2}\right) & \text { if } \underline{i}=1 \\
& =\operatorname{int}\left(I_{N-1}\right) \\
& \subseteq I_{N-1} .\end{cases} & \left(d_{N-1}<h\left(p_{1}\right)\right. \text { by Prop. 2, (i)) } \\
\text { (by Lemma 2, (iv)) } \\
& & \tag{113}
\end{array}
$$

Thus, (ii) holds for \tilde{I}_{N-1}.
Property (i) can be seen as follows: $h\left(\left[d_{\bar{i}}, h\left(p_{2}\right)\right]\right)$ is closed (see (108)). Since $h\left(\left[d_{\bar{i}}, h\left(p_{2}\right)\right]\right) \subseteq$ $I_{\underline{i-N} 1}$ (see (109)), it follows from Proposition 1, (iv), that h is continuous and strictly monotonic increasing on $h\left(\left[d_{\bar{i}}, h\left(p_{2}\right)\right]\right)$. Similarly, by (110), $h^{m}\left(\left[d_{\bar{i}}, h\left(p_{2}\right)\right]\right)=h^{m-1}\left(h\left(\left[d_{\bar{i}}, h\left(p_{2}\right)\right]\right)\right) \subseteq$ $h^{m-1}\left(I_{\underline{i-N} 1}\right) \subseteq I_{\underline{i}-N m}, m \geq 1$; thus, h is continuous and strictly monotonic increasing on $h^{m}\left(\left[d_{\bar{i}}, h\left(\bar{p}_{2}\right)\right]\right)$. Since, for a continuous and strictly monotonic increasing function f and $a, b \in \mathbb{R}, f([a, b])=$ $[f(a), f(b)]$ (the image of a closed interval under f is a closed interval), $h^{m}\left(\left[d_{\bar{i}}, h\left(p_{2}\right)\right]\right)$ is closed for any $m \geq 1$ and, in particular, for $m=m_{1}$.

To show (iii) for \tilde{I}_{N-1}, let $m_{2}:=N-m_{1}(\geq 0)$ and consider

$$
\begin{equation*}
h^{m_{2}}\left(\tilde{I}_{N-1}\right) \underset{(113)}{\subseteq} h^{m_{2}}\left(I_{N-1}\right) \underset{(110)}{\subseteq} I_{(N-1)-{ }_{N} m_{2}}=I_{\bar{i}} \underset{(37)}{=}\left[d_{\bar{i}}, p_{2}\right) \subseteq\left[d_{\bar{i}}, p_{2}\right], \tag{114}
\end{equation*}
$$

where we used

$$
\begin{equation*}
(N-1)-_{N} m_{2}=(N-1)-_{N}(N-1-\bar{i})=\bmod (N-1-N+1+\bar{i}, N)=\bar{i} . \tag{115}
\end{equation*}
$$

Property (iii) then follows by

$$
\begin{equation*}
h^{N}\left(\tilde{I}_{N-1}\right)=h^{m_{1}}\left(h^{m_{2}}\left(\tilde{I}_{N-1}\right)\right) \underset{(114)}{\subseteq} h^{m_{1}}\left(\left[d_{\bar{i}}, p_{2}\right]\right) \underset{(106)}{=} \tilde{I}_{N-1} . \tag{116}
\end{equation*}
$$

Hence, we know that (i)-(iii) hold for $i=N-1$. We next prove (i)-(iii) for $i \in\{1, \ldots, N-2, N\}$ by induction.

Induction assumption (IA): (i)-(iii) valid for some $i \in\{1, \ldots, N-1\}$. Show that this implies the validity for $i{ }_{{ }_{N}} 1$.

Property (ii) holds since

$$
\begin{equation*}
\tilde{I}_{i-N_{1} 1}^{(107)}=h\left(\tilde{I}_{i}\right) \underset{\mathrm{IA}(\mathrm{ii})}{\subseteq} h\left(\operatorname{int}\left(I_{i}\right)\right) \underset{(111)}{\subseteq} \operatorname{int}\left(I_{i-N_{1} 1}\right) \subseteq I_{i-N_{N}} . \tag{117}
\end{equation*}
$$

Preprint. Manuscript to be submitted to a journal.

Since $\tilde{I}_{i} \subseteq I_{i}$ (IA (ii)), h is continuous and strictly monotonic increasing on \tilde{I}_{i}. Moreover, \tilde{I}_{i} is closed (IA (i)). Together, this implies that the image under $h, \tilde{I}_{i-{ }_{N} 1}=h\left(\tilde{I}_{i}\right)$, is also closed; hence, (i) is true.

Property (iii) can be seen to hold by

$$
\begin{equation*}
h^{N}\left(\tilde{I}_{i-N_{1} 1}\right) \underset{(107)}{=} h^{N+1}\left(\tilde{I}_{i}\right)=h\left(h^{N}\left(\tilde{I}_{i}\right)\right) \underset{\mathrm{IA}}{\subseteq} \underset{(\mathrm{iii})}{\subset} h\left(\tilde{I}_{i}\right) \underset{(110)}{=} \tilde{I}_{i-{ }_{N} 1} . \tag{118}
\end{equation*}
$$

This completes the proof of (i)-(iii).
To prove statement (iv), take $I_{i} \in \mathcal{I}$ for any $i \in\{1, \ldots, N\}$. Let $m_{3}:=i-_{N} \bar{i}(\geq 1)$. Then,

$$
\begin{equation*}
h^{m_{3}}\left(I_{i}\right) \underset{(110)}{\subseteq} I_{i-N m_{3}}=I_{i-N(i-N \bar{i})}=I_{\bar{i}} \underset{(37)}{=}\left[d_{\bar{i}}, p_{2}\right) \subseteq\left[d_{\bar{i}}, p_{2}\right], \tag{119}
\end{equation*}
$$

and, thus,

$$
\begin{equation*}
h^{m_{1}+m_{3}}\left(I_{i}\right)=h^{m_{1}}\left(h^{m_{3}}\left(I_{i}\right)\right) \underset{(119)}{\subseteq} h^{m_{1}}\left(\left[d_{\bar{i}}, p_{2}\right]\right) \underset{(106)}{=} \tilde{I}_{N-1} . \tag{120}
\end{equation*}
$$

Let $m_{4}:=\left(N-{ }_{N} i\right)-1(\in\{0, \ldots, N-1\})$. Then,

$$
\begin{align*}
h^{m_{1}+m_{3}+m_{4}}\left(I_{i}\right) & =h^{m_{4}}\left(h^{m_{1}+m_{3}}\left(I_{i}\right)\right) \underset{(120)}{\subseteq} h^{m_{4}}\left(\tilde{I}_{N-1}\right) \underset{\text { by }}{\underset{(107)}{ }} \tilde{I}_{(N-1)-{ }_{N} m_{4}} \\
& =\tilde{I}_{(N-1)-{ }_{N}((N-N i)-1)}=\tilde{I}_{i} . \tag{121}
\end{align*}
$$

Now, consider different cases for i :

- $i=N$. Since $m_{1}+m_{3}+m_{4}=(\bar{i}+1)+(N-\bar{i})+(N-1)=2 N$, (iv) follows directly from (121).
- $\bar{i}<i<N$. Since $m_{1}+m_{3}+m_{4}=(\bar{i}+1)+(i-\bar{i})+(N-i-1)=N$, (121) reads $h^{N}\left(I_{i}\right) \subseteq \tilde{I}_{i}$, which implies (iv) as follows:

$$
\begin{equation*}
h^{2 N}\left(I_{i}\right)=h^{N}\left(h^{N}\left(I_{i}\right)\right) \underset{(121)}{\subseteq} h^{N}\left(\tilde{I}_{i}\right) \subseteq\left(\tilde{I}_{(\text {iii })} .\right. \tag{122}
\end{equation*}
$$

- $1 \leq i \leq \bar{i}$. Since $m_{1}+m_{3}+m_{4}=(\bar{i}+1)+(i-\bar{i}+N)+(N-i-1)=2 N$, (iv) follows directly from (121).

6 Proof of Proposition 6

The following Lemma is used in the proof of Proposition 6.
Lemma 3. For all $p \in\left[p_{1}, \bar{p}+\delta\right)$, there exists an $m \in \mathbb{N}$ such that

$$
\begin{equation*}
p, h(p), \ldots, h^{m-1}(p)<\bar{p}+\delta \quad \text { and } \quad h^{m}(p) \geq \bar{p}+\delta \tag{123}
\end{equation*}
$$

Furthermore, there exists an $\bar{N} \in \mathbb{N}$ (independent of p) such that $m \leq \bar{N}$, and

$$
\begin{equation*}
a^{2 \bar{N}}<a^{2} \frac{\bar{p}+\delta}{p_{1}} . \tag{124}
\end{equation*}
$$

Preprint. Manuscript to be submitted to a journal.

The lemma says that if $p(0)$ starts anywhere in $\left[p_{1}, \bar{p}+\delta\right)$, there is a maximum number \bar{N} of iterations (22), for which $p(k)$ remains in $\left[p_{1}, \bar{p}+\delta\right)$. The slope of \bar{N} successive maps in $\left[p_{1}, \bar{p}+\delta\right)$ is bounded by (124).

Proof. Let $m \in \mathbb{N}$ such that $p, h(p), \ldots, h^{m-1}(p)<\bar{p}+\delta$ (such an m exists since $p<\bar{p}+\delta$). Then, from (23), for all $1 \leq \ell \leq m$,

$$
\begin{equation*}
h^{\ell}(p)=a^{2} h^{\ell-1}(p)+1>a^{2} h^{\ell-1}(p), \tag{125}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
h^{\ell}(p)>a^{2 \ell} p . \tag{126}
\end{equation*}
$$

Since, $|a|>1, \lim _{m \rightarrow \infty} a^{2 m} p=\infty$. Hence, there exists an m such that $h^{m}(p) \geq \bar{p}+\delta$ and (123) holds. Note that m depends on p.

Now, we seek the largest possible integer m such that (123) holds. Since $h^{\ell}\left(p_{1}\right) \leq h^{\ell}(p)$ for all $p \in\left[p_{1}, \bar{p}+\delta\right)$ and $\ell \leq m$, the greatest m such that (123) holds is $\bar{N} \in \mathbb{N}$ defined by

$$
\begin{equation*}
p_{1}, h\left(p_{1}\right), \ldots, h^{\bar{N}-1}\left(p_{1}\right)<\bar{p}+\delta \quad \text { and } \quad h^{\bar{N}}\left(p_{1}\right) \geq \bar{p}+\delta . \tag{127}
\end{equation*}
$$

Hence, \bar{N} is independent of p, and $m \leq \bar{N}$. From (126) and (127), it follows that

$$
a^{2(\bar{N}-1)} p_{1}<h^{\bar{N}-1}\left(p_{1}\right)<\bar{p}+\delta \quad \underset{\left(p_{1}>0, a^{2}>0\right)}{\Rightarrow} \quad a^{2 \bar{N}}<a^{2} \frac{\bar{p}+\delta}{p_{1}} .
$$

Proof of Proposition 6.

Proof. Take any $I_{i} \in \mathcal{I}$ and any $\tilde{p} \in \operatorname{int}\left(I_{i}\right)$.
Differentiability: By Proposition 1, (v), h is differentiable for any $p \in \operatorname{int}(I), I \in \mathcal{I}$. So, in particular, h is differentiable at \tilde{p}. We prove by induction that h^{j} is differentiable at \tilde{p} for all $j \geq 1$.

Induction assumption (IA): h^{j} is differentiable at \tilde{p}. By the chain rule, $[3], h^{j+1}(\tilde{p})=h\left(h^{j}(\tilde{p})\right)$ is differentiable at \tilde{p} if h^{j} is differentiable at \tilde{p} (IA) and h is differentiable at $h^{j}(\tilde{p})$. From Proposition 4, (ii), (or equation (111)) it follows that

$$
\begin{equation*}
h^{j}(\tilde{p}) \in \operatorname{int}\left(I_{i-N} j\right) . \tag{128}
\end{equation*}
$$

Since h is differentiable on any $\operatorname{int}(I)$ with $I \in \mathcal{I}$ (so, in particular, on $\operatorname{int}\left(I_{i-N} j\right)$), the differentiability of h^{j+1} at \tilde{p} follows.

Contraction mapping: By the chain rule,

$$
\begin{align*}
\left(h^{N}\right)^{\prime}(\tilde{p}) & =h^{\prime}\left(h^{N-1}(\tilde{p})\right) \cdot\left(h^{N-1}\right)^{\prime}(\tilde{p}) \\
& =h^{\prime}\left(h^{N-1}(\tilde{p})\right) \cdot h^{\prime}\left(h^{N-2}(\tilde{p})\right) \cdot\left(h^{N-2}\right)^{\prime}(\tilde{p}) \\
& =h^{\prime}\left(h^{N-1}(\tilde{p})\right) \cdot h^{\prime}\left(h^{N-2}(\tilde{p})\right) \cdot \ldots \cdot h^{\prime}(h(\tilde{p})) \cdot h^{\prime}(\tilde{p}) \\
& =\prod_{j=0}^{N-1} h^{\prime}\left(h^{j}(\tilde{p})\right)=\prod_{p \in \mathcal{P}} h^{\prime}(p), \tag{129}
\end{align*}
$$

with

$$
\begin{equation*}
\mathcal{P}:=\left\{\tilde{p}, h(\tilde{p}), \ldots, h^{N-1}(\tilde{p})\right\} . \tag{130}
\end{equation*}
$$

Preprint. Manuscript to be submitted to a journal.

Notice from (128) for $j=0,1, \ldots, N-1$ that, for every point $p \in \mathcal{P}$, there is exactly one interval $I \in \mathcal{I}$ such that $p \in \operatorname{int}(I)$.

Let $\mathcal{I}_{L} \subset \mathcal{I}$ denote the set of all intervals $I \in \mathcal{I}$ with $I<\bar{p}+\delta$ (intervals left of the discontinuity $\bar{p}+\delta$), and let $\mathcal{I}_{R} \subset \mathcal{I}$ denote the set of all $I \in \mathcal{I}$ with $I \geq \bar{p}+\delta$ (intervals right of the discontinuity $\bar{p}+\delta)$. Furthermore, let N_{L} and N_{R} denote the number of elements in \mathcal{I}_{L} and \mathcal{I}_{R}, respectively. Notice that $N_{L} \geq 1$ and $N_{R} \geq 1$ by the construction of the intervals. Then,

$$
\begin{equation*}
h^{\prime}(p)=a^{2} \quad \forall p \in \operatorname{int}(I), I \in \mathcal{I}_{L} \tag{131}
\end{equation*}
$$

which follows directly from (23); and

$$
\begin{equation*}
h^{\prime}(p)=g^{\prime}(p)<g^{\prime}(\bar{p}+\delta) \quad \forall p \in \operatorname{int}(I), I \in \mathcal{I}_{R} \tag{132}
\end{equation*}
$$

where the inequality follows from g^{\prime} being strictly monotonically decreasing, which is seen from

$$
\begin{equation*}
g^{\prime \prime}(p)=-\frac{2 a^{2} c^{2}}{\left(c^{2} p+1\right)^{3}}<0 \tag{133}
\end{equation*}
$$

With these results, it follows from (129) that

$$
\begin{equation*}
\left(h^{N}\right)^{\prime}(\tilde{p})<a^{2 N_{L}}\left(g^{\prime}(\bar{p}+\delta)\right)^{N_{R}} \tag{134}
\end{equation*}
$$

Since $a^{2}>1$ and $g^{\prime}(\bar{p}+\delta)<1$, it depends on the ratio of N_{R} to N_{L} whether the map h^{N} is contractive. We investigate this ratio next.

Define a subset $\underline{\mathcal{I}} \subset \mathcal{I}$ as a maximum successive sequence of M intervals all being left of $\bar{p}+\delta$:

$$
\begin{align*}
\underline{\mathcal{I}}:=(& \left.I_{\ell}, I_{\ell-{ }_{N} 1}, \ldots, I_{\ell-{ }_{N}(M-1)}\right) \tag{135}\\
& \text { such that } I_{\ell}, I_{\ell-{ }_{N} 1}, \ldots, I_{\ell-{ }_{N}(M-1)} \in \mathcal{I}_{L}, \quad M \leq N_{L} \\
& \text { and } I_{\ell+{ }_{N} 1}, I_{\ell-{ }_{N} M} \in \mathcal{I}_{R}
\end{align*}
$$

where ' $+_{N}$ ' is analogously defined to ' $-{ }_{N}$ ' in Definition 4:

$$
\alpha+_{N} \beta= \begin{cases}\bmod (\alpha+\beta, N) & \text { if } \bmod (\alpha+\beta, N)>0 \tag{136}\\ N & \text { if } \bmod (\alpha+\beta, N)=0\end{cases}
$$

for $\alpha, \beta \in \mathbb{Z}$ and $N \in \mathbb{N}$. Let there be $\kappa \geq 1$ distinct interval subsequences (135), which we call $\underline{\mathcal{I}}_{1}, \ldots, \underline{\mathcal{I}}_{\kappa}$ with $M_{1}, \ldots, M_{\kappa}$ their numbers of elements, respectively. An example with two interval subsequences $\underline{\mathcal{I}}_{1}, \underline{\mathcal{I}}_{2}$ is provided in Fig. 11. Notice that $N_{L}=M_{1}+\cdots+M_{\kappa}$.

Using Lemma 3, it can be shown by contradiction that $M_{j} \leq \bar{N}$ for all $j \leq \kappa$, where \bar{N} is as defined in Lemma 3. Assume $M_{j}>\bar{N}$. Then, there exists $I_{\ell} \in \mathcal{I}$ and $p \in I_{\ell}$ such that $p, h(p), \ldots, h^{M_{j}-1}(p)<\bar{p}+\delta$ and $h^{M_{j}} \geq \bar{p}+\delta$. But, from Lemma 3, it then follows that $M_{j} \leq \bar{N}$, which contradicts the assumption.

From $M_{j} \leq \bar{N}, j \leq \kappa$, it follows that

$$
\begin{equation*}
N_{L}=M_{1}+\cdots+M_{\kappa} \leq \kappa \bar{N} \tag{137}
\end{equation*}
$$

For each subsequence of intervals $\underline{\mathcal{I}}_{j}, j \leq \kappa$, there is at least one distinct interval $I \in \mathcal{I}_{R}$ (namely, $\left.I_{\ell-{ }_{N} M}\right)$; hence,

$$
\begin{equation*}
N_{R} \geq \kappa \tag{138}
\end{equation*}
$$

Preprint. Manuscript to be submitted to a journal.

Figure 11: Illustration of the intervals \mathcal{I} obtained for the parameter values $a=1.2, c=1$, and $\delta=9.6$ (for better visibility the relative scaling of the intervals has been adapted). There are two distinct interval subsequences satisfying (135): $\underline{\mathcal{I}}_{1}=\left(I_{4}, I_{3}, I_{2}\right)$ and $\underline{\mathcal{I}}_{2}=\left(I_{9}, I_{8}, I_{7}, I_{6}\right)$.

Combining (137) and (138), we obtain a bound on the ratio of N_{L} and N_{R},

$$
\begin{equation*}
N_{L} \leq \kappa \bar{N} \leq N_{R} \bar{N} \tag{139}
\end{equation*}
$$

With this result, we can rewrite (134),

$$
\begin{align*}
\left(h^{N}\right)^{\prime}(\tilde{p}) & <a^{2 N_{L}}\left(g^{\prime}(\bar{p}+\delta)\right)^{N_{R}} \\
& \leq a^{2 N_{L}} a^{2\left(N_{R} \bar{N}-N_{L}\right)}\left(g^{\prime}(\bar{p}+\delta)\right)^{N_{R}} \\
& =\left(a^{2 \bar{N}} g^{\prime}(\bar{p}+\delta)\right)^{N_{R}} . \tag{140}
\end{align*}
$$

We show below that $a^{2 \bar{N}} g^{\prime}(\bar{p}+\delta)<1$. With this, the statement of Proposition 6 follows from (140) with $L:=\left(a^{2 \bar{N}} g^{\prime}(\bar{p}+\delta)\right)^{N_{R}}<1$.

It thus remains to show that

$$
\begin{equation*}
a^{2 \bar{N}} g^{\prime}(\bar{p}+\delta)<1 \tag{141}
\end{equation*}
$$

First, notice from Lemma 3 that

$$
\begin{equation*}
a^{2 \bar{N}} g^{\prime}(\bar{p}+\delta)<a^{2} \frac{\bar{p}+\delta}{p_{1}} g^{\prime}(\bar{p}+\delta) \underset{(51)}{=} \frac{a^{4}(\bar{p}+\delta)}{p_{1}\left(c^{2}(\bar{p}+\delta)+1\right)^{2}} \tag{142}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
p_{1}=h(\bar{p}+\delta)=g(\bar{p}+\delta) \underset{(50)}{=} \frac{\left(a^{2}+c^{2}\right)(\bar{p}+\delta)+1}{c^{2}(\bar{p}+\delta)+1} \tag{143}
\end{equation*}
$$

and that \bar{p} is the positive solution of (6) (with $q=r=1$), which is given explicitly by

$$
\begin{equation*}
\bar{p}=\frac{a^{2}-1+c^{2}+S}{2 c^{2}}>0 \tag{144}
\end{equation*}
$$

with $S:=\sqrt{\left(a^{2}-1+c^{2}\right)^{2}+4 c^{2}}>0$. With (143) and (144), the right-hand side of (142) can be rewritten,

$$
\begin{align*}
& \frac{a^{4}(\bar{p}+\delta)}{p_{1}\left(c^{2}(\bar{p}+\delta)+1\right)^{2}}=\frac{a^{4}(\bar{p}+\delta)}{\left(\left(a^{2}+c^{2}\right)(\bar{p}+\delta)+1\right)\left(c^{2}(\bar{p}+\delta)+1\right)} \\
& =\frac{a^{4}\left(\frac{a^{2}-1+c^{2}+S}{2 c^{2}}+\delta\right)}{\left(\left(a^{2}+c^{2}\right)\left(\frac{a^{2}-1+c^{2}+S}{2 c^{2}}+\delta\right)+1\right)\left(c^{2}\left(\frac{a^{2}-1+c^{2}+S}{2 c^{2}}+\delta\right)+1\right)} \\
& =\frac{\mathrm{NUM}}{\mathrm{DEN}} \tag{145}
\end{align*}
$$

Preprint. Manuscript to be submitted to a journal.
with ${ }^{6}$

$$
\begin{align*}
\mathrm{NUM}:= & 4 c^{2} \cdot a^{4}\left(\frac{\left(a^{2}-1\right)+c^{2}+S}{2 c^{2}}+\delta\right) \tag{146}\\
= & 2 S a^{4}-2 a^{4}+2 a^{6}+2 a^{4} c^{2}+4 a^{4} c^{2} \delta \\
\text { DEN }:= & 4 c^{2} \cdot\left(\left(a^{2}+c^{2}\right)\left(\frac{a^{2}-1+c^{2}+S}{2 c^{2}}+\delta\right)+1\right)\left(c^{2}\left(\frac{a^{2}-1+c^{2}+S}{2 c^{2}}+\delta\right)+1\right) \tag{147}\\
= & S^{2} a^{2}+S^{2} c^{2}+2 S a^{4}+4 S a^{2} c^{2} \delta+4 S a^{2} c^{2}+4 S c^{4} \delta+2 S c^{4} \\
& +2 S c^{2}+a^{6}+4 a^{4} c^{2} \delta+3 a^{4} c^{2}+4 a^{2} c^{4} \delta^{2}+8 a^{2} c^{4} \delta+3 a^{2} c^{4} \\
& +2 a^{2} c^{2}-a^{2}+4 c^{6} \delta^{2}+4 c^{6} \delta+c^{6}+4 c^{4} \delta+2 c^{4}+c^{2} .
\end{align*}
$$

Since $\mathrm{DEN}>0\left(\right.$ can be seen from (147) and $a^{2}>0, c^{2}>0, \delta>0, S>0$, and $\left.a^{2}-1>0\right)$,

$$
\begin{equation*}
\frac{\mathrm{NUM}}{\mathrm{DEN}}<1 \quad \Leftrightarrow \quad \text { DEN }-\mathrm{NUM}>0 \tag{148}
\end{equation*}
$$

Using $S^{2}=\left(a^{2}-1+c^{2}\right)^{2}+4 c^{2}$, we get ${ }^{6}$

$$
\begin{align*}
\mathrm{DEN}-\mathrm{NUM}= & 2 S c^{2}+2 S c^{4}+4 c^{4} \delta+4 c^{6} \delta+2 c^{2}+4 c^{4}+2 c^{6}+2 a^{2} c^{2} \\
& +6 a^{2} c^{4}+4 a^{4} c^{2}+4 c^{6} \delta^{2}+4 S a^{2} c^{2}+8 a^{2} c^{4} \delta+4 a^{2} c^{4} \delta^{2} \\
& +4 S c^{4} \delta+4 S a^{2} c^{2} \delta \tag{149}
\end{align*}
$$

Since $a^{2}>0, c^{2}>0, \delta>0$, and $S>0$, all summands in (149) are positive. Hence, DEN-NUM >0, and (141) follows from (142), (145), and (148).

7 Proof of Corollary 2

Proof. Take any $\tilde{I}_{i} \in \tilde{\mathcal{I}}$ and any $p, \tilde{p} \in \tilde{I}_{i}$. Without loss of generality, $\tilde{p}<p$ (for $p=\tilde{p}$ the statement holds trivially). By Proposition 2, (ii), and 5 , (ii), h^{N} is continuous on $[\tilde{p}, p]$ and, by Proposition 6, h^{N} is differentiable on (\tilde{p}, p). The mean value theorem, $[3]$, assures the existence of a $\xi \in(p, \tilde{p})$ such that

$$
\begin{equation*}
\frac{h^{N}(p)-h^{N}(\tilde{p})}{p-\tilde{p}}=\left(h^{N}\right)^{\prime}(\xi) \tag{150}
\end{equation*}
$$

Therefore, with Proposition 6,

$$
\left|h^{N}(p)-h^{N}(\tilde{p})\right|=\left|\left(h^{N}\right)^{\prime}(\xi)\right||p-\tilde{p}| \leq L|p-\tilde{p}|
$$

[^3]Preprint. Manuscript to be submitted to a journal.

References

[1] S. Trimpe and R. D'Andrea, "Event-based state estimation with variance-based triggering," in Proc. of the 51st IEEE Conference on Decision and Control, Maui, Hawaii, USA, Dec. 2012, accepted.
[2] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Mineola, New York: Dover Publications, 2005, originally published by Prentice-Hall 1979.
[3] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, 1976.
[4] E. T. Copson, Metric spaces. Cambridge University Press, 1968.

[^0]: ${ }^{3}$ We present the proof simultaneously for the case of left-closed, right-open intervals $\bar{I}_{i}=\left[\alpha_{i}, \beta_{i}\right)$ and for the case of open intervals $\bar{I}_{i}=\left(\alpha_{i}, \beta_{i}\right)$. Where required, we distinguish the two cases in the text by writing the latter case in parentheses.

[^1]: ${ }^{4}$ We present the proof simultaneously for (i) and (ii). Where required, we distinguish the two cases in the text by writing the latter case in parentheses.

[^2]: ${ }^{5}$ We present the proof simultaneously for (i) and (ii). Where required, we distinguish the two cases in the text by writing the latter case in parentheses.

[^3]: ${ }^{6}$ A MATLAB program performing the algebraic manipulations is available at www.cube.ethz.ch/downloads.

