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Abstract

This report states the proofs of Propositions 1 to 6 and Corollary 2 in [1]. All references (equations,
propositions, etc.) continue those in [1].
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1 Proof of Proposition 1

Proof. Recall the definitions of h and g in (23) and (24). Notice that

p1 = h(p̄+ δ) = g(p̄+ δ) < p̄+ δ < a2(p̄+ δ) + 1 = p2. (44)

We first show that
h(p1) > h(p2), (45)

which is useful later. Let p̃ := p̄+ δ. With (44),

h(p1) = a2p1 + 1 = a2g(p̃) + 1

= a4p̃+ a2 + 1−
a4c2p̃2

c2p̃+ 1
and (46)

h(p2) = g(p2) = g(a2p̃+ 1)

= a4p̃+ a2 + 1−
a2c2(a2p̃+ 1)2

c2(a2p̃+ 1) + 1
. (47)

Hence,

h(p1)− h(p2) = −
a4c2p̃2

c2p̃+ 1
+

a2c2(a2p̃+ 1)2

c2(a2p̃+ 1) + 1

=
−a4c2p̃2(c2(a2p̃+ 1) + 1) + a2c2(a2p̃+ 1)2(c2p̃+ 1)

(c2p̃+ 1)(c2(a2p̃+ 1) + 1)

=
a4c4p̃2 + a4c2(a2 − 1)p̃2 + a2c4p̃+ 2a4c2p̃+ a2c2

(c2p̃+ 1)(a2c2p̃+ c2 + 1)
. (48)

For the assumed parameter values (|a| > 1, c 6= 0), the numerator and denominator are strictly
greater than 0. Hence, h(p1)− h(p2) > 0, from which (45) follows.

Next, we prove the statements of the proposition.
(iv), (v): For p ∈ [p1, p̄+ δ),

h(p) = a2p+ 1, (49)

which is a continuous and strictly monotonic increasing function of p because |a| > 1. Furthermore,
h is differentiable for p ∈ (p1, p̄+ δ) with h′(p) = a2. For p ∈ [p̄+ δ, p2],

h(p) = g(p) = a2p+ 1−
a2c2p2

c2p+ 1
=

a2p+ c2p+ 1

c2p+ 1
, (50)

which is continuous since the denominator has no zero for positive p. Since, for p ∈ (0,∞), g is
differentiable with

g′(p) =
a2

(c2p+ 1)2
> 0, (51)

h is strictly monotonic increasing on [p̄+ δ, p2] and differentiable on (p̄+ δ, p2).
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(iii): h is injective on each of the intervals [p1, p̄ + δ) and [p̄ + δ, p2) separately by continuity
and monotonicity (iv). Furthermore, by strict monotonicity,

h([p1, p̄+ δ)) = [h(p1), lim
pրp̄+δ

h(p))

= [h(p1), a
2(p̄+ δ) + 1) = [h(p1), p2), and (52)

h([p̄+ δ, p2)) = [h(p̄+ δ), lim
pրp2

h(p)) = [p1, h(p2)), (53)

where p ր p̄ + δ denotes the left-sided limit, i.e. p approaches p̄ + δ from below. From (45),
[p1, h(p2)) ∩ [h(p1), p2) = ∅. Therefore, h is injective on [p1, p2).

(i): Follows from (52), (53), and (45).

(ii): Consider three cases for p ∈ [0,∞):

• p ∈ [0, p1). We first show that the sequence hk(p), k ≥ 0 eventually is greater than p1. For
hk(p) ∈ [0, p1), hk+1(p) = a2hk(p) + 1 > a2hk(p). Hence, for p, h(p), . . . , hk−1(p) ∈ [0, p1),
hk(p) > a2kp. But, since limk→∞ a2kp = ∞, there exists an m ∈ N such that

hm−1(p) ∈ [0, p1) and hm(p) ∈ [p1,∞). (54)

Next, notice that
h([0, p1)) = [h(0), h(p1)) = [1, h(p1)) ⊆ [1, p2) (55)

because h(p1) < p2 by (i). Since hm−1(p) ∈ [0, p1), it follows that h
m(p) = h(hm−1(p)) ∈ [1, p2).

Together with (54), this implies that hm(p) ∈ [p1,∞) ∩ [1, p2) = [p1, p2).

• p ∈ [p1, p2). Take m = 1 and the claim follows from (i).

• p ∈ [p2,∞). Since h(p) = g(p), the sequence hk(p) = gk(p) evolves as for the full communica-
tion Kalman filter. By the convergence properties of the full communication Kalman filter, [2],
limk→∞ gk(p) = p̄ and, by (44), p̄ < p̄+ δ < p2. Hence, there exists an m ∈ N such that

hm−1(p) ∈ [p2,∞) and hm(p) ∈ [0, p2). (56)

Since
h([p2,∞)) ⊆ [h(p2),∞) = [h(a2(p̄+ δ) + 1),∞) ⊆

(iv)
[h(p̄+ δ),∞) = [p1,∞),

hm(p) = h(hm−1(p)) ∈ [p1,∞). Therefore, hm(p) ∈ [0, p2) ∩ [p1,∞) = [p1, p2).

2 Proof of Proposition 2

Proof. (i): By Assumption 1, the sequence {d1, d2, . . . } defined by Algorithm 1 is finite and equal
to DN−1. Therefore, di ∈ dom(h−1) for all i < N−1 and dN−1 /∈ dom(h−1). From dom(h−1) =
[p1, h(p2))∪[h(p1), p2) (see (28)), it follows directly that di /∈ [h(p2), h(p1)) for all i < N−1. Since h−1

maps to [p1, p2) (see (28)), we have dN−1 = h−1(dN−2) ∈ [p1, p2). Together with dN−1 /∈ dom(h−1),
this implies that dN−1 ∈ [p1, p2) \

(
[p1, h(p2)) ∪ [h(p1), p2)

)
= [h(p2), h(p1)).

3



Preprint. Manuscript to be submitted to a journal.

(ii): First, we prove by induction that hi is continuous on [p1, p2) \ Di for all i ≤ N−1. From
Proposition 1, (iv), it follows that the statement is true for i = 1. Assume the statement holds for
i ∈ {1, . . . , N−2} (induction assumption (IA)). Consider

hi+1(p) = h(hi(p)), p ∈ [p1, p2). (57)

If hi is continuous at p and h is continuous at hi(p), then the composition hi+1 is continuous at
p, [3]. Hence, hi+1 is continuous on [p1, p2) except for the points Di (discontinuities of hi by IA)
and the point p̃ with hi(p̃) = d1 (d1 is the discontinuity of h). But hi(p̃) = d1 ⇔ p̃ = h−i(d1) = di+1

(since i ≤ N−2, the i times application of the inverse map is defined). Therefore, hi+1 is continuous
on [p1, p2) \ (Di ∪ {di+1}) = [p1, p2) \ Di+1.

Next, we prove that hN is continuous on [p1, p2) \ DN−1. For this, consider

hN (p) = h(hN−1(p)), p ∈ [p1, p2). (58)

By the same argument as above, hN is continuous on [p1, p2) except for the points DN−1 and the
point p̃ with hN−1(p̃) = d1 ⇔ h(p̃) = hN−1−(N−2)(p̃) = h−(N−2)(d1) = dN−1. But a point p̃ with
h(p̃) = dN−1 does not exist in [p1, p2) since dN−1 ∈ [h(p2), h(p1)) (by (i)), which is not in the
domain of h−1 (see (28)). Therefore, hN is continuous on [p1, p2) \ DN−1.

(iii): Proof by contradiction. Assume there exist di, dj ∈ DN−1 with i 6= j and di = dj . Assume
w.l.o.g. j > i and let M := j − i ≤ N − 2. Then, from Algorithm 1,

di = dj = h−1(dj−1) = h−2(dj−2) = · · · = h−M (di). (59)

It follows that, for all ℓ ∈ {0, . . . ,M−1},

di+ℓ = h−ℓ(di) = h−ℓ(h−M (di)) = h−M (h−ℓ(di)) = h−M (di+ℓ), (60)

that is, the sequence {di, di+1, . . . } is periodic with period M . But then, for all ℓ ∈ {0, . . . ,M−1}
and m ∈ N,

di+ℓ+mM = h−mM (di+ℓ) = di+ℓ , (61)

that is, Algorithm 1 never terminates, which contradicts with Assumption 1.

3 Proof of Proposition 3

Proof. The intervals are disjoint by construction.
Because of Proposition 2, (iii), the intervals in (36) are not empty. Since for all di ∈ DN−1,

di ∈ [p1, p2), which implies dī < p2; and, therefore, interval Iī in (37) is not empty. To see that
IN in (38) is not empty, consider the case where it is and show that this leads to a contradiction.
From [p1, di) = ∅ it follows that p1 = di (p1 > di is not possible since di ∈ [p1, p2)). From
di = p1 ∈ dom(h−1), it follows that di+1 is defined by Algorithm 1: di+1 = h−1(di) = h−1(p1) =
h−1(h(p̄+ δ)) = p̄+ δ = d1. But di+1 = d1 with i ≥ 1 contradicts with Proposition 2, (iii).

4



Preprint. Manuscript to be submitted to a journal.

4 Proof of Proposition 4

We first state two lemmas and one corollary that are used in the proof of Proposition 4 at the end
of this section.

Lemma 1. Let I = {I1, I2, . . . , IN} be a collection of nonempty, mutually disjoint intervals Ii :=
[ai, bi) (or Ii := (ai, bi)) for ai, bi ∈ R. A unique representation of I is given by the sets

L = {a1, a2, . . . , aN} and (62)

U = {b1, b2, . . . , bN}, (63)

of all lower and upper bounds, respectively, in the following sense: the collection Ī of intervals
defined by

Ī := {Ī1, Ī2, . . . , ĪN}, Īi := [αi, βi) (or Īi := (αi, βi)), αi ∈ L, βi ∈ U , (64)

such that, for all i, j with 1 ≤ i ≤ N , 1 ≤ j ≤ N ,

Īi 6= ∅, and Īi ∩ Īj = ∅, (65)

exists and it is unique, and Ī = I.

This lemma is useful, since it allows to work with the (unordered) set of interval bounds L and
U instead of the actual intervals. The unique relationship between the bounds (which lower bound
belongs to which upper bound) essentially follows from all intervals being disjoint and nonempty.

Proof. 3 Since, for all i ≤ N , Ii ∈ I is nonempty, ai < bi. Since the intervals I are mutually
disjoint, there exists a permutation of indices Π̃ : {1, . . . , N} → {1, . . . , N} such that

aΠ̃(1) < bΠ̃(1) ≤ aΠ̃(2) < bΠ̃(2) ≤ · · · ≤ aΠ̃(N) < bΠ̃(N). (66)

Assume w.l.o.g. (by renaming of the intervals in I) that

a1 < b1 ≤ a2 < b2 ≤ · · · ≤ aN < bN . (67)

Notice that the choice Ī1 = {Ī1, Ī2, . . . , ĪN} with Īi = [ai, bi) (Īi = (ai, bi)) satisfies (64)–(65),
and Ī1 = I. Hence, a collection of intervals Ī according to (64)–(65) exists. It remains to show
that Ī1 is unique; that is, Ī1 is the only collection of intervals satisfying (64)–(65).

First notice that, for any ai ∈ L, there is exactly one interval in Ī that has ai as a lower bound.
We will show this by contradiction.

• Assume there is more than one interval with ai as a lower bound; that is, there are [ai, bj),
[ai, bℓ) ∈ Ī ((ai, bj), (ai, bℓ) ∈ Ī) with bj , bℓ ∈ U and bj > ai, bℓ > ai (otherwise the intervals
would be empty, which contradicts with (65)). But then,

[ai, bj) ∩ [ai, bℓ) = [ai, min(bj , bℓ)) 6= ∅, (68)

( (ai, bj) ∩ (ai, bℓ) = (ai, min(bj , bℓ)) 6= ∅ )

which contradicts with (65).

3We present the proof simultaneously for the case of left-closed, right-open intervals Īi = [αi, βi) and for the case
of open intervals Īi = (αi, βi). Where required, we distinguish the two cases in the text by writing the latter case in
parentheses.

5



Preprint. Manuscript to be submitted to a journal.

• Assume there is no interval in Ī that has ai as a lower bound. Then, there can only be N − 1
intervals in total, since it follows from the previous discussion that each of the remaining
aj ∈ L \ {ai} can be chosen at most once as a lower bound. This contradicts with (64) (the
collection Ī having N elements).

Similarly, note that for any bi ∈ U , there is exactly one interval in Ī that has bi as an upper
bound.

• Assume there is more than one interval with bi as an upper bound; that is, there are
[aj , bi), [aℓ, bi) ∈ Ī ((aj , bi), (aℓ, bi) ∈ Ī) with aj , aℓ ∈ L and aj < bi, aℓ < bi (otherwise
the intervals would be empty). But then,

[aj , bi) ∩ [aℓ, bi) = [max(aj , aℓ), bi) 6= ∅, (69)

( (aj , bi) ∩ (aℓ, bi) = (max(aj , aℓ), bi) 6= ∅ )

which contradicts with (65).

• Assume there is no interval in Ī that has bi as an upper bound. Then, there can only be
N − 1 intervals in total, since each of the remaining bj ∈ U \ {bi} can be chosen at most once
as an upper bound. This contradicts with (64).

Now, take any ai ∈ L. From the discussion above, it follows that there is an interval [ai, bj) ∈ Ī
((ai, bj) ∈ Ī), bj ∈ U . We prove by contradiction that this implies bj = bi, and, hence, that Ĩ1 = Ī
is unique.

Let bi ∈ U and assume bj 6= bi. Then, from the above discussion, there exists also an interval
[aℓ, bi) ∈ Ī ((aℓ, bi) ∈ Ī), aℓ ∈ L. For [ai, bj) ((ai, bj)) to be nonempty, it follows that

ai < bj ⇒
(67)

bi ≤ bj ; (70)

and, for [aℓ, bi) ((aℓ, bi)) to be nonempty,

aℓ < bi ⇒
(67)

aℓ ≤ ai. (71)

But then,

[ai, bj) ∩ [aℓ, bi) = [ai, bi) 6= ∅, (72)

( (ai, bj) ∩ (aℓ, bi) = (ai, bi) 6= ∅ ),

which contradicts (65).

Corollary 3. Let I1, I2 be two collections of nonempty and mutually disjoint intervals. Let L1

and U1 be the sets of lower and upper bounds, respectively, of I1; and let L2 and U2 be the sets of
lower and upper bounds, respectively, of I2. If L1 = L2 and U1 = U2, then I1 = I2.

Proof. Let Ī1 be constructed from L1 and U1 according to (64)–(65). Then Ī1 = I1 by Lemma 1.
Furthermore, let Ī2 be constructed from L2 and U2 according to (64)–(65). Then Ī2 = I2 by
Lemma 1.

Since Ī1 and Ī2 are unique, L1 = L2 and U1 = U2 implies Ī1 = Ī2, and, therefore, I1 = I2.
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We give two definitions that are used in the following Lemma and in subsequent sections.

Definition 3. Let f be a function, and let I1, I2 be collections of intervals. We write

I1
f
−→ I2 (73)

to denote
∀I1 ∈ I1, ∃I2 ∈ I2 : f(I1) ⊆ I2. (74)

Definition 4. Define the binary operator ‘−N ’ as follows: for α, β ∈ Z and N ∈ N,

α−N β =

{

mod(α− β,N) if mod(α− β,N) > 0

N if mod(α− β,N) = 0,
(75)

where mod(γ,N) ∈ {0, . . . , N−1} is the (positive) remainder of γ ∈ Z divided by N . Hence, ‘−N ’
is the subtraction with subsequent modulo N operation, except that a resulting 0 is replaced by N .

Lemma 2. Consider the collection I = {I1, I2, . . . , IN} of intervals Ii defined by (36)–(38); and
let Iint := {int(I1), . . . , int(IN )}. The following statements hold:

(i) I
h
−→ I.

(ii) Iint
h
−→ Iint.

(iii) Iī−N1 =

{

[dī−1, dN−1) ī > 1

[p1, dN−1) ī = 1.

(iv) int(IN−1) =

{

(dN−1, di−1) i > 1

(dN−1, p2) i = 1.

Statements (i) and (ii) are used in the proof of Proposition 4 later in this section. Statements
(iii) and (iv) are used in Sec. 5.

Proof. (i), (ii)4: By Proposition 3, the intervals

I =
{
I1, I2, . . . , IN

}

=
{
[p1, dΠ(1)), [dΠ(1), dΠ(2)), . . . , [dΠ(N−1), p2)

}
(76)

are mutually disjoint and nonempty. Therefore, also the intervals

Iint =
{
int(I1), int(I2), . . . , int(IN )

}

=
{
(p1, dΠ(1)), (dΠ(1), dΠ(2)), . . . , (dΠ(N−1), p2)

}
(77)

are mutually disjoint and nonempty. Hence, by Lemma 1, I (Iint) is uniquely represented by

L =
{
p1, dΠ(1), . . . , dΠ(N−1)

}
=

{
p1, d1, . . . , dN−1

}
, (78)

U =
{
dΠ(1), . . . , dΠ(N−1), p2

}
=

{
p2, d1, . . . , dN−1

}
(79)

4We present the proof simultaneously for (i) and (ii). Where required, we distinguish the two cases in the text
by writing the latter case in parentheses.
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and (64)–(65) (note that (64) is a different definition for I and Iint).
Define

Ih :=
{
h
(
[p1, dΠ(1))

)
, h

(
[dΠ(1), dΠ(2))

)
, . . . , h

(
[dΠ(N−1), p2)

)}
(80)

(

Iint,h :=
{
h
(
(p1, dΠ(1))

)
, h

(
(dΠ(1), dΠ(2))

)
, . . . , h

(
(dΠ(N−1), p2)

)} )

, (81)

the collection of images of h on I (Iint). Hence, by definition,

I
h
−→ Ih (82)

(

Iint
h
−→ Iint,h

)

. (83)

Since, by Proposition 1, (iv), h is continuous and strictly monotonic increasing on each Ii ∈ I
(Ii ∈ Iint), the sets of lower and upper bounds of Ih (Iint,h) are given by

Lh :=
{
h(a) | a ∈ L

}
=

{
h(p1), h(d1), h(d2), . . . , h(dN−1)

}

=
{
h(p1), p1, d1, . . . , dN−2

}
, (84)

Rh :=
{
lim
pրb

h(p) | b ∈ U
}
=

{
h(p2), lim

pրd1
h(p), h(d2), . . . , h(dN−1)

}

=
{
h(p2), p2, d1, . . . , dN−2

}
, (85)

where we used the facts that h is continuous from the right at all a ∈ L and continuous from the
left at all b ∈ U \ {d1}; and that

h(d1) = h(p̄+ δ) = p1 (by definition of p1), (86)

h(di) = di−1, ∀i ∈ {2, . . . , N − 1} (di = h−1(di−1) from Alg. 1), (87)

lim
pրd1

h(p) = lim
pրp̄+δ

h(p) = a2(p̄+ δ) + 1 = p2 (by definition of p2). (88)

Since h is injective (Proposition 1, (iii)), h(I1∩I2) = h(I1)∩h(I2) holds for any I1, I2 ⊆ [p1, p2),
[4]. From this and the intervals I (Iint) being disjoint, it follows that the mapped intervals Ih
(Iint,h) are also disjoint. Furthermore, since h is not constant on any interval I ∈ I (it is strictly
monotonic increasing by Proposition 1, (iv)), the intervals Ih (Iint,h) are all nonempty. Hence, by
Lemma 1, Ih (Iint,h) is uniquely represented by Lh and Uh.

Notice that Lh and Uh have the same elements as L and U except for h(p1) and h(p2) in Lh and
Uh, and dN−1 in L and U . We show next that the intervals Ih (Iint,h) are contained in I (Iint).

To see this, notice first that the elements of Lh∪ Uh∪ L∪ U = {p1, p2, h(p1), h(p2), d1, . . . , dN−1}
have the following order relation:

p1 ≤ · · · · · ·
︸ ︷︷ ︸

other di’s

< h(p2) ≤ dN−1 < h(p1) ≤ · · · · · ·
︸ ︷︷ ︸

other di’s

< p2, (89)

because

p1 < h(p2) (by (44) and Proposition 1, (iv)),

h(p1) < p2 (by Proposition 1, (i)),

h(p2) ≤ dN−1 < h(p1) (by Proposition 2, (i)),

di ∈ [p1, h(p2)) ∪ [h(p1), p2), ∀i ∈ {1, . . . , N−2} (by Proposition 2, (i)).
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Therefore, the upper bound of [∗, h(p2)) ∈ Ih ((∗, h(p2)) ∈ Iint,h) can be changed to dN−1,
and the lower bound of [h(p1), ∗) ∈ Ih ((h(p1), ∗) ∈ Iint,h) to dN−1, without affecting the mutual
disjointness and non-emptiness of the intervals. This is illustrated in Fig. 10.

p1 p2

R

h(p1)h(p2) dN−1d d

Figure 10: Illustration of the enlargement of the intervals [d, h(p2)) and [h(p1), d) to [d, dN−1) and
[dN−1, d). The points unspecified are elements from {d1, . . . , dN−2}. All intervals remain nonempty
and mutually disjoint.

Let d be the lower bound of [∗, h(p2)) ∈ Ih ((∗, h(p2)) ∈ Iint,h), and let d be the upper bound
of [h(p1), ∗) ∈ Ih ((h(p1), ∗) ∈ Iint,h) (cf. Fig. 10). Note that d and d are unique since by the
disjointness and nonemptiness of the intervals, there is exactly one interval with h(p2) as an upper
bound, and there is exactly one interval with h(p1) as a lower bound. Then, define

Ĩh :=
{
I ∈ Ih | I 6= [d, h(p2)) and I 6= [h(p1), d)

}

∪
{
[d, dN−1), [dN−1, d)

}
,

(90)

that is, Ĩh has the same elements as Ih except for the replacements [d, h(p2)) → [d, dN−1) and
[h(p1), d) → [dN−1, d). Similarly, define

Ĩint,h :=
{
I ∈ Iint,h | I 6= (d, h(p2)) and I 6= (h(p1), d)

}

∪
{
(d, dN−1), (dN−1, d)

}
.

(91)

Since [d, h(p2)) ⊆ [d, dN−1) ( (d, h(p2)) ⊆ (d, dN−1) ) and [h(p1), d) ⊆ [dN−1, d) ( (h(p1), d) ⊆
(dN−1, d) ), it follows from (82) and (83) that

I
h
−→ Ĩh (92)

(

Iint
h
−→ Ĩint,h

)

. (93)

The lower and upper bounds of Ĩh (Ĩint,h) are given by

L̃h :=
{
dN−1, p1, d1, . . . , dN−2

}
, (94)

Ũh :=
{
dN−1, p2, d1, . . . , dN−2

}
. (95)

Since the intervals Ĩh (Ĩint,h) are nonempty and mutually disjoint, and L̃h = L and Ũh = U , it
follows from Corollary 3 that Ĩh = I (Ĩint,h = Iint). Using this result, the claim follows from (92)
((93)).

9
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(iii): First, notice that ī ∈ {1, . . . , N − 1} and

h(Iī) =
(37)

h([dī, p2)) = [h(dī), h(p2)) =
(86),(87)

{

[dī−1, h(p2)) if ī > 1

[p1, h(p2)) if ī = 1 .
(96)

Since h(Iī) ∈ Ih, it follows that

d =

{

dī−1 if ī > 1

p1 if ī = 1 ,
(97)

and, from (90),

[dī−1, dN−1) if ī > 1

[p1, dN−1) if ī = 1

}

∈ Ĩh = I. (98)

Since, for ī > 1, the only interval in I with lower bound dī−1 is Iī−1, and the only interval in I
with lower bound p1, is IN ,

Iī−N1 =

{

Iī−1 if ī > 1

IN if ī = 1
=

{

[dī−1, dN−1) if ī > 1

[p1, dN−1) if ī = 1.

(iv): Notice that i ∈ {1, . . . , N − 1} and

h(int(IN )) =
(38)

h((p1, di)) =
(87),(88)

{

(h(p1), di−1) if i > 1

(h(p1), limpրd1 h(p)) if i = 1 .

=

{

(h(p1), di−1) if i > 1

(h(p1), p2) if i = 1 .
(99)

Since h(int(IN )) ∈ Iint,h, it follows that

d =

{

di−1 if i > 1

p2 if i = 1 ,
(100)

and, from (91),

(dN−1, di−1) if i > 1

(dN−1, p2) if i = 1

}

∈ Ĩint,h = Iint. (101)

Since the only interval in Iint with lower bound dN−1 is int(IN−1),

IN−1 =

{

(dN−1, di−1) if i > 1

(dN−1, p2) if i = 1.

Proof of Proposition 4.

Proof. 5 By Lemma 2, (i) and (ii), we know that, for any I ∈ I (I ∈ Iint), h(I) is contained in
an interval of I (Iint). Since the intervals are disjoint (Proposition 3), there is exactly one interval

5We present the proof simultaneously for (i) and (ii). Where required, we distinguish the two cases in the text
by writing the latter case in parentheses.
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that contains h(I). Therefore, it suffices to only consider the lower bound of an interval to identify
where the interval is mapped to.

Notice that by Proposition 1, (iv), for all [a, b) ∈ I ((a, b) ∈ Iint),

h([a, b)) = [h(a), lim
pրb

h(p)) (102)

( h((a, b)) = (h(a), lim
pրb

h(p)) ).

From Algorithm 1, it follows that h(di) = di−1 for all i ∈ {2, . . . , N−1}. Therefore (there is
exactly one interval in I (Iint) with di−1 as lower bound),

h(Ii) = h([di, ∗)) = [di−1, ∗) ⊆ Ii−1 ∀i ∈ {2, . . . , N−1} (103)

( h(int(Ii)) = h((di, ∗)) = (di−1, ∗) ⊆ int(Ii−1) ∀i ∈ {2, . . . , N−1} ).

Similarly, since h(d1) = h(p̄+ δ) = p1 by the definitions of d1 and p1, it follows that

h(I1) = h([d1, ∗)) = [p1, ∗) ⊆ IN (104)

( h(int(I1)) = h((d1, ∗)) = (p1, ∗) ⊆ int(IN ) ).

From (89), it follows that h(p1) ∈ [dN−1, ∗) = IN−1 (h(p1) ∈ (dN−1, ∗) = IN−1). Therefore,

h(IN ) = h([p1, ∗)) = [h(p1), ∗) ⊆ IN−1 (105)

( h(int(IN )) = h((p1, ∗)) = (h(p1), ∗) ⊆ int(IN−1) ).

5 Proof of Proposition 5

Proof. To show existence of the intervals Ĩ = {Ĩ1, . . . , ĨN}, we define intervals Ĩi and prove that
the properties (i)–(iv) hold for these. Let m1 := ī+ 1 (> 1). We define recursively

ĨN−1 := hm1([dī, p2]), (106)

Ĩi−N1 := h(Ĩi) ∀i ∈ {1, . . . , N−1}, (107)

where ‘−N ’ is as defined in Definition 4. Notice that (106) is the map of a closed interval.

We first show that (i)–(iii) hold for ĨN−1. Notice that ī ∈ {1, . . . , N−1}. We have

h([dī, p2]) = [h(dī), h(p2)] (by Prop. 1, (iv)) (108)

=

{

[dī−1, h(p2)] if ī > 1

[p1, h(p2)] if ī = 1

⊆

{

[dī−1, dN−1) if ī > 1

[p1, dN−1) if ī = 1
(by Assump. 2)

= Iī−N1 (by Lemma 2, (iii)). (109)

From Proposition 4, it follows that, for all i ∈ {1, . . . , N} and for all m ∈ {0, 1, 2, . . . },

hm(Ii) ⊆ Ii−Nm, (110)

hm(int(Ii)) ⊆ int(Ii−Nm). (111)

11
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With this,

hī([dī, p2]) = hī−1(h([dī, p2])) ⊆
(109)

hī−1(Iī−N1) ⊆
(110)

I(̄i−N1)−N (̄i−1) = IN , (112)

and

ĨN−1 = hm1([dī, p2]) = hī+1([dī, p2]) ⊆ h(IN ) (by (112))

= h([p1, di)) (by (38))

=

{

[h(p1), di−1) if i > 1

[h(p1), p2) if i = 1
(by Prop. 1, (iv))

⊆

{

(dN−1, di−1) if i > 1

(dN−1, p2) if i = 1
(dN−1 < h(p1) by Prop. 2, (i))

= int(IN−1) (by Lemma 2, (iv))

⊆ IN−1. (113)

Thus, (ii) holds for ĨN−1.
Property (i) can be seen as follows: h([dī, h(p2)]) is closed (see (108)). Since h([dī, h(p2)]) ⊆

Ii−N1 (see (109)), it follows from Proposition 1, (iv), that h is continuous and strictly mono-
tonic increasing on h([dī, h(p2)]). Similarly, by (110), hm([dī, h(p2)]) = hm−1(h([dī, h(p2)])) ⊆
hm−1(Ii−N1) ⊆ Ii−Nm,m ≥ 1; thus, h is continuous and strictly monotonic increasing on hm([dī, h(p2)]).
Since, for a continuous and strictly monotonic increasing function f and a, b ∈ R, f([a, b]) =
[f(a), f(b)] (the image of a closed interval under f is a closed interval), hm([dī, h(p2)]) is closed for
any m ≥ 1 and, in particular, for m = m1.

To show (iii) for ĨN−1, let m2 := N −m1 (≥ 0) and consider

hm2(ĨN−1) ⊆
(113)

hm2(IN−1) ⊆
(110)

I(N−1)−Nm2
= Iī =

(37)
[dī, p2) ⊆ [dī, p2], (114)

where we used

(N − 1)−N m2 = (N − 1)−N (N − 1− ī) = mod(N − 1−N + 1 + ī, N) = ī. (115)

Property (iii) then follows by

hN (ĨN−1) = hm1(hm2(ĨN−1)) ⊆
(114)

hm1([dī, p2]) =
(106)

ĨN−1. (116)

Hence, we know that (i)–(iii) hold for i = N − 1. We next prove (i)–(iii) for i ∈ {1, . . . , N − 2, N}
by induction.

Induction assumption (IA): (i)–(iii) valid for some i ∈ {1, . . . , N − 1}. Show that this implies
the validity for i−N 1.

Property (ii) holds since

Ĩi−N1 =
(107)

h(Ĩi) ⊆
IA (ii)

h(int(Ii)) ⊆
(111)

int(Ii−N1) ⊆ Ii−N1. (117)
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Since Ĩi ⊆ Ii (IA (ii)), h is continuous and strictly monotonic increasing on Ĩi. Moreover, Ĩi is
closed (IA (i)). Together, this implies that the image under h, Ĩi−N1 = h(Ĩi), is also closed; hence,
(i) is true.

Property (iii) can be seen to hold by

hN (Ĩi−N1) =
(107)

hN+1(Ĩi) = h(hN (Ĩi)) ⊆
IA (iii)

h(Ĩi) =
(110)

Ĩi−N1. (118)

This completes the proof of (i)–(iii).

To prove statement (iv), take Ii ∈ I for any i ∈ {1, . . . , N}. Let m3 := i−N ī (≥ 1). Then,

hm3(Ii) ⊆
(110)

Ii−Nm3
= Ii−N (i−N ī) = Iī =

(37)
[dī, p2) ⊆ [dī, p2], (119)

and, thus,

hm1+m3(Ii) = hm1(hm3(Ii)) ⊆
(119)

hm1([dī, p2]) =
(106)

ĨN−1. (120)

Let m4 := (N −N i)− 1 (∈ {0, . . . , N − 1}). Then,

hm1+m3+m4(Ii) = hm4(hm1+m3(Ii)) ⊆
(120)

hm4(ĨN−1) =
by (107)

Ĩ(N−1)−Nm4

= Ĩ(N−1)−N ((N−N i)−1) = Ĩi. (121)

Now, consider different cases for i:

• i = N . Since m1 +m3 +m4 = (̄i + 1) + (N − ī) + (N − 1) = 2N , (iv) follows directly from
(121).

• ī < i < N . Since m1+m3+m4 = (̄i+1)+ (i− ī)+ (N − i− 1) = N , (121) reads hN (Ii) ⊆ Ĩi,
which implies (iv) as follows:

h2N (Ii) = hN (hN (Ii)) ⊆
(121)

hN (Ĩi) ⊆
(iii)

Ĩi. (122)

• 1 ≤ i ≤ ī. Since m1+m3+m4 = (̄i+1)+(i− ī+N)+ (N − i− 1) = 2N , (iv) follows directly
from (121).

6 Proof of Proposition 6

The following Lemma is used in the proof of Proposition 6.

Lemma 3. For all p ∈ [p1, p̄+ δ), there exists an m ∈ N such that

p, h(p), . . . , hm−1(p) < p̄+ δ and hm(p) ≥ p̄+ δ. (123)

Furthermore, there exists an N̄ ∈ N (independent of p) such that m ≤ N̄ , and

a2N̄ < a2
p̄+ δ

p1
. (124)
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The lemma says that if p(0) starts anywhere in [p1, p̄ + δ), there is a maximum number N̄ of
iterations (22), for which p(k) remains in [p1, p̄+ δ). The slope of N̄ successive maps in [p1, p̄+ δ)
is bounded by (124).

Proof. Let m ∈ N such that p, h(p), . . . , hm−1(p) < p̄+ δ (such an m exists since p < p̄+ δ). Then,
from (23), for all 1 ≤ ℓ ≤ m,

hℓ(p) = a2 hℓ−1(p) + 1 > a2 hℓ−1(p), (125)

and, therefore,
hℓ(p) > a2ℓ p. (126)

Since, |a| > 1, limm→∞ a2mp = ∞. Hence, there exists an m such that hm(p) ≥ p̄ + δ and (123)
holds. Note that m depends on p.

Now, we seek the largest possible integer m such that (123) holds. Since hℓ(p1) ≤ hℓ(p) for all
p ∈ [p1, p̄+ δ) and ℓ ≤ m, the greatest m such that (123) holds is N̄ ∈ N defined by

p1, h(p1), . . . , h
N̄−1(p1) < p̄+ δ and hN̄ (p1) ≥ p̄+ δ. (127)

Hence, N̄ is independent of p, and m ≤ N̄ . From (126) and (127), it follows that

a2(N̄−1) p1 < hN̄−1(p1) < p̄+ δ ⇒
(p1>0, a2>0)

a2N̄ < a2
p̄+ δ

p1
.

Proof of Proposition 6.

Proof. Take any Ii ∈ I and any p̃ ∈ int(Ii).
Differentiability: By Proposition 1, (v), h is differentiable for any p ∈ int(I), I ∈ I. So, in

particular, h is differentiable at p̃. We prove by induction that hj is differentiable at p̃ for all j ≥ 1.
Induction assumption (IA): hj is differentiable at p̃. By the chain rule, [3], hj+1(p̃) = h(hj(p̃)) is

differentiable at p̃ if hj is differentiable at p̃ (IA) and h is differentiable at hj(p̃). From Proposition 4,
(ii), (or equation (111)) it follows that

hj(p̃) ∈ int(Ii−N j). (128)

Since h is differentiable on any int(I) with I ∈ I (so, in particular, on int(Ii−N j)), the differentia-
bility of hj+1 at p̃ follows.

Contraction mapping: By the chain rule,

(hN )′(p̃) = h′(hN−1(p̃)) · (hN−1)′(p̃)

= h′(hN−1(p̃)) · h′(hN−2(p̃)) · (hN−2)′(p̃)

= h′(hN−1(p̃)) · h′(hN−2(p̃)) · . . . · h′(h(p̃)) · h′(p̃)

=

N−1∏

j=0

h′(hj(p̃)) =
∏

p∈P

h′(p), (129)

with
P := {p̃, h(p̃), . . . , hN−1(p̃)}. (130)
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Notice from (128) for j = 0, 1, . . . , N−1 that, for every point p ∈ P, there is exactly one interval
I ∈ I such that p ∈ int(I).

Let IL ⊂ I denote the set of all intervals I ∈ I with I < p̄+δ (intervals left of the discontinuity
p̄+ δ), and let IR ⊂ I denote the set of all I ∈ I with I ≥ p̄+ δ (intervals right of the discontinuity
p̄ + δ). Furthermore, let NL and NR denote the number of elements in IL and IR, respectively.
Notice that NL ≥ 1 and NR ≥ 1 by the construction of the intervals. Then,

h′(p) = a2 ∀p ∈ int(I), I ∈ IL, (131)

which follows directly from (23); and

h′(p) = g′(p) < g′(p̄+ δ) ∀p ∈ int(I), I ∈ IR, (132)

where the inequality follows from g′ being strictly monotonically decreasing, which is seen from

g′′(p) = −
2a2c2

(c2p+ 1)3
< 0. (133)

With these results, it follows from (129) that

(hN )′(p̃) < a2NL
(
g′(p̄+ δ)

)NR . (134)

Since a2 > 1 and g′(p̄ + δ) < 1, it depends on the ratio of NR to NL whether the map hN is
contractive. We investigate this ratio next.

Define a subset I ⊂ I as a maximum successive sequence of M intervals all being left of p̄+ δ:

I :=
(
Iℓ, Iℓ−N1, . . . , Iℓ−N (M−1)

)
(135)

such that Iℓ, Iℓ−N1, . . . , Iℓ−N (M−1) ∈ IL, M ≤ NL,

and Iℓ+N1, Iℓ−NM ∈ IR,

where ‘+N ’ is analogously defined to ‘−N ’ in Definition 4:

α+N β =

{

mod(α+ β,N) if mod(α+ β,N) > 0

N if mod(α+ β,N) = 0,
(136)

for α, β ∈ Z and N ∈ N. Let there be κ ≥ 1 distinct interval subsequences (135), which we call
I1, . . . , Iκ with M1, . . . ,Mκ their numbers of elements, respectively. An example with two interval
subsequences I1, I2 is provided in Fig. 11. Notice that NL = M1 + · · ·+Mκ.

Using Lemma 3, it can be shown by contradiction that Mj ≤ N̄ for all j ≤ κ, where N̄ is
as defined in Lemma 3. Assume Mj > N̄ . Then, there exists Iℓ ∈ I and p ∈ Iℓ such that
p, h(p), . . . , hMj−1(p) < p̄+ δ and hMj ≥ p̄+ δ. But, from Lemma 3, it then follows that Mj ≤ N̄ ,
which contradicts the assumption.

From Mj ≤ N̄ , j ≤ κ, it follows that

NL = M1 + · · ·+Mκ ≤ κN̄. (137)

For each subsequence of intervals Ij , j ≤ κ, there is at least one distinct interval I ∈ IR (namely,
Iℓ−NM ); hence,

NR ≥ κ. (138)
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p1 p2
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d3 d1d7 d2d4 d8 d6 d5

I9 I4 I8 I3 I7 I2 I6 I1 I5

Figure 11: Illustration of the intervals I obtained for the parameter values a = 1.2, c = 1, and
δ = 9.6 (for better visibility the relative scaling of the intervals has been adapted). There are two
distinct interval subsequences satisfying (135): I1 = (I4, I3, I2) and I2 = (I9, I8, I7, I6).

Combining (137) and (138), we obtain a bound on the ratio of NL and NR,

NL ≤ κN̄ ≤ NRN̄ . (139)

With this result, we can rewrite (134),

(hN )′(p̃) < a2NL
(
g′(p̄+ δ)

)NR

≤ a2NL a2(NRN̄−NL) (g′(p̄+ δ))NR

=
(
a2N̄ g′(p̄+ δ)

)NR . (140)

We show below that a2N̄ g′(p̄+δ) < 1. With this, the statement of Proposition 6 follows from (140)
with L := (a2N̄ g′(p̄+ δ))NR < 1.

It thus remains to show that
a2N̄ g′(p̄+ δ) < 1. (141)

First, notice from Lemma 3 that

a2N̄ g′(p̄+ δ) < a2
p̄+ δ

p1
g′(p̄+ δ) =

(51)

a4 (p̄+ δ)

p1 (c2(p̄+ δ) + 1)2
. (142)

Recall that

p1 = h(p̄+ δ) = g(p̄+ δ) =
(50)

(a2 + c2)(p̄+ δ) + 1

c2(p̄+ δ) + 1
, (143)

and that p̄ is the positive solution of (6) (with q = r = 1), which is given explicitly by

p̄ =
a2 − 1 + c2 + S

2c2
> 0 (144)

with S :=
√

(a2 − 1 + c2)2 + 4c2 > 0. With (143) and (144), the right-hand side of (142) can be
rewritten,

a4 (p̄+ δ)

p1 (c2(p̄+ δ) + 1)2
=

a4 (p̄+ δ)
(
(a2 + c2)(p̄+ δ) + 1

) (
c2(p̄+ δ) + 1

)

=
a4
(
a2−1+c2+S

2c2
+ δ

)

(

(a2 + c2)
(
a2−1+c2+S

2c2
+ δ

)

+ 1
)(

c2
(
a2−1+c2+S

2c2
+ δ

)

+ 1
)

=
NUM

DEN
(145)
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with6

NUM := 4c2 · a4
(
(a2−1)+c2+S

2c2
+ δ

)

(146)

= 2Sa4 − 2a4 + 2a6 + 2a4c2 + 4a4c2δ

DEN := 4c2 ·
(

(a2 + c2)
(
a2−1+c2+S

2c2
+ δ

)

+ 1
)(

c2
(
a2−1+c2+S

2c2
+ δ

)

+ 1
)

(147)

= S2a2 + S2c2 + 2Sa4 + 4Sa2c2δ + 4Sa2c2 + 4Sc4δ + 2Sc4

+ 2Sc2 + a6 + 4a4c2δ + 3a4c2 + 4a2c4δ2 + 8a2c4δ + 3a2c4

+ 2a2c2 − a2 + 4c6δ2 + 4c6δ + c6 + 4c4δ + 2c4 + c2.

Since DEN > 0 (can be seen from (147) and a2 > 0, c2 > 0, δ > 0, S > 0, and a2 − 1 > 0),

NUM

DEN
< 1 ⇔ DEN−NUM > 0. (148)

Using S2 = (a2 − 1 + c2)2 + 4c2, we get6

DEN−NUM = 2Sc2 + 2Sc4 + 4c4δ + 4c6δ + 2c2 + 4c4 + 2c6 + 2a2c2

+ 6a2c4 + 4a4c2 + 4c6δ2 + 4Sa2c2 + 8a2c4δ + 4a2c4δ2

+ 4Sc4δ + 4Sa2c2δ. (149)

Since a2 > 0, c2 > 0, δ > 0, and S > 0, all summands in (149) are positive. Hence, DEN−NUM > 0,
and (141) follows from (142), (145), and (148).

7 Proof of Corollary 2

Proof. Take any Ĩi ∈ Ĩ and any p, p̃ ∈ Ĩi. Without loss of generality, p̃ < p (for p = p̃ the statement
holds trivially). By Proposition 2, (ii), and 5, (ii), hN is continuous on [p̃, p] and, by Proposition 6,
hN is differentiable on (p̃, p). The mean value theorem, [3], assures the existence of a ξ ∈ (p, p̃)
such that

hN (p)− hN (p̃)

p− p̃
= (hN )′(ξ). (150)

Therefore, with Proposition 6,

|hN (p)− hN (p̃)| =
∣
∣(hN )′(ξ)

∣
∣ |p− p̃| ≤ L|p− p̃|.

6 A MATLAB program performing the algebraic manipulations is available at www.cube.ethz.ch/downloads.
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