Parametrized Infinite-Horizon Model Predictive Control for Linear
Time-Invariant Systems with Input and State Constraints*

Michael Muehlebach and Raffaello D’ Andreal

Abstract—In this work we propose a parametric description
of input and state trajectories in order to approximate infinte-
horizon optimal control problems encountered in model predic-
tive control. The consequences of applying the parametric de-
scription to receding horizon control (model predictive control)
are discussed. In particular, recursive feasibility and closed-
loop stability are shown. In contrast to the standard, discrete-
time finite-horizon model predictive control formulation, the
parametric approach provides inherent stability guarantees and
has typically fewer optimization variables. A numerical example
is used to illustrate the proposed control algorithm.

I. INTRODUCTION

The ability to cope with various operating conditions and
to explicitly exploit the full problem structure, including the
system dynamics and input/state constraints, makes model
predictive control (MPC) a promising and successful control
strategy. The underlying principle of MPC is the following:
In each sampling interval an optimization problem including
a prediction of the state’s trajectory is solved, and the first
portion of the obtained input is applied to the system.
The procedure is then repeated in the next time step. In
order to capture the complete evolution of the system, the
optimization problem involves ideally an infinite prediction
horizon. In practice, this is often intractable and therefore
the prediction horizon is typically truncated leading to the
standard finite-horizon MPC formulation, [1], where the
dynamics are commonly formulated in discrete time. Note
that also continuous time finite-horizon MPC formulations
have been proposed, see e.g. [2], [3].

Rather than truncating the time horizon, we propose to
use a parametric description of input and state trajectories in
order to approximate the optimization problem involving an
infinite horizon. For polytopic state and input constraints, a
quadratic objective function and linear time-invariant dynam-
ics, a convex quadratic program is obtained. We will discuss
recursive feasibility and show that the infinite-horizon formu-
lation provides inherent stability guarantees. This contrasts
to the finite-horizon formulation, where terminal state con-
straints and a terminal cost are usually introduced to ensure
stability, see e.g. [4]. Moreover, stability is even retained
when the optimization routine is terminated prematurely (in
fact, after only one iteration provided that the solver is
monotonic in the cost).
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In addition, the parametric formulation leads to an opti-
mization problem with typically fewer variables compared
to the discrete-time finite-horizon description, making it
attractive for online MPC on embedded platforms with lim-
ited memory and computational resources. To highlight the
numerical efficiency of the proposed parametric formulation
simulations of an inverted pendulum system are presented.

A. Related Work

MPC is commonly formulated using a linear time-
invariant, discrete-time state-space model and a quadratic
cost over a finite horizon, see [1], [5] and references therein.
This leads to a quadratic program, which can be solved by
standard algorithms and software packages. However, due to
the finite horizon formulation, stability and feasibility for all
time instants cannot be guaranteed. For the standard MPC
formulation, these questions have been extensively studied
in the literature, see e.g. [4], [6], [7]. Most stability proofs
rely on using the finite-horizon value function as a Lyapunov
function. Common techniques to guarantee closed-loop sta-
bility are either choosing the prediction horizon large enough,
enforcing final state constraints, or introducing a final state
cost in the hope to mimic the infinite-horizon problem. In
addition, truncating the time horizon leads to a discrepancy
between the closed-loop performance objective and the finite-
horizon open-loop objective, which is minimized at every
time step. An approach to quantify this difference is given
in [7], for example.

As opposed to the finite-horizon formulation, stability and
feasibility are inherent to the problem formulation, as we will
show in the remainder. Moreover, due to the infinite horizon
formulation, there is typically a smaller difference between
the open-loop objective, which is minimized at every time
step, and the resulting closed-loop performance objective.

In [2], [3], the input trajectory is parametrized by a
linear combination of basis functions (Laguerre or Kauz).
This allows for a more compact problem description, with
fewer optimization variables, which potentially provides
computational benefits. Still, the finite-horizon formulation
is retained.

The use of a parametric description via Laguerre or
Kauz basis functions for the identification of linear time-
invariant systems has a rich history, see e.g. [8]-[10] and
references therein. In system identification, the motivation
for using basis functions is to obtain low order models and
to incorporate a priori information about the system’s time
constants.



Likewise, the approach pursued herein includes also a
parametric description via linear combinations of basis func-
tions. However, we parametrize input and state trajectories,
use a variational formulation of the dynamics (Galerkin
approach) to obtain a finite dimensional representation of the
state and input trajectories, tackle the infinite horizon prob-
lem, and investigate the consequences regarding stability and
feasibility of the resulting MPC algorithm. The variational
formulation has the advantage that the framework can be
extended to nonlinear systems. Moreover, we do not restrict
ourselves to a special type of basis functions, e.g. Laguerre
or Kauz functions, but provide two conditions which the
basis functions have to fulfill in order for the stability and
feasibility results to be valid.

B. Outline

Section II introduces the notation and formulates the non-
parametric infinite-horizon optimal control problem used as a
starting point. The problem is approximated by restricting the
input and state trajectories to be linear combinations of basis
functions. Using a Galerkin approach, a finite dimensional
representation of the dynamics is obtained. The section
concludes by discussing convergence of the optimizers of
the approximated optimal control problem. In Section III the
consequences of using the approximated optimal control-
problem for MPC are discussed. In particular, recursive
feasibility and stability is shown. Section IV presents simu-
lation results of an inverted pendulum system and compares
the traditional discrete-time finite-horizon MPC formulation
to the parametric formulation proposed herein. The paper
concludes with final remarks in Section V.

II. PROBLEM FORMULATION

In the following we derive an approximation of the fol-
lowing problem:

Joo = inf / " lat), u(t), )t
0

s.t. #(t) = Az(t) + Bu(t), z(0) = o, (1)
z(t) e X, u(t) eU, Vtel0,00),
z € L*([0,00),R™), wu € L*([0,00),R™),

where X, U are closed, convex subsets of R™, respectively
R™, and I(z, u, t) is differentiable in each argument, strongly
convex and positive definite in = and v (meaning I(z, u,t) >
0 for all z # 0, u # 0, for all ¢ € [0,00) and {(0,0,¢) =0
for all ¢ € [0, 00)). The space of square integrable functions
mapping from [0,00) to R? is denoted by L?([0,00), RP)
and o € R"™ represents the initial condition. We assume
that J,, is finite.

Next, the original problem is approximated by introducing
a parametrization of input and state trajectories using basis
functions, and a variational formulation of the dynamics.

A. Parametrization of Input and State Trajectories

We introduce the parametrized state and input trajectories,
denoted by Z(t) and @(t) as linear combinations of basis

functions 7 € L2([0, 00), R®), that is
i(t) = (L, @7(t) 0w, 0(t) == L @ 7(1) 10, ()

where ® denotes the Kronecker product, I, € RP*? the
identity matrix, and 7, € R™® and 7, € R™? the parameter
vectors. It is assumed that the basis functions fulfill the
following two assumptions:

Al) They are linearly independent.
A2) They fulfill 7(¢) = M7(t) for all ¢ € [0, c0), for some
matrix M, € R%*5,

Assumption A2) will become important in Section II-B
where it is shown that the parametrized state and input trajec-
tories fulfill the equations of motion. Moreover, assumption
A2) leads to the following time-shift property, which is used
to demonstrate recursive feasibility and stability of the MPC
algorithm in Section III-B.

Proposition 2.1: From Assumption A2) it follows that for
arbitrary parameters 1 € R® and any time-shift ¢, there exists
a set of parameters ) € R® such that 7(t — t,)ThH = 7(t)n
for all ¢ € [t, 00).

Proof: From A2) it follows that
7(t) = exp(Mxt)7(0), Vt € [0,00).

Note that the matrix exponential is well-defined since 7 €
L?([0,00),R?). This implies that

7(t —t.)77 = 7(0)T exp(Myt)T exp(—Myt,) "7
=7(t)" exp(—Mxts) i = 7(t) .

B. Variational Formulation of the Dynamics

Due to the fundamental Lemma of the calculus of varia-
tions, [11], the equivalence between

#(t) = Ax(t) + Bu(t), Vt € [0,00) 3)

and
/OOO Sp(t)T(Az(t) + Bu(t) — @(t))dt = 0, “)

for all variations dp € L?([0,00), R™), holds (in the almost
everywhere sense). By restricting the variations dp to be
linear combinations of basis functions!, i.e. 6p(t) = (I, ®
7(t))Ténp, with n, € R™®, and inserting the parametrized
input and state trajectories, (4) is simplified to

oy /OOO(In @ 7(t))(AZ(t) + Bu(t) — z(t))dt =0, (5)

for all dn, € R™. Combined with (2), a linear relationship
between the parameters of the state and input trajectories is
found,

(A@U, — I, Uy MY e + (B@ Uy ) =0, (6)
where U, := [° 7(t)7(t)Tdt.

'We use the same basis functions to parametrize state and input trajec-
tories, as well as variations 6p.



We show next that the parameters 7, and 7,, satisfying (6)
fulfill the equations of motion.
Proposition 2.2: The following are equivalent:
1) Z(t) = Ai(t) + Baf(t), for all t € [0, 00).
2) (AU, — I, @ UM )n, + (B®U,)n, = 0.

Proof: Without loss of generality we assume that the
basis functions 7 are orthonormal. Note that orthonormal
basis functions can be constructed using the Gram-Schmidt
process, [12, p.50]. This implies that U, reduces to the
identity and therefore the condition 2) reads as

(AL, — I, @ M)y + (B® L), =0.  (7)

From i(t) = Ai(t) + Ba(t) for all t € [0,00) it can be
inferred that ("1 (t) = Az () + Ba(™ (t) is fulfilled,
where #(™) denotes the n’th derivative with respect to time.
The dynamics Z(t) = AZ(t)+ Bi(t) are therefore equivalent
to

Lo (r(t),7(t), ..., 77D (@)T
(AR I, — I, ® M{)n, +(B® I)n,) =0,

which is obtained by inserting #(t) = (I, ® 7(t))"n,
and @(t) = (I,, ® 7(t))"n, and separating time-dependent
and time-independent terms. Due to the linear inde-
pendence of the basis functions 7, the matrix I, ®
(7(t),7(t),..., 7D ()T is full rank for all ¢ € [0, 00),
[13, p.1079]. Thus, (8) and (7) are equivalent, which con-
cludes the proof. [ ]

®)

C. Approximation of (1)

In the previous section it was shown that, given the
parametrization of input and state trajectories as linear com-
bination of basis functions, the equations of motion can be
simplified to the linear relationship (6). This motivates the
approximation of the original optimal control problem (1) by

Js :=min /OO (I @ 7(t) 0e, (Im @ 7(t)) Ty, t)dt
0

st. (AU, — I, @ U M1 ), + (B® U, )n, =0,
(I, @ 7(0) e = 20, (In®@7(t)"ne € X,
(In @ 7(t)) "1, €U, Yt €[0,00).
)]

Note that the subscript s refers to the number of basis
functions used, which is linked to the dimensions of the
parameter vectors 7, and 7. In general the integral of the
running cost cannot be solved analytically unless the running
cost [(x, u,t) has a special form (e.g. quadratic in x and w).

If the optimization problem (9) is feasible for at least sg
basis functions, then the sequence of optimal values Jg, Js1,
..., with s > s, is decreasing. This is because the optimizer
with cost Js is a solution candidate for the optimization
problem over s+1 basis functions (the optimization over s+1
basis functions has the optimal cost J;1). Note that feasible
candidates of (9) need to satisfy the equations of motion, as
well as input and state constraints; therefore extending the
vectors 7, and 7,, obtained from the optimization over s basis
functions with zeros allows to construct a feasible solution

for the problem (9) with s + 1 basis functions. Likewise,
the minimizer of (9) is also a candidate for the optimization
problem (1), which implies that J,, < Js for all integers
s> 0.

The fact that the sequence of optimal values is decreasing
implies the existence of a weakly convergent subsequence
of the state and input trajectories, Z(t) and @(t). This is
because from the positive definiteness and strong convexity
of {(x,u,t) it follows that

Wz, u,t) > g’ o+ au'u, V€ [0,00), (10)

with o, > 0, o, > 0, which implies that
oo 2 |3 + aullill3 (11)
for any s > sg, where || - ||2 denotes the L?-norm. This im-

plies that ||Z||5 and ||&||2 are bounded sequences (in s). Com-
bined with the fact that L2([0, 00), R™)x L%([0, 00), R™) is a
Hilbert space it implies the existence of a weakly convergent
subsequence of (&, ), [14, p.163].

The results are summarized by the following proposition.

Proposition 2.3: Let (9) be feasible for s, basis functions,
let ° and @® denote the optimizers of (9), and let J, denote
the corresponding optimal cost. If the basis functions fulfill
assumptions Al) and A2) it holds that

1) Js > Jeg1 2 Jsp2 >+ > Jo, for all s > sg.

2) There exists a subsequence s(k), k = 1,2,..., such

that #°(%) and @**) converge weakly.

III. APPLICATION TO MPC

In the following section we apply the finite dimensional
approximation (9) to MPC. In particular, recursive feasi-
bility, closed-loop stability and the implementation of the
constraints z(t) € X and u(t) € U will be discussed.

A. Notation and Definition of the MPC Algorithm

The following notation is used: The closed-loop state and
input trajectories are denoted by x(t) and u(t). We refer to
the predicted trajectories as Z(t,|t), @(t,|t), where ¢, > 0
denotes the prediction horizon. For ¢, = 0 the prediction
matches the exact trajectory, that is Z(0[t) = x(t), @(0[t) =
u(t) for all ¢ € [0, 00). The predictions Z(t,|t) and a(ty|t)
are obtained by solving (9) subject to the initial condition
xo = x(t), which yields the parameters 7, and 7, defining
F(ty|1), @lty[t) by F(tylt) = (In @ 7(t,)) e and a(ty|t) =
(L, ®7(tp)) "ny. In order to highlight the dependence of the
optimal cost in (9) on the initial condition, the optimal cost
is denoted by J, = J,s(z(1)).

The MPC algorithm consists of the following steps: The
optimization problem (9) is solved at the sampling intervals
t = kT, (Ts is the sampling period), with respect to the
current state as initial condition, i.e. zo = x(t). This yields
the optimal cost Js(z(t)), together with the state and input
predictions Z(t,|t) and %(t,|t). In between the time intervals
kT, that is t € [kTs, (k+ 1)Ts) the predicted input u(t) =
u(t — kTs|t) is applied to the system, until the optimization
is repeated at time t = (k + 1)T.



B. Recursive Feasibility and Stability

The time-shift property given by Proposition 2.1 is of
paramount importance for both, stability and recursive feasi-
bility. In fact, it implies the existence of a feasible candidate
of (9) at time (k + 1)Ts given a feasible solution of (9)
at time ¢ = kT. This is because the predictions Z(t,[t) and
U(tp[t), that is the optimizer of (9) at time ¢ = kT, fulfill the
equations of motion and the initial condition Z(0[t) = x(¢).
They are therefore exact, i.e. z(t+t,) = Z(tp[t), u(t+1t,) =
a(tpt) for all ¢, € [0,T,). Hence, by the time-shift property,
the feasible candidates

E(tp|(k+ D)T) = (In @ T(tp) ") (In ® exp(MrTs) " )1a
Wty (k+ 1D)Ts) = (Im @ 7(tp)") (Im ® exp(MxTs) " ).,

for the optimization at time ¢t = (k+ 1)7 are obtained from
F(tplt) = (I @ 7(6,)) T, and @ty ) = (I @ 7(t,)) T
This proves readily:

Proposition 3.1: Provided that the optimization problem

(9) is feasible at time ¢t = 0, it remains feasible for all times
t>0.
Moreover, choosing the optimal cost of (9) as Lyapunov
function (as frequently done in the discrete-time finite-
horizon setting, see e.g. [4]) can be used to demonstrate
closed-loop stability.

Proposition 3.2: The resulting closed-loop system is
asymptotically stable, provided that the optimization problem
(9) is feasible at time ¢t = 0.

Proof: By Proposition 3.1 the problem (9) remains
feasible for all times ¢ > 0. We will show that the cost
Js(z) (given by (9)) acts as a Lyapunov function. Note that
Js(xz) > 0, for all z # 0 and Js(x) = O if and only
if x = 0, since the evolution of the predicted state % is
continuous and [(x, u,t) is positive definite. Without loss of
generality we fix £k > 0 and let the solution of (9), with
x(kTs) as initial condition, be denoted by Z(tp|t), @(tplt).
The corresponding minimum cost is given by J,(z(kT5)).
Since the prediction ¥ is exact, the state evolves according
to x(t) = Z(t — kT,|kTs), Vt € [kTs, (k + 1)Ts). At time
(k + 1)T; the problem (9) is solved again, this time with
initial condition x((k+1)T). The time-shift property implies
that the predicted trajectories Z(,|t), @(tp|t) are feasible
candidates, which yields the upper bound

Js(@((k +1Ty)) < /

Ts

o0

WE(tp|kTs), Uty kTs), tp)dt,.
Note that the right-hand side can be rewritten as
Ts
T@(L) = [ 1R 3T ),
0

resulting in

Jo(@ (b + 1)T) — Jy(a(KTy) <
Ts
- [T A T )y,
0

Positive definiteness of the running cost I(, u, t) implies that
the right-hand side is always less than zero (even strictly less

than zero except for z(kTs) = 0), which concludes the proof.
|
Note that the cost Jg(x) even acts as a Lyapunov function
if the optimization (9) is not solved completely. It is merely
required that the cost Jy(x((k + 1)Ts)) is smaller than
Js(x(kTs)). If the optimization at time ¢t = (k + 1)T; is
initialized with the shifted version of the previous solution
(obtained at time t = kT,), such a decrease is obtained
after only one iteration of the optimization routine, provided
that the solver is monotone in the costs. Thus, even if the
optimization is stopped prematurely, stability can still be
guaranteed.

C. Implementation of Constraints

A certain difficulty associated with solving the optimiza-
tion (9) is the implementation of the input and state con-
straints, i.e. ensuring that input and state trajectories fulfill

(t)ye X, alt)el,

t € [0,00). (12)

It turns out that the requirement (12) induces closed and
convex finite dimensional sets in the parameter space, which
can be approximated using polyhedra. These approximations,
denoted by X and U, could be chosen such that Nz € X and
Ny € u implies (12), and the previous stability and feasibility
results would remain valid. However, in order to simplify the
presentation, we use constraint sampling in the following,
as proposed in [2]. We therefore enforce the constraints
only at certain time instants t.; (finitely many) in the hope
that the constraints are also satisfied for all other time
instants. Alternatively one could check constraint violations
a posteriori, refine the constraint sampling if necessary and
solve (9) again to ensure that the constraints are not violated.
If the constraints are violated in between these time instants,
the theoretic guarantees are no longer valid in general.
Numerical experiments indicate that the method performs
well, provided that the time intervals [t.;, t.(i4+1)) are chosen
to be sufficiently small, see Section IV.

IV. SIMULATION EXAMPLE

In the following, the effectiveness of the proposed para-
metric MPC approach is illustrated with simulations of an
inverted pendulum system as depicted in Fig. 1.

We compare the standard (discrete-time, finite-horizon)
MPC strategy to the proposed parametric MPC approach.
The dynamics are linearized about the upright equilibrium
given by ¢p = ¢ = r = 7 = u = 0, and discretized
with a sampling time of T = 20ms in the standard MPC
formulation. Note that the unstable pole lies at 4.43rad/s
for the given parameters (as listed in the caption of Fig. 1),
which makes the sampling time of 7y = 20ms a sensible
choice. The goal is to drive the cart form ro = 0.5 m back to
r = 0, while balancing the pendulum in the upright position.
The running cost {(z,u,t) is chosen to be quadratic, more

precisely
1 0.05
Wz u,t) = —a'o+ ——u?,

2 2 (13)
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Fig. 1. Inverted pendulum on a cart. The cart mass M was chosen to
be 1kg, the pendulum length I, 1 m, the pendulum mass m, 1kg. The
cart position is parametrized by r, the inclination angle by ¢, whereas g
denotes the gravitational acceleration. The control input is given by the force
u applied to the cart. It is limited to 0.5 N.

where the state vector x is defined as x := (r,7, ¢, ).
In the standard discrete-time MPC formulation the running
cost is weighted by the sampling time and a terminal cost
matching the infinite-horizon LQR cost-to-go is added. For
simplicity, state constraints are not considered, while the
control input w is restricted to lie within [-0.5 N, 0.5 N]. The
basis functions 7 are chosen to be orthonormal and spanned
by

T(t) € exp(—At) span (1, ¢,¢%,...,t°7"), (14

where the time constant of the exponential decay is chosen
to be A = 3 1/s (corresponding approximately to the closed-
loop poles of an LQR design). This leads naturally to so
called Laguerre functions, [2], that is

7(t) = (11(2), la(t), ..., 1 ()T, (15)
where
(1) = VaXexp(—M) Y (Z . 1) (_kll)k @M. (16)

k=0

The constraints are sampled at the time instants ¢.; which
are determined by solving

ter =0, 7(te) 7(tei) =0, i=2,...,s. (17)
It turns out that these sampling instants fulfill
T(tci)TT(tcj) = 07 Vi 7& .jv (18)

which can be used to simplify the numerical optimization
routines.”

For s = 10, the closed loop trajectories are depicted in
Fig. 2 and indicate a reasonable control performance. For
the given initial condition, starting at rest at ro = 0.5 m, the
problem becomes feasible for s = 7.

Fig. 3 compares the achieved closed-loop cost and the
required average execution time for solving the optimiza-
tion problem (9) of the parametric MPC approach with
the discrete-time finite-horizon formulation. The closed-loop
trajectory is initialized with 7o = 0.5m, g = @9 =

2A detailed discussion is beyond the scope of this paper.

79 = 0. The optimization routines are run on a Laptop with
an IntelCore 17-4710MQ (2.50Ghz) CPU and 8.0GB RAM
using Matlab, and to obtain a better picture, 1st and 2nd
order solution methods are evaluated. The resulting quadratic
program is solved with the generalized fast dual gradient
method, [15], which represents a state of the art 1st order
optimization routine, and Mosek® (2nd order). We use Mosek
despite the fact that 2nd order optimization routines tailored
to the standard MPC problem formulation, exploiting sparsity
and achieving significant speedup are available, [16], [17].
This is because via coordinate transformation resulting in
a set of slightly modified basis functions (still spanned by
(14)), a sparse problem description can be obtained with the
parametric MPC formulation too. This allows for similar
strategies to exploit sparsity as in the standard MPC for-
mulation, which could potentially lead to similar speedups.
Adopting a 2nd order optimization routine to the specific
problem structure given by the parametric MPC approach
is beyond the scope of this paper. Therefore the 2nd order
timing results should be seen as indication of meaningful
trends, rather than absolute timings.

The resulting optimal cost is depicted in Fig. 4. Note
that in the standard finite-horizon formulation, the optimal
cost Joo is significantly underestimated for short prediction
horizons (i.e. prediction horizons of less than 4 s resulting in
less than 1004 optimization variables), see Fig. 5.% Instead,
the parametric MPC formulation overestimates the cost J,
when using only a reduced number of basis functions (s =
8,9). However, to obtain the same accuracy in terms of
optimum cost, significant higher computational costs are
necessary in case of the standard finite-horizon formulation.

V. CONCLUSION

In this article the state and input trajectories of a linear
time-invariant system were represented as linear combina-
tions of basis functions. This allowed to simplify the infinite-
horizon optimal control problems encountered in MPC. The
consequences of using such an approximation regarding
recursive feasibility and closed-loop stability were discussed.
A numerical simulation example shows the efficiency of the
proposed approach by providing a sensible approximation of
the underlying infinite-horizon optimal control problem at
relatively low computational expenses.
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