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Abstract— This article presents two different approximations
to linear infinite-horizon optimal control problems arising in
model predictive control. The dynamics are approximated
using a Galerkin approach with parametrized state and input
trajectories. It is shown that the first approximation represents
an upper bound on the optimal cost of the underlying infinite
dimensional optimal control problem, whereas the second
approximation results in a lower bound. We analyze the
convergence of the costs and the corresponding optimizers as
the number of basis functions tends to infinity. The results can
be used to quantify the approximation quality with respect to
the underlying infinite dimensional optimal control problem.

I. INTRODUCTION

Model predictive control (MPC) is one of few control
strategies that take input and state constraints fully into
account and is, therefore, applicable to a wide range of
challenging control problems. The underlying principle is the
following: At each time step, an optimal control problem is
solved, which includes a prediction of the system’s state over
a certain time horizon subject to the current state as an initial
condition. The first portion of the obtained input trajectory
is applied to the system before repeating the optimization
in the next time step, resulting in an implicit feedback law.
The standard MPC formulation is based on a discrete-time
representation of the dynamics, includes a finite time horizon,
and often requires a combination of terminal state constraint
and terminal cost to guarantee closed-loop stability, [1]. In
[2], an alternative approach has been proposed, which avoids
truncating the time horizon by relying on a continuous-time
approximation of the underlying optimal control problem. As
a result, stability guarantees were shown to arise naturally
from the problem formulation.

The approach from [2] was found to yield an upper
bound on the optimal cost of the underlying optimal control
problem. Herein, we show that a slight variation of the
approximation from [2] leads to a lower bound. We will
analyze both approximations with respect to convergence of
the optimal costs and the corresponding optimizers as the
basis function complexity is increased. By combining both
approaches, the approximation quality with respect to the
underlying infinite dimensional optimal control problem can
be quantified.

Related work: The infinite-horizon optimal control prob-
lems arising in MPC are typically formulated in discrete
time over a finite time horizon, [3]. Truncating the time
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horizon leads inevitably to issues with stability and recursive
feasibility, which are, for example, addressed in [4]–[6].
These issues are alleviated with the parametrized infinite-
horizon formulation presented in [2], which is further ana-
lyzed herein.

A different approach is proposed in [7] and [8], where
strictly monotonic transformations from the time domain
[0,∞) to the bounded interval [−1, 1) are used to reformulate
the infinite-horizon optimal control problem as a finite-
horizon problem. The resulting optimal control problem
is discretized using pseudospectral methods via Legendre-
Gauss (in [8]) and Legendre-Gauss-Radau (in [7] and [8])
collocation. Due to the transformation of the infinite time
domain to [−1, 1), linear dynamics on [0,∞) are transformed
to nonlinear dynamics on [−1, 1), and as a result, non-convex
finite dimensional optimization problems are obtained. The
dynamics are not guaranteed to be fulfilled exactly, which
renders reasoning about closed-loop stability in the context
of predictive control more involved. This is due to the fact
that arguments for showing closed-loop stability rely often
on exact open-loop predictions of the state trajectory, see [1]
or [2].

The underlying infinite dimensional infinite-horizon prob-
lem has proven to be difficult to analyze, as, for example, the
transversality conditions of the maximum principle cannot be
extended directly to the infinite-horizon problem, see [9, Ch.
3.7, Ch. 6.5], [10], and [11]. We circumvent these problems
by assuming from the outset that unique solutions to the un-
derlying infinite dimensional optimal control problem exist,
and restrict the state trajectory, the time derivative of the state
trajectory, and the input trajectory to be square integrable,
similar to [11]. The finite dimensional approximations, which
will be introduced in the following, are convex problems with
a strictly convex cost and a closed domain, and therefore the
corresponding minimizers are unique, provided that feasible
trajectories exist.

The parametrization of input trajectories using Kauz or
Laguerre basis functions, similar to the ones used herein has
been proposed in [12] and [13] for solving MPC problems.
It has been argued that such a parametrization results in an
optimization problem with fewer variables offering computa-
tional benefits. Still, the finite-horizon formulation is retained
in [12] and [13].

The authors of [14] use polynomials for approximating
continuous linear programs. Similar to the approach pre-
sented herein, duality is exploited for constructing approx-
imations yielding upper and lower bounds on the underly-
ing continuous linear program. The resulting semi-infinite
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constraints are reformulated using sum-of-squares techniques
yielding semidefinite programs. Although to some extent
related, the optimal control problem that is considered in
the following cannot be cast as a continuous linear program.
Moreover, we treat equality constraints (in the form of linear
ordinary differential equations) and inequality constraints
differently. In addition, we present an axiomatic treatment for
dealing with the inequality constraints, and as a consequence,
we do not require the inequality constraints to be polyhedral.

Thus, in contrast to previous work, the approach presented
herein tackles the infinite-horizon problem directly by means
of a parametric description of input and state trajectories. A
detailed analysis regarding convergence of the corresponding
optimization problems is presented.

Outline: Sec. II introduces the underlying optimal control
problem we seek to approximate. The two finite dimensional
approximations are subsequently presented. The convergence
results are discussed in Sec. III, and are underpinned with a
numerical example in Sec. IV. The article concludes with a
summary in Sec. V.

II. PROBLEM FORMULATION

We present and analyze two approximations to the follow-
ing optimal control problem,

J∞ := inf
1

2
||x||22 +

1

2
||u||22

s.t. ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

x(t) ∈ X , u(t) ∈ U , ∀t ∈ [0,∞),

x ∈ L2
n, u ∈ L2

m, ẋ ∈ L2
n,

(1)

where X and U are closed and convex subsets of Rn and
Rm, respectively, containing 0; the space of square integrable
functions mapping from [0,∞) to Rq is denoted by L2

q ,
where q is a positive integer; and the L2

q-norm is defined
as

L2
q → R, x→ ||x||22 :=

∫ ∞
0

xTx dt, (2)

where dt denotes the Lebesgue measure.1

Note that the change of variables Ux̂ = x and V û = u,
with U ∈ Rn×n and V ∈ Rm×m invertible, transforms the
running cost to the slightly more general quadratic objective

1

2

∫ ∞
0

x̂TQx̂+ ûTRû dt, Q = UTU,R = V TV. (3)

The approximations, which will be introduced in Sec. II-D
are invariant with respect to bijective linear transformations
and therefore all results remain valid if the objective function
in (1) is replaced by (3). In addition, the results extend to
the case where state and input trajectories are required to
be elements of weighted L2-spaces and (2) is replaced by a
weighted L2-norm, [11]. Moreover, parts of the results can be
readily extended to more general running costs, for example,

1The element x ∈ L2
n is an equivalence class of functions that are equal

in the almost everywhere sense. If x ∈ L2
n and ẋ ∈ L2

n, then x has a
unique absolutely continuous representative. We refer to x(0) as the value
this unique absolutely continuous representative takes at time t = 0.

strongly convex cost functions. We will briefly comment on
these extensions in due course.

We make the important assumption that J∞ is finite.
As a result, (1) reduces to an optimization over a closed
convex and bounded set in the Banach space L2

n × L2
m,

and therefore, due to the strong convexity of the objective
function, the infimum is attained and the corresponding
optimal input and state trajectories are unique, [15, p. 93,
Thm. 26]. The approximations to (1) are obtained in three
steps: 1) parametrization of input and state trajectories; 2)
reformulation of the dynamics as an equality constraint for
the parameters; 3) approximation of the state and input con-
straints. Each step is described in the following subsections.

A. Parametrization of input and state trajectories
Input and state trajectories are approximated as a linear

combination of basis functions τi ∈ L2
1, i = 1, 2, . . . , that is

x̃s(t, ηx) := (In ⊗ τs(t))Tηx,
ũs(t, ηu) := (Im ⊗ τs(t))Tηu,

(4)

where ⊗ denotes the Kronecker product, ηx ∈ Rns and
ηu ∈ Rms are the parameter vectors, and τs(t) :=
(τ1(t), τ2(t), . . . , τs(t)) ∈ Rs. In order to simplify notation
we omit the superscript s in τs, x̃s, and ũs, and simply
write τ , x̃, and ũ whenever the number of basis functions
is clear from context. Similarly, the dependence of x̃ and ũ
on ηx and ηu is frequently omitted. Throughout the article it
is assumed that the basis functions are orthonormal (in the
L2-sense), which is without loss of generality.

As motivated in [2], the following assumptions on the
basis functions are made:
A1) They are linearly independent.
A2) They fulfill τ̇(t) = Mτ(t) for all t ∈ [0,∞), for some

matrix M ∈ Rs×s. The eigenvalues of M have strictly
negative real parts.

An example of a set of basis functions fulfilling Assumptions
A1 and A2 is provided in Sec. IV.

B. Finite dimensional representation of the dynamics
The dynamics can be reformulated using the fundamental

lemma of the calculus of variations, [16, p. 18], leading to∫ ∞
0

δpT(Ax+Bu− ẋ)dt− δp(0)T(x(0)− x0) = 0, (5)

for all variations δp ∈ L2
n that are everywhere continuous

except at t = 0. Note that (5) is equivalent to ẋ(t) = Ax(t)+
Bu(t) for all t ∈ [0,∞) (almost everywhere) and x(0) = x0.

A finite dimensional representation of the dynamics is
obtained via a Galerkin approach; that is, by restricting the
variations δp to be linear combinations of the basis functions
used for parametrizing input and state trajectories. We derive
two variants, depending on whether δp is allowed to be
discontinuous at t = 0 or not.

Variant 1: By choosing δp̃ = (In ⊗ τ(t))Tδηp, for all
t ∈ [0,∞), with δηp ∈ Rns, (5) is approximated by∫ ∞

0

δp̃(t)T
(
Ax̃+Bũ− ˙̃x

)
dt− δp̃(0)T(x̃(0)− x0) = 0,

(6)
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which is required to hold for all variations δηp ∈ Rns. This
is equivalent to∫ ∞

0

(In ⊗ τ)
(
Ax̃+Bũ− ˙̃x

)
dt

− (In ⊗ τ(0)) (x̃(0)− x0) = 0; (7)

Variant 2: Choosing

δp̃(t) :=

{
δp0 t = 0,

(In ⊗ τ(t))Tδηp t ∈ (0,∞),
(8)

results in∫ ∞
0

δp̃T
(
Ax̃+Bũ− ˙̃x

)
dt− δpT0 (x̃(0)− x0) = 0, (9)

which has to hold for all variations δηp ∈ Rns and δp0 ∈ Rn.
This is equivalent to the two conditions∫ ∞

0

(In⊗τ)
(
Ax̃+Bũ− ˙̃x

)
dt = 0, x̃(0)−x0 = 0. (10)

Note that for variant 1, the variations δp̃ are chosen to be
continuous for all t ∈ [0,∞). The resulting state trajectory,
as determined by (7), does not fulfill the initial condition
exactly, which can be interpreted as discontinuity at t = 0.
In contrast, the variations in variant 2 are chosen to be
discontinuous at 0, which results in a finite dimensional
representation of the dynamics where the initial condition
is enforced exactly. It was shown in [2] that (10) imposes
the dynamics strictly, i.e. if x̃ and ũ fulfill (10), it holds that
˙̃x(t) = Ax̃(t) +Bũ(t) for all t ∈ [0,∞) and x̃(0) = x0.

Remark: We restrict ourselves to two different choices for
the variations δp̃ that lead to the two approximation schemes
(7) and (10). These choices are by no means unique. For
the subsequent analysis it is crucial, however, that variant
2 leads to trajectories fulfilling the equations of motion
exactly. Similarly, we exploit the fact that the projection
(to be made precise below) of trajectories fulfilling the
equations of motion exactly must be compatible with variant
1, that is, the projections fulfill conditions similar to (10).
As a consequence, the subsequent results could potentially
be transferred to trajectories defined piecewise on [0,∞),
for example. A detailed and rigorous discussion of these
extensions is, however, beyond the scope of this article.

C. Finite dimensional representation of the constraint sets

We will introduce two finite dimensional approximations
to (1) (they will be made precise in Sec. II-D). These are
designed to yield upper and lower bounds of J∞, which
become tighter as the number of basis functions increases.
In particular, this is achieved by imposing requirements on
the constraints of the two approximations as discussed below.

The constraints of the first approximation, bounding J∞
from above are required to fulfill the following assumptions2

B0) X s is closed and convex
B1) is(X s) ⊂ X s+1

2The assumptions are only listed for the state constraints X and are
analogous for the input constraints U .

B2) ηx ∈ X s implies (In⊗τ(t))Tηx ∈ X for all t ∈ [0,∞),
where the inclusion is, mapping from Rns to Rn(s+1) is
defined by

x̃s(t, ηx) = x̃s+1(t, is(ηx)),∀t ∈ [0,∞), ∀ηx ∈ Rns. (11)

Note that for n = 1 the function is maps a vector
(x1, . . . , xs) ∈ Rs to (x1, . . . , xs, 0) ∈ Rs+1. The motivation
for introducing Assumptions B0-B2 is the following: As-
sumption B0 ensures that the resulting optimization problem
is convex, and that corresponding minimizers exist, given
the existence of feasible trajectories; Assumption B1 will
be used to demonstrate that the optimal trajectories of the
optimization over s basis functions are feasible for the
optimization over s + 1 basis functions, which implies that
corresponding optimal cost is monotonically decreasing in s;
Assumption B2 ensures that the optimal trajectories of the
optimization over s basis functions are feasible candidates
for (1), which guarantees that the resulting optimal cost
bounds J∞ from above. These claims will be verified in
detail in Sec. III. An example of a constraint set fulfilling
Assumptions B0-B2 is given by

{ηx ∈ Rns | (In ⊗ τ(t))Tηx ∈ X ∀t ∈ [0,∞)}. (12)

The given set is finite dimensional, closed, and convex,
but in general not polyhedral. Arguably, one can construct
polyhedral approximations without violating Assumptions
B0-B2.

The objective of the second approximation of (1) is to
bound J∞ from below. Its optimal cost is designed to be
monotonically increasing. By combining both approxima-
tions, we can, therefore, quantify the suboptimality with
respect to the underlying infinite dimensional problem (1).
To that extent we require the constraints of the second
approximation to fulfill
C0) X̃ s is closed and convex
C1) πs(X̃ s+1) ⊂ X̃ s
C2) For each x ∈ L2

n with x(t) ∈ X for all t ∈ [0,∞) it
holds that πs(x) ∈ X̃ s,

where the projections πs and πs are defined as

πs :L2
n → Rns, x→

∫ ∞
0

(In ⊗ τs)x dt, (13)

πs :Rn(s+1) → Rns, ηx → πs
(
x̃s+1(·, ηx)

)
. (14)

Note that the projection πs maps an arbitrary square inte-
grable function onto its first s Fourier coefficients, whereas,
for n = 1, the function πs maps (x1, . . . , xs, xs+1) ∈ Rs+1

to (x1, . . . , xs) ∈ Rs. The first assumption, C0, guarantees
that the resulting optimization problem is convex, and that
corresponding minimizers exist, given the existence of fea-
sible solutions. Assumption C1 ensures that the optimal cost
of the second approximation is monotonically increasing,
whereas Assumption C2 guarantees that the solutions of the
infinite dimensional problem (1) are feasible candidates for
the optimization over s basis functions. This implies that the
optimal cost of the second approximation is a lower bound on
J∞. These observations will be explained further in Sec. III.
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In case of polyhedral constraints, that is, x ∈ X if and
only if Dx ≤ d, D ∈ Rnc×n, d ∈ Rnc , where the inequality
holds component wise, an example satisfying Assumptions
C0-C2 is given by{
ηx ∈ Rns

∣∣∣ ∫ ∞
0

δp̃T(Dx̃s(t, ηx))− d) dt ≤ 0,

∀δp̃ = (Inc
⊗ τs)Tδηp : δp̃(t) ≥ 0,∀t ∈ [0,∞)

}
.

(15)

We will use this set in the numerical example presented in
Sec. IV and therefore show explicitly that Assumptions C0-
C2 are fulfilled. It is straightforward to verify Assumption
C0. By orthonormality of the basis functions, the inequality
in (15) can be rewritten as

δηTp

(
(D ⊗ Is)ηx −

∫ ∞
0

d⊗ τsdt
)
≤ 0. (16)

Clearly, the inequality in (15) holds likewise for all positive
test functions δp̃, which are spanned by the first s− 1 basis
functions (instead of the first s basis functions), resulting in

δηTp

(
(D ⊗ Is−1)πs(ηx)−

∫ ∞
0

d⊗ τs−1dt
)
≤ 0, (17)

for all δηp ∈ Rn(s−1) such that (Inc
⊗ τs−1(t))Tηp ≥ 0 for

all t ∈ [0,∞). Consequently, the set given by (15) satisfies
Assumption C1. In addition, the constraint Dx(t) ≤ d for all
t ∈ [0,∞) (almost everywhere), where x is square integrable,
implies ∫ ∞

0

δpT(Dx− d)dt ≤ 0 (18)

for all positive integrable test functions δp. Thus, the previ-
ous inequality holds certainly for test functions δp̃ restricted
to the span of the first s basis functions, which, by orthonor-
mality of the basis functions and linearity of the constraint,
leads to ∫ ∞

0

δp̃T(Dπs(x)− d)dt ≤ 0. (19)

This asserts that Assumption C2 is fulfilled.

D. Resulting optimization problems

Combining the previous definitions leads to the following
approximations of the original problem (1),

Js := inf
1

2
||x̃||22 +

1

2
||ũ||22

s.t.
∫ ∞
0

(In ⊗ τ)
(
Ax̃+Bũ− ˙̃x

)
dt = 0,

x̃(0)− x0 = 0, ηx ∈ X s, ηu ∈ Us,

(20)

and

J̃s := inf
1

2
||x̃||22 +

1

2
||ũ||22

s.t.
∫ ∞
0

(In ⊗ τ)
(
Ax̃+Bũ− ˙̃x

)
dt

− (In ⊗ τ(0)) (x̃(0)− x0) = 0,

ηx ∈ X̃ s, ηu ∈ Ũs.

(21)

Both problems are convex and have linear equality con-
straints. The objective functions are strictly convex, which
asserts the existence of unique minimizers provided that the
corresponding problem is feasible. We will analyze both
problems and show that they yield upper and lower bounds
on the optimum cost of the original problem (1). Under
favorable circumstances, Js is a monotonically decreasing
sequence approaching J∞ from above and J̃s a monoton-
ically increasing sequence approaching J∞ from below. If
certain additional conditions are met (to be made precise in
the following), both Js and J̃s converge to J∞. We will
use convergence of the optimal cost Js to argue that the
corresponding optimal trajectories converge as the number
of basis functions increases. Provided that Assumptions B0
and B2 are fulfilled, the optimal state and input trajectories,
x̃ and ũ, corresponding to (20) respect the state constraints
x̃(t) ∈ X and the input constraints ũ(t) ∈ U for all times and
achieve the cost Js on the nominal system. It was shown in
[2] that solving (20) repeatedly, and applying each time the
first portion of the obtained input trajectory, offers inherent
closed-loop stability and recursive feasibility in the context
of MPC.

III. MAIN RESULTS

We will discuss the following main result:
Theorem 3.1: Let N0 be such that JN0

and J̃N0
are finite.

1) If Assumptions B0, B1, and B2 hold, then the sequence
Js is monotonically decreasing for s ≥ N0, converges as
s → ∞, and is bounded below by J∞. The corresponding
optimizers x̃s and ũs converge (strongly) in L2

n, respectively
L2
m as s→∞.

2) If Assumptions C0, C1, and C2 are fulfilled, then J̃s is
monotonically increasing for s ≥ 1, converges as s → ∞,
and is bounded above by J∞.
Instead of presenting a formal proof of this result, which can
be found in [17], we discuss and highlight the underlying
ideas. The section is divided into three parts. The first is
devoted to the problem (20), summarizes the results from
[2], and establishes the convergence of the corresponding
optimal trajectories. The problem (21) is analyzed in the
second part, where it is shown that the dual of (21) fulfills the
adjoint equations exactly, which is exploited for demonstrat-
ing that J̃s is monotonically increasing and bounded above
by J∞. The third part establishes conditions under which
lims→∞ Js = lims→∞ J̃s is fulfilled.

A. Analysis of (20)

We start by summarizing the results from [2].
Proposition 3.2: Let N0 be such that JN0

is finite and let
Assumptions B0, B1, and B2 be fulfilled. Then the sequence
Js is monotonically decreasing for s ≥ N0, converges as
s→∞, and is bounded below by J∞.

Proof: The proof is based on the fact that the equality
constraint of (20) imposes the dynamics exactly. Thus, in
combination with Assumption B2, the optimal trajectories
of (20) fulfill the equations of motion and the constraints
x̃(t) ∈ X , ũ(t) ∈ U for all times t ∈ [0,∞), and are
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therefore feasible candidates for the infinite dimensional
problem (1). Hence, it follows that Js ≥ J∞ for all s ≥ N0.
Assumption B1 implies that the feasible trajectories of (20)
satisfy the constraints is(ηx) ∈ X s+1 and is(ηu) ∈ Us+1

(the corresponding parameter vectors are simply augmented
with zeros). As a result, the optimal trajectories of (20) are
feasible candidates for the optimization over s + 1 basis
functions, which implies Js ≥ Js+1. Thus, the sequence Js is
monotonically decreasing, bounded above by JN0 , bounded
below by J∞, and therefore converges.

In the context of MPC we are mainly interested in the
optimal policy ũ, which is obtained by solving (20) with
a finite number of basis functions. Thus, demonstrating
convergence of the trajectories x̃s and ũs guarantees that
the optimal input trajectory from (1) can be approximated
arbitrarily accurately using a sufficiently large number of
basis functions (provided that lims→∞ Js = J∞).

Proposition 3.3: Let N0 be such that JN0
is finite and

let Assumptions B0 and B1 be fulfilled. Then, the optimal
trajectories x̃s and ũs of (20) converge (strongly) in L2

n,
respectively L2

m.
Proof: From Assumption B1 it can be inferred that Js is

monotonically decreasing, bounded above by JN0 , bounded
below by 0, and therefore converges, see Prop. 3.2. The
argument in Prop. 3.2 asserts that the trajectories correspond-
ing to (20), denoted by x̃s and ũs, are feasible candidates
for the optimization over s + 1 basis functions. Moreover,
the candidates 1/2(x̃s + x̃s+1) and 1/2(ũs + ũs+1), where
x̃s+1 and ũs+1 correspond to the optimal trajectories with
cost Js+1, are feasible for the optimization over s+ 1 basis
functions, which follows by convexity of the constraint sets
and linearity of the dynamics. Hence, they achieve a cost
larger than Js+1. As a consequence, the identity

||1
2
(x̃s + x̃s+1)||22 =

1

2
||x̃s||22 +

1

2
||x̃s+1||22 −

1

4
||x̃s − x̃s+1||22,

and the fact that the objective function is quadratic, bounds
||x̃s− x̃s+1||22 and ||ũs− ũs+1||22 by 4(Js−Js+1). Combined
with the observation that Js is converging, it implies that the
optimal trajectories of (20) form Cauchy sequences in L2

n,
respectively L2

m. Both spaces, L2
n and L2

m are complete, [18,
p. 67], and therefore the sequence of optimal trajectories
converges. A formal proof can be found in [17].
The proof provides an explicit bound on the L2-norm of the
distance between two successive optimal trajectories, corre-
sponding to Js and Js+1. This bound can be easily modified
to quantify the L2-distance between the optimal trajectories
obtained by solving (20) and the optimal trajectories of (1).
Moreover, Prop. 3.2 and Prop. 3.3 can be generalized to a
strongly convex objective function instead of a quadratic one.

B. Analysis of (21)

We will show that under favorable circumstances (to be
made precise below) the optimal cost of (21) bounds J∞
from below and is monotonically increasing in s.

Proposition 3.4: Let Assumptions C0 and C2 be fulfilled.
Then J̃s ≤ J∞ holds for all s ≥ 1.

Proof: The proof relies on the fact that the optimal
trajectories of (1), denoted by x and u, can be used to
generate feasible trajectories for (21). It can be verified, see
[17], that the candidates ηx := πs(x) and ηu := πs(u) fulfill
the equality constraint in (21). Together with Assumption
C2 this guarantees that ηx and ηu are feasible candidates
for (21). Moreover, it follows from Bessel’s inequality, [19,
p. 51], that

|πs(x)|22 ≤ ||x||22, (22)

is fulfilled for all x ∈ L2
n, where | · |2 denotes the Euclidean

norm. Thus, the feasible candidates ηx and ηu achieve a
smaller cost than x and u, which implies J̃s ≤ J∞ for all
s ≥ 1.

In order to establish that the sequence J̃s is monotonically
increasing, we work with the dual problem. It turns out that
the finite dimensional representations of the adjoint equations
are fulfilled exactly by (21). We use this fact to construct
feasible candidates for the optimization over s + 1 basis
functions.

Proposition 3.5: Let Assumptions C0, C1, and C2 be
fulfilled. Then J̃s is monotonically increasing and bounded
above by J∞ for all s ≥ 1.

Proof: Lagrange duality is used to derive the dual of
(21), which is given by

J̃s = sup
ηp

−I∗ϕs
(ṽ)− I∗ψs

(−BTp̃) + p̃(0)Tx0,

s.t.
∫ ∞
0

(In ⊗ τ)
(
˙̃p+ATp̃+ ṽ

)
dt = 0,

(23)

where ṽ := (In ⊗ τs)Tηv and p̃ := (In ⊗ τs)Tηp, see [17].
The functions I∗ϕs

and I∗ψs
are the convex-conjugates, [20,

p. 473], of

Iϕs
(x) :=

{
1
2 ||x̃

s(t, πs(x))||22 πs(x) ∈ X̃ s,
∞ otherwise,

(24)

Iψs(u) :=

{
1
2 ||ũ

s(t, πs(u))||22 πs(u) ∈ Ũs,
∞ otherwise,

(25)

(where notation is slightly abused to denote both projections
L2
n → Rns and L2

m → Rms, as defined in Sec. II-C, by πs).
The equality constraint in (23) implies that trajectories ṽ and
p̃ with cost J̃s satisfy the adjoint equations exactly, see [2].
As a result, they are feasible candidates for the optimization
over s + 1 basis functions. From Assumption C1 and the
quadratic running cost it follows that Iϕs

(x) ≤ Iϕs+1
(x)

for all x ∈ L2
n and similarly Iψs

(u) ≤ Iψs+1
(u) for all

u ∈ L2
m. The convex-conjugation reverses ordering, [20,

p. 475], which concludes that the candidates ṽ and p̃ are
feasible candidates to the optimization problem over s + 1
basis functions with higher corresponding cost, and therefore
J̃s+1 ≥ J̃s. A formal proof can be found in [17].
The result of Prop. 3.4, respectively Prop. 3.5 can be ex-
tended to more general cost functions, provided that these are
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non-expansive with respect to the projection πs, respectively
πs.

C. Convergence to J∞
Next, we would like to establish that lims→∞ J̃s =

lims→∞ Js. In order to do so, we need the following
assumptions:
D0) lim sups→∞ X̃s ⊂ lim infs→∞ X s,
D1) The basis functions τi, i = 1, 2, . . . , are dense in C∞0

(in the topology of uniform convergence).3

Proposition 3.6: Let N0 be such that JN0 is finite and
let Assumptions B0-D1 be fulfilled. Then, lims→∞ J̃s =
lims→∞ Js holds.

Proof: Assumption D1 can be used to construct a
sequence in the span of the basis functions, which converges
uniformly to an arbitrary test function δp ∈ C∞0 . This im-
plies, by the fundamental lemma of the calculus of variations
[16, p. 18], that in the limit as s → ∞, the solutions x̃
and ũ to (21) fulfill the equations of motion and the initial
condition exactly. Combined with Assumption D0, it follows
that x̃ and ũ are feasible candidates for (20) (in the limit as
s→∞) and therefore lims→∞ Js ≤ lims→∞ J̃s. Combined
with Thm. 3.1 this leads to the desired result. A formal proof
can be found in [17].

IV. NUMERICAL EXAMPLE

In the following we illustrate the results on a numerical
example. We consider the system governed by

2r̈ + ϕ̈ = u,

r̈ + ϕ̈ = 9.81ϕ,
(26)

whose open-loop poles are located at 0, 0,±4.429 rad/s.
These dynamics can be obtained by linearizing the inverted-
pendulum-on-a-cart-system around the upright equilibrium,
where r corresponds to the cart position, ϕ to the pendulum
angle, and u to the normalized force applied to the cart. We
define the state vector as x := (r, ṙ, ϕ, ϕ̇)T and consider the
task of driving the system from x(0) = (1, 0, 0, 0)T back to
the origin. We penalize input and state deviations with the
following cost ∫ ∞

0

1

2
xTx+

0.05

2
u2 dt. (27)

The basis functions τ are designed to be orthonormal and
spanned by

τ ∈ exp(−νt) span(1, t, t2, . . . , ts−1), (28)

where ν is set to 3 rad/s (this corresponds approximately
to the closed-loop poles of an LQR design). Note that
the Theorem of Stone-Weierstrass, [21, p. 122], states that
the basis functions given by (28) are dense in the set of
continuous functions vanishing at infinity. The set of smooth
compactly supported functions is contained in the set of
continuous functions vanishing at infinity, [18, p. 70] and
as a result, Assumption D1 holds.

3The set of smooth functions with compact support mapping from [0,∞)
to R is denoted by C∞

0 .

In the simplest case, we assume input and state constraints
to be absent, i.e. X = Rn and U = Rm. It follows immedi-
ately that Js is monotonically decreasing, J̃s monotonically
increasing, provided that solutions to (20) exist, and that
(20) and (21) converge to J∞. The quadratic running cost
asserts that the optimal trajectories corresponding to Js will
converge strongly. The optimum costs Js and J̃s are depicted
in Fig. 1 (top).

Next, the input u is restricted to lie within [−0.5 ,0.5 ],
and the set Us is defined as

Us := {ηu ∈ Rs|τ(t)Tηu ∈ [−0.5, 0.5],∀t ∈ [0,∞)}. (29)

Note that the constraint u ∈ [−0.5, 0.5] can be rewritten as
u ≤ 0.5 and −u ≤ 0.5. Thus, in accordance to (15), we
define Ũs as

Ũs :=
{
ηu ∈ Rs

∣∣∣ ∫ ∞
0

δp̃T(Dũ− d) dt ≤ 0, (30)

∀δp̃ = (I2 ⊗ τs)Tδηp : δp̃(t) ≥ 0,∀t ∈ [0,∞)
}
,

where D = (1,−1)T, d = (0.5, 0.5)T. The constraint set
Us fulfills Assumptions B0, B1, and B2. This implies by
Prop. 3.2 that Js is monotonically decreasing for all s ≥ N0

and is bounded below by J∞. In addition, the constraint
set Ũs fulfills Assumptions C0, C1, and C2 and therefore,
according to Prop. 3.4 and Prop. 3.5, the optimal cost J̃s
is monotonically increasing and bounded above by J∞ for
all s ≥ 1. The optimal input ũ obtained by solving (20) is
guaranteed to be feasible and achieves the cost Js on the
nominal system. In the context of MPC, applying the input
ũ (in a receding manner) guarantees recursive feasibility
and closed-loop stability. Moreover, from the fact that the
optimal cost J̃s corresponding to (21) represents a lower
bound on J∞, it follows that the suboptimality with respect
to the underlying infinite dimensional problem is bounded
by Js − J̃s. This is particularly useful for determining
the number of basis functions needed to achieve a certain
performance. The optimum costs Js and J̃s are depicted
in Fig. 1 (bottom). In addition, the optimal input trajectory
corresponding to J16 is shown in Fig. 2.

In the numerical example the constraints ηu ∈ Us and
ηu ∈ Ũs are imposed using an iterative procedure. We
start by explaining how ηu ∈ Us is implemented: First
(20) is solved, where the trajectory ũ is required to fulfill
the constraints at the time instants ti, i = 1, 2, . . . , s.
These are defined by imposing τ(ti)

Tτ(tj) = 0, for all
i, j = 1, 2, . . . , s, i 6= j, t1 = 0. Constraint violations are
checked a posteriori. If they occur, the set of constraint
sampling instances is augmented accordingly and (20) is
solved again. Repeating this procedure until no constraint
violations occur guarantees ηu ∈ Us. A similar procedure is
used for imposing ηu ∈ Ũs. The constraint (30) is simplified
by allowing test functions δp̃, which are only required to be
positive at certain time instants ti, i = 1, 2, . . . , N , that is,

sup
δηp∈R2s

δηTp

(
(D ⊗ Is)ηu −

∫ ∞
0

d⊗ τ dt

)
≤ 0 (31)

s.t. (I2 ⊗ τ(ti))Tδηp ≥ 0, i = 1, 2, . . . , N.
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Fig. 1. Depicted are the optimal costs of (20) and (21). In the first plot
(top) input and state constraints are absent, in the second plot (bottom) input
constraints, u ∈ [−0.5, 0.5], are included. In both cases J̃s is monotonically
increasing, whereas Js is monotonically decreasing.
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Fig. 2. Input trajectory obtained by solving (20) for s = 16. The input
constraint is found to be active.

The constraint (31) can be reformulated using duality. In
fact, (31) is equivalent to the existence of a vector λ ∈ R2N

satisfying

λ ≥ 0, −Tλ = (D ⊗ Is)ηu −
∫ ∞
0

d⊗ τ dt, (32)

where the matrix T is given by (I2⊗τ(t1), . . . , I2⊗τ(tN )) ∈
R2s×2N , [20, p. 507]. Thus, the constraint ηu ∈ Ũs in (21)
is initially replaced by (32), where the sampling instants ti,
i = 1, 2, . . . , s are again chosen such that τ(ti)Tτ(tj) = 0,
i, j = 1, 2 . . . , s, i 6= j, t1 = 0. The resulting problem is
solved and constraint violations are checked a posteriori. This
is done by solving (31) (with ηu fixed) and checking whether
the resulting trajectory (I2 ⊗ τ(t))Tδηp is positive for all
times t ∈ [0,∞). If this is the case, we can guarantee that
ηu ∈ Ũs, if not, the corresponding time instants where the
violations occur are added to the constraint sampling points
ti and (21) (with the constraint included by (32)) is solved
again. Repeating this procedure until no constraint violations
occur guarantees that ηu ∈ Ũs.

V. CONCLUSION

We presented and analyzed two finite dimensional ap-
proximations to a class of infinite-horizon optimal control
problems encountered in MPC. By exploiting suitable as-
sumptions, the optimal costs of these approximations were
found to bound the cost of the underlying infinite dimen-
sional optimal control problem from above and from below.
The results can be used to quantify the suboptimality of both
approximations. The optimal trajectories of the first approach
were found to respect input and state constraints, and achieve
the corresponding cost on the nominal system.
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