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SUMMARY

This article presents a family of variational integrators from a continuous time point of view. A general pro-
cedure for deriving symplectic integration schemes preserving an energy-like quantity is shown, which is
based on the principle of virtual work. The framework is extended to incorporate holonomic constraints with-
out using additional regularization. In addition, it is related to well-known partitioned Runge–Kutta methods
and to other variational integration schemes. As an example, a concrete integration scheme is derived for the
planar pendulum using both polar and Cartesian coordinates. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For most mechanical systems, we must rely on numerical methods to investigate their properties.
For obtaining at least a qualitative picture of the dynamics, we would like to ensure that even with
a large step size and a long time horizon, the approximate solutions represent qualitatively the true
motion. To that extent, integration methods based on Hamilton’s principle or on a related variational
principle, characterizing the motion as a whole, seem particularly suitable. Thus, variational inte-
grators approach the numerical integration from a variational principle rather than a discretization
of the corresponding ordinary differential equations. By doing so, underlying geometric properties
of the motion are often preserved.

The recent literature on variational integrators, for example [1–3], relies typically on Hamilton’s
principle, which relates the dynamic equilibrium to stationary trajectories of a certain action func-
tional. In the discrete mechanics framework, the action functional is discretized in the first place.
In the spirit of Hamilton’s principle, the resulting discrete action is required to be stationary subject
to fixed boundary conditions, which leads to a discrete analogue of the Euler–Lagrange equations.
These equations describe the evolution of the system according to the numerical integration scheme.
By discretizing the action in the first place, a predominantly discrete-time point of view is adopted.

This article suggests an alternative approach: The dynamic equilibrium is approximated via
discontinuous ansatz functions. Therefore, the principle of virtual action is formulated such that
piecewise continuous trajectories are allowed and the virtual action is required to vanish for all
variations spanned by the piecewise continuous basis functions. This leads in a consistent way
to causal, iterative integration algorithms, which are shown to be symplectic. In contrast to the
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discrete mechanics framework, the ‘discretization’ (in this context meant as an approximation of
the underlying infinite dimensional problem by a finite dimensional one) happens implicitly by
restricting the variations to be spanned by the basis functions, thereby offering a clear connec-
tion to the continuous-time dynamics of the system. In particular, according to the principle of
d’Alembert–Lagrange, the proposed method has the interpretation of adding artificial constraint
forces, constraining the trajectories to lie in the span of the basis functions. These constraint forces
can be calculated a posteriori and can be used to quantify the approximation error. In addition, the
presented approach can be extended to incorporate holonomic constraints by simply accounting for
the virtual work generated by these constraints.

The presented approach offers also a connection to finite element methods, which apply to bound-
ary value problems encountered in elastomechanics. In the standard finite element formulation, the
displacements are approximated by basis functions, which are defined over sub-domains, thereby
dividing the domain into finite elements. The displacements are typically required to be continuous,
which results in a coupling of the finite elements. The approach presented herein is similar in the
sense that the trajectories are approximated by basis functions defined over sub-intervals (in time).
However, the trajectories are not required to be continuous, which decouples the time intervals in-
between the discontinuities and results in a causal integration scheme applicable to initial value
problems, as shown in the remainder.

1.1. Existing literature and classification of the presented work

One of the first publications about finite elements in space and time can be found by Fried [4] and
Argyris [5]. Since then, several procedures under different names, for example, Petroff–Galerkin,
weighted residuals, Hamilton’s law, and time finite elements, have been proposed, which, although
based on the same variational principles, differ greatly in their numerical application. A major
source of disagreement represents the variations of the boundary values, which are required to van-
ish in the usual continuous version of Hamilton’s principle. In [6], for example, the boundary values
are retained, whereas in [5], the variations of the boundary values are required to vanish. For the
algorithm presented in [7], a convergence proof is provided. The work is followed up by Aharoni
and Bar-Yoseph [8], where discontinuous and continuous Galerkin approaches are presented and
compared. Similarly, discontinuous ansatz functions are used in [9], and a link to Runge–Kutta
methods is established. It happens that the good performance of well-known numerical integra-
tion schemes such as the Newmark method, the midpoint rule, or the Strömer-Verlet algorithm can
be explained by tracing the integration schemes back to variational principles [1]. In [10], a dis-
continuous Galerkin approach is proposed for the simulation of nonsmooth dynamical systems,
which, in particular, contains the classical Moreau–Jean timestepping schemes. The problem of sim-
ulating multibody systems subject to constraints (using a finite element method) is, for example,
addressed in [11]. A similar approach is applied to the simulation of helicopter rotor dynamics in
[12]. A spatial and temporal discretization based on a finite element approach is presented in [13] to
solve problems arising in thermo-elastodynamics. The energy-momentum consistent timestepping
schemes are shown to retain the first and second laws of thermodynamics in the discrete setting, and
a convergence criterion is derived.

In the discrete mechanics framework, the action integral of Hamilton’s principle is directly dis-
cretized (e.g., [1–3], and [14, p. 204]), which provides a discrete-time point of view. Both Marsden
and West [1] and Lacoursière [3] interpret the classical results of Lagrangian and Hamiltonian
mechanics, for example, Noether’s theorem and symplectic reductions, in a discrete framework,
with a special emphasis on symplectic integration. The approach is extended to incorporate holo-
nomic constraints and is used to solve optimal control problems in [15–17], respectively. The
holonomic constraints are enforced by augmenting the discrete action sum with Lagrange multi-
pliers [16]. These multipliers, which have the physical interpretation of constraint forces, can be
eliminated using suitable projections, leading to the so-called discrete null space method. The dis-
crete mechanics framework, as presented in [1, 3], and [14, p. 204], expresses the discrete action
sum using Lagrangian formalism. The Hamiltonian formalism is introduced in [18] by performing
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so-called left or right discrete Legendre transforms. A more direct approach is proposed in [2], where
the action, expressed using Hamiltonian formalism, is discretized without recourse to Lagrangian
formalism.

Several other contributions exist, for example, [19] and [20], where integration methods based on
generating functions and approximative solutions to the Hamilton–Jacobi equation are presented.

In contrast to the discrete mechanics framework, for example, the work in [1–3], [14, p. 204],
[15–18], we do not start from a discretized action integral. We use discontinuous basis functions to
parametrize the solutions over the whole time interval of interest. Instead of Hamilton’s principle,
we use the principle of virtual action to approximate the dynamic equilibrium and restrict varia-
tions to be spanned by the basis functions. Consequently, our formulation is close to the continuous
time dynamics and provides a clear interpretation of the discretization in terms of the principle
of d’Alembert–Lagrange. Similar to [6], the variations of the boundary values at the discontinu-
ous time instants will be retained and play a central role. The approach presented herein is based
on Hamiltonian formalism, and therefore, the kinematic link between generalized coordinates and
generalized momenta is not necessarily fulfilled exactly. The parametrization using basis functions
allows to evaluate time derivatives in a straightforward and unambiguous manner, without referring
to discrete Legendre transformations, as carried out in [1]. The proposed approach is also flexible
enough to encompass, for instance, the Galerkin variational integration approach from [1] (in case
of a constant mass matrix) or the approach from [2] as special cases.

In addition, the developed framework is used to incorporate holonomic constraints in a simple and
consistent way. Unlike Lacoursière [3], no additional damping and regularization are needed for a
numerically stable integration. Similar to the unconstrained case and in contrast to [1] and [16], the
principle of virtual action is used as a starting point, and the discretization is carried out implicitly
by restricting the variations to be spanned by the basis functions. The constraint is incorporated on
velocity level. Compared with the constrained Galerkin variational integration approach presented
in [1, p. 452], the Lagrange multiplier imposing the constraint, which has the physical interpreta-
tion of a generalized constraint force, is treated on equal footing with generalized coordinates and
generalized momenta and therefore parametrized using (discontinuous) basis functions. As a result,
the constraint is not enforced exactly at all time instants but is fulfilled only at certain predefined
time instants (provided that the basis functions fulfill the basic assumption of containing at least a
constant element).

1.2. Outline

The paper is organized as follows: In Section 2, we introduce the principle of virtual action, that is,
the virtual work integrated over time. By inserting discontinuous ansatz functions into the principle
of virtual action, a set of possibly nonlinear equations is obtained approximating the dynamic equi-
librium. The properties of the resulting numerical integrator are analyzed in Section 3. In particular,
conditions are established for which an energy-like quantity is conserved and symplectic integration
is demonstrated. This provides a geometric characterization of the flow. For example, it follows that
the area enclosed by an arbitrary closed contour in the phase space remains constant as the contour
evolves in time. Moreover, the approximate solutions can be regarded as the exact solutions of a
slightly perturbed Hamiltonian system. In Section 4, the integration framework is extended to incor-
porate holonomic constraints by simply accounting for the virtual work exerted by the constraint.
The resulting integration scheme uses no additional regularization and will be shown to conserve the
gap function from one timestep to the next (under some weak assumptions). In Section 5, the rela-
tion to partitioned Runge–Kutta methods is shortly discussed. The presented integration methods
are illustrated on the example of the planar pendulum in Section 6. In a first step, polar coordinates
are used to model the pendulum, and the presented method is compared with the Galerkin varia-
tional integrator approach from [1, p. 415]. In a second step, the addition of holonomic constraints
is demonstrated by using a parametrization based on Cartesian coordinates. The obtained simula-
tion results are discussed subsequently. Finally, the article concludes with a summary and outlook
in Section 7.
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2. DERIVATION OF VARIATIONAL INTEGRATORS

2.1. Notation and definitions

The class of continuously differentiable functions mapping an interval I � R to the Euclidean space
Rn is denoted by C 1.I;Rn/, a vector-valued quantity is written in boldface, and ansatz functions
are marked with a tilde, that is, Qq denotes an ansatz for q.

Additionally, left and right limits of a discontinuous function f W I ! Rn at the discontinuity
point t D td are denoted by

f .td /
C D lim

t#td

f .t/; respectively f .td /
� D lim

t"td

f .t/: (1)

The set of all piecewise continuously differentiable functions mapping an interval I D
Œt0; tN � � R to the Euclidean space Rn is denoted by C 1pc.I;R

n/. Hence, given a function f 2
C 1pc .Œt0; tN �;R

n/, there exists a finite number of discontinuous time instants t0 6 t1 < t2 < � � � 6 tN
such that f is continuously differentiable on the intervals .ti ; tiC1/, i D 0; 1; : : : ; N � 1. A typical
function f 2 C 1pc.Œt0; tN �;R/ is depicted in Figure 1. At the discontinuous time instant t D td , left
and right limits exist, which, in general, do not agree with the function value at t D td nor with each
other, that is, f .td /� ¤ f .td / ¤ f .td /C.

The configuration of the mechanical system is expressed in local coordinates by q.t/ with q 2
C 1pc.I;R

n/ and I D Œt0; tN � � R. The generalized momenta are expressed in local coordinates
by p.t/ with p 2 C 1pc.I; .R

n/�/, where .Rn/� is the dual of Rn. Note that q and p are almost
everywhere continuously differentiable. In the following, the dual space .Rn/� is identified with Rn

such that both elements q.t/ 2 Rn and p.t/ 2 .Rn/� are written as column vectors. The generalized
momenta are defined almost everywhere by

p WDM .q/ Pq; (2)

where M .q/ denotes the symmetric, positive-definite mass matrix. Moreover, the associated
Hamiltonian is given by

H.p; q; t / D
1

2
pTM .q/�1p C V.q; t /; (3)

where V.q; t / represents the potential energy. A derivation of these expressions for multibody
systems can be found in [21].

Figure 1. A possible example of a function f 2 C 1pc.Œt0; t1�;R/, which is discontinuous at time t D td .
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Weak variations of a function f 2 C 1pc .I;R
n/, denoted by ıf , are defined as

ıf .t/ WD
d Of

d"

ˇ̌̌
ˇ̌
"0

." � "0/ D v.t/." � "0/; (4)

where Of W R � I ! Rn, Of ."; t/ D f .t/ C ." � "0/v.t/ with v 2 C 1pc.I;R
n/. These variations

are referred to as weak because they converge in a weak sense, that is, lim"#0 jj Of � f jj1 D 0 (e.g.,
[22]), where jj � jj1 is defined as

jjf jj1 D sup
t2I

jf .t/j C sup
t2I

j Pf .t/j: (5)

By restricting ourselves to weak variations, we avoid explicitly the use of variations induced by
comparison functions of the form

Of ."; t/ D f
�
t � Ot ."; t/

�
C v

�
t � Ot ."; t/

�
." � "0/; with Of ."0; t / D f .t/; 8t 2 I: (6)

These variations do not converge in the weak norm because they induce a time and value shift [21].
In particular, the time shift would introduce couplings between two neighboring time intervals sepa-
rated by a discontinuity.‡ These couplings need to be avoided in order to obtain a causal integration
algorithm.

2.2. Virtual action

The starting point of the following derivation represents the principle of virtual action, where the
virtual action is defined as the virtual work integrated over time. As piecewise continuously differ-
entiable ansatz functions are used, similar to [9], the principle of virtual action is introduced in a
form where the generalized coordinates and generalized momenta are not required to be continuous.
It is therefore postulated that

Postulate 2.1
(Principle of virtual action) Let q 2 C 1pc.I;R

n/, p 2 C 1pc .I; .R
n/�/, with I D Œt0; tN � � R. The

non-potential forces f NP .t/ 2 Rn are assumed to be absolutely continuous for all t 2 I . If the
virtual action expressed by

ıA WD

Z
I

ıqTdp � ıpTdq C
�
ıH.p; q; t / � ıqTf NP .t/

�
dt; (7)

where the Hamiltonian H.p; q; t / is defined almost everywhere by Equation (3) vanishes for all
variations ıq and ıp, then the system is almost everywhere in dynamic equilibrium for times t 2 I .

Note that dq and dp refer to the differential measure of q 2 C 1pc.I;R
n/ and p 2 C 1pc.I; .R

n/�/.
The differential measure contains a density with respect to the Lebesgue measure and with respect
to an atomic measure [21]. The Lebesgue measure is denoted by dt .

This postulate can be derived from the principle of the virtual work in the following way: (1)
introduce local generalized coordinates q.t/ 2 Rn, which describe the motion of each material point
of the mechanical system; (2) define the virtual action to be the integral of the virtual work over
time. Owing to the fundamental lemma of the calculus of variations, requiring the virtual action to
vanish for all weak virtual variation ıq is equivalent to the principle of virtual work (almost every-
where). Note that we do not require ıq to vanish at the time interval boundaries, that is, ıq.t0/

‡Variations with respect to time would impose the second Weierstrass–Erdmann condition at time instants where q or p
is not continuous [21].
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and ıq.tN / are not required to vanish§; (3) decompose the external and internal forces acting on
each material point in potential and non-potential forces. Under the assumption that variation and
time differentiation commute, the virtual work can be split into the variation of the Lagrangian
(denoted by L), the virtual work exerted by the non-potential forces, and a remaining term, lead-
ing to ıW dt D d

�
ıqTp

�
� ıL dt � ıqTf NP dt , for example, [21]. The obtained expression is

commonly referred to as Lagrange’s central equation [23, 24]. Note that p is not yet identified as
independent quantity but is considered as placeholder forM .q/ Pq according to Equation (2); (4) per-
form the Legendre transformation of the Lagrangian with respect to Pq to obtain the Hamiltonian and
introduce the generalized momenta p. The kinematic link between the generalized momenta p and
the generalized velocities Pq can be enforced by requiring the virtual action to vanish for variations
of the generalized momenta. Thus, the change from Lagrangian to Hamiltonian formalism is per-
formed by regarding generalized coordinates and momenta as a priori independent and introducing
independent variations ıp.

A proof of Postulate 2.1 for smooth systems can be found in Appendix A.
Note that the use of the differential measures dq and dp has the effect of forcing left and right

limits of q and p to agree at discontinuous time instants. This fact is shortly illustrated by consid-
ering the particular variations ıq, ıp, which are everywhere zero, except at the time instant t D td .
The virtual action then simplifies to the integral over the time singleton ¹td º. Using linearity of the
integral and recalling that the differential measure has a density with respect to an atomic measure,
we obtain

ıA D

Z
¹td º

ıq.td /
Tdp � ıp.td /

Tdq D ıq.td /
T

Z
¹td º

dp � ıp.td /
T

Z
¹td º

dq

D ıq.td /
T
�
p.td /

C � p.td /
�
�
� ıp.td /

T
�
q.td /

C � q.td /
�
�
:

(8)

Requiring the virtual action to vanish for all variations ıq.td / and ıp.td / implies therefore the
agreement of the left and right limits of q and p at a possible discontinuity.

Nonetheless, at first sight, the derivation of Postulate 2.1 from the principle of virtual work seems
rather lengthy and involved. The motivation is twofold: By relaxing continuity requirements and
allowing discontinuous trajectories, we are eventually able to decouple the time intervals in-between
discontinuities leading to a causal and iterative integration algorithm. Moreover, the change to
Hamiltonian formalism offers additional flexibility in the approximation of the equations of motion
for the purpose of numerical integration. This comes at the cost of only approximately fulfilling the
kinematic link between generalized velocities and generalized momenta given by Equation (2).

To evaluate the principle of virtual action given by Postulate 2.1, infinitely many test func-
tions need to be compared, and in order to find the trajectories compatible with the dynamic
equilibrium, the virtual action has to vanish for each one of them. The approach to variational inte-
gration presented herein is based on evaluating the principle of virtual action only for test functions
parametrized by a given ansatz; that is, the virtual action will be required to vanish only for varia-
tions of the ansatz parameters. Equivalently, we introduce constraint forces, forcing the trajectories
to lie within the class of functions spanned by the ansatz. By the principle of d’Alembert–Lagrange,
the virtual work is required to vanish for admissible variations, which are in this case given by vari-
ations of the ansatz parameters only. It will be shown that this approach leads for a well-chosen
ansatz to convergence and even to symplectic integration.

2.3. The parametrization of ansatz functions

Let QC 1pc.I � Rm;Rn/, with I � R, be the space of piecewise continuously differentiable ansatz
functions defined by

§The fundamental lemma of the calculus of variations is commonly formulated for vanishing variations at the end points.
As this represents a special case of variations with non-vanishing end points, the result holds likewise.
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QC 1pc .I �Rm;Rn/ WD
°
y W I �Rm ! Rnj y.�;�y/ 2 C

1
pc.I;R

n/; 8�y 2 Rm;

y.t; �/ W Rm ! Rn smooth 8t 2 I
±
:

Moreover, an ansatz for q on the interval I will be denoted by Qq.t;�q/, where �q is the parameter
vector. Similarly, an ansatz for p will be denoted by Qp.t;�p/, with �p the ansatz parameters. In
general, the number of parameters, that is, the dimension of �q and �p , does not need to agree. To
simplify notation, we suppress occasionally the dependence on the parameter vector; that is, Qq.t;�q/
will be denoted by Qq.t/ and likewise Qp.t;�p/ by Qp.t/.

As an example, consider the interval Œ0; 2� and the case n D 1: A piecewise polynomial ansatz of
order m for q is given by

Qq.t;�q/ D

²
�q0 C �q1 t C �q2 t

2 C : : :C �qm t
m; t 2 Œ0; 1�

�qmC1 C �qmC2 t C �qmC3 t
2 C : : :C �q2mC1 t

m; t 2 .1; 2�
(9)

where �q D
�
�q0 ; �q1 ; : : : ; �q2mC1

�T
2 R2mC2 is the parameter vector.

Next, variations restricted to a class of ansatz functions are introduced. Let Qf 2 QC 1pc.I �R
m;Rn/

be an ansatz and �f W R ! Rm be a continuously differentiable function. Variations restricted to
this ansatz will be denoted by

ı Qf .t/ WD
d Qf .t;�f ."//

d"

ˇ̌̌
ˇ̌
"0

." � "0/ D
@ Qf

@�f

@�f

@"

ˇ̌̌
ˇ̌
"0

." � "0/ D
@ Qf

@�f

ˇ̌̌
ˇ̌
�f ."0/

ı�f : (10)

Note that the variations ı�f W R! Rm are therefore defined as

ı�f ."/ WD
@�f

@"

ˇ̌̌
ˇ
"0

." � "0/ (11)

and to simplify notation, the dependence on " is omitted. The variations ı�f are in general unrelated
to the parameter values �f ."0/. For ease of notation, �f ."0/ is simply written as �f and can be
thought of the parameter vector.

For the previous example of Qq.t;�q/, (restricted) variations are given by

ı Qq D

²
ı�q0 C ı�q1 t C ı�q2 t

2 C : : :C ı�qm t
m; t 2 Œ0; 1�

ı�qmC1 C ı�qmC2 t C ı�qmC3 t
2 C : : :C ı�q2mC1 t

m; t 2 .1; 2� :
(12)

2.4. The variational integration approach

The presented approach is similar to the derivation of the finite elements method in elastomechanics.
By restricting variations to be nonzero in an interval where the ansatz is continuously differentiable,
a time segment of the virtual action is cut out. Requiring the virtual action to vanish for these vari-
ations leads to a set of nonlinear equations describing the evolution of the approximate trajectories
from one time interval to the next.

Depending on the continuity assumptions of the ansatz functions, different integration schemes
can be derived. To fix the ideas, we will make the restriction of Qq.t;�q/ being left continuous
and Qp.t;�p/ being right continuous (for all parameter vectors �q and �p). However, the presented
framework extends naturally to various other cases, including the configuration where Qq and Qp
are assumed to be both left continuous or both right continuous. In Appendix B, the derivation is
presented for the case Qq continuous and Qp neither left nor right continuous.

The time interval of interest, I D Œt0; tN � with tN > t0, is divided into sub-intervals Ii WD
Œti ; tiC1� � R (i D 0; 1; : : : ; N � 1), where each sub-interval Ii WD Œti ; tiC1� � R is chosen such

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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that
SN�1
iD0 .Ii n¹tiC1º/ D I n¹tN º. The two ansatz functions Qq.t/ and Qp.t/ for q and p are required

to be everywhere continuously differentiable, except at the time instants t0; t1; : : : ; tN . Hence, they
are piecewise continuously differentiable, with

Qq 2 QC 1pc

�
I �Rn�mq �N ;Rn

�
; and Qp 2 QC 1pc

�
I �Rn�mp �N ; .Rn/�

�
: (13)

An example of the configuration is depicted in Figure 2.
Inserting the ansatz into the expression of the virtual action leads to

ıA D

Z
I

ı QqTd Qp � ı QpTd Qq C
�
ıH. Qp; Qq; t / � ı QqTf NP

�
dt: (14)

We require the virtual action to vanish for all variations ı Qq and ı Qp to obtain an approximation of the
dynamic equilibrium. Because of the discontinuous ansatz, this is equivalent to requiring the virtual
action to vanish for all variations ı Qq and ı Qp, which are everywhere zero except on the interval Ii ,
and then expanding the requirement to all intervals Ii , with i D 0; 1; : : : ; N � 1. Requiring the
virtual action to vanish for variations that are zero for t 62 Ii simplifies Equation (14) to

ıA D

Z
Ii

ı QqTd Qp � ı QpTd Qq C
�
ıH. Qp; Qq; t / � ı QqTf NP

�
dt

D

Z
¹ti º

ı QqTd Qp � ı QpTd Qq C
Z

¹tiC1º

ı QqTd Qp � ı QpTd Qq

C

Z
.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ıH. Qp; Qq; t / � ı QqTf NP

�
dt :

The differential measures d Qq and d Qp are expressed by PQq dt and PQp dt in the interval .ti ; tiC1/, where
Qq and Qp are continuously differentiable. Because Qq is left continuous (for any parameter vector �q),
the variation ı Qq is left continuous as well. The variation ı Qq.t/ was chosen to vanish for t 62 Ii and
hence, ı Qq.ti /� D 0. By left continuity of ı Qq, this implies ı Qq.ti /� D ı Qq.ti / D 0. Similarly, Qp is
right continuous, which leads to ı Qp.tiC1/ D 0. Thus, the expression of the virtual action simplifies
further to

ıA D �

Z
¹ti º

ı QpTd Qq C
Z

¹tiC1º

ı QqTd Qp C
Z

.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ıH. Qp; Qq; t / � ı QqTf NP

�
dt :

Figure 2. A schematic example of a possible ansatz function Qq for q. The ansatz is left continuous, and
within the intervals .ti�1; ti � and .ti ; tiC1�, Qq is continuously differentiable.
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Linearity of the integral can be used to reformulate the previous expression:

ıA D �ı Qp.ti /
T

Z
¹ti º

d QqCı Qq.tiC1/
T

Z
¹tiC1º

d Qp

C

Z
.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ıH . Qp; Qq; t / � ı QqTf NP

�
dt ;

leading to the strong form of the virtual action given by

ıA D �ı Qp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
C ı Qq.tiC1/

T
�
Qp.tiC1/

C � Qp.tiC1/
�
�

C

Z
.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ıH. Qp; Qq; t / � ı QqTf NP

�
dt: (15)

Applying integration by parts on the integrand ı QqT PQp yields the weak form:

ıA D �ı Qp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
� .ı Qq.ti /

C/T Qp.ti /
C C ı Qq.tiC1/

T Qp.tiC1/
C

�

Z
.ti ;tiC1/

�
ı. PQq

T
Qp �H. Qp; Qq; t //C ı QqTf NP

�
dt: (16)

The term �ı Qq.tiC1/T Qp.tiC1/� C .ı Qq.tiC1/�/T Qp.tiC1/� vanishes because of the left continuity
of Qq, asserting that ı Qq.tiC1/� D ı Qq.tiC1/. Note that the differentiability requirement of Qp could
potentially be alleviated because only the time derivative PQq appears in the weak form of the virtual
action. If both Qq and Qp are piecewise continuously differentiable, the weak and the strong forms are
equivalent.

Recall that the variations were chosen everywhere zero except for t 2 Œti ; tiC1�. In the following,
it is assumed that within the interval t 2 .ti ; tiC1�, the ansatz Qq depends on time but only on a subset
of the parameters �q , denoted by �qi 2 Rn�mq . Similarly, within the interval t 2 Œti ; tiC1/, Qp is
assumed to depend on time but only on a subset of the parameters �p , denoted by �pi 2 Rn�mp .
This simplifies the variations ı Qq and ı Qp, which were chosen to vanish for t 62 Œti ; tiC1� to

ı Qq.t/ D

´
@Qq
@�qi

ı�qi ; t 2 .ti ; tiC1�

0; else
and ı Qp.t/ D

´
@ Qp
@�pi

ı�pi ; t 2 Œti ; tiC1/

0; else
: (17)

Therefore, by factorizing the time-independent parameter variations ı�qi and ı�pi out, the virtual
action can be rewritten as

ıA D ı�TqiAq
�
�qi ;�pi ; Qp.tiC1/

C
�
C ı�TpiAp

�
�qi ;�pi ; Qq.ti /

�
; (18)

with

Aq
�
�qi ;�pi ; Qp.tiC1/

C
�
WD �

@ Qq

@�qi

ˇ̌̌
ˇ̌
T

t#ti

Qp.ti /
C C

@ Qq

@�qi

ˇ̌̌
ˇ̌
T

tDtiC1

Qp.tiC1/
C

�

Z
.ti ;tiC1/

"
@ PQq

@�qi

T

Qp �
@ Qq

@�qi

T
 
@H

@q

T

� f NP

!#
dt 2 Rn�mq

(19)

and
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Ap
�
�qi ;�pi ; Qq.ti /

�
�
WD �

@ Qp

@�pi

ˇ̌̌
ˇ̌
T

tDti

�
Qq.ti /

C � Qq.ti /
�
�

�

Z
.ti ;tiC1/

@ Qp

@�pi

T
 
PQq �

@H

@p

T
!

dt 2 Rn�mp :

(20)

Note that Qq.ti /C and Qp.ti /C are uniquely determined by the parameter vectors �qi , �pi , that is,
Qq.ti /

C D limt#ti Qq.t;�qi / and Qp.ti /C D limt#ti Qp.t;�pi / (c.f. Equation (17)). As a consequence,
Aq and Ap depend solely on the parameters �qi , �pi and on the values Qq.ti /� and Qp.tiC1/C,
describing the coupling to the neighboring time intervals. Although the states Qq.ti /� and Qp.tiC1/C

depend on the parameters �qi�1 and �piC1 , they are regarded as vectors in Rn and .Rn/�, respec-
tively, when solving for the trajectories in the interval Œti ; tiC1� in order to obtain a causal integration
scheme. More precisely, from Equation (18), it follows that ıA vanishes for all ı�qi and ı�pi if and
only if the set of equations

Aq
�
�qi ;�pi ; Qp.tiC1/

C
�
D 0;

Ap
�
�qi ;�pi ; Qq.ti /

�
�
D 0

(21)

is fulfilled. For a given boundary condition ¹ Qq.ti /; Qp.ti /º, which yields the two additional equations
Qp.ti / D Qp.ti ;�pi / D Qp.ti ;�pi /

C by right continuity of Qp and Qq.ti / D Qq.ti /� by left continuity
of Qq, the set of equations (21) is solved for the parameters �qi ;�pi , and the vectors Qq.ti /� and
Qp.tiC1/

C.¶ Thereby, the boundary values Qq.ti /� and Qp.tiC1/C are treated as unknown vectors in Rn

and .Rn/�, respectively. The obtained solution can be used to construct the approximate trajectories
of the system in the interval Œti ; tiC1�. The values at ¹tiC1º, that is, Qq.tiC1/ and Qp.tiC1/ D Qp.tiC1/C,
yield the boundary conditions for the next time interval. By repeating this procedure for all time
intervals Ii , i D 0; 1; : : : ; N � 1, the virtual action vanishes for all variations ı Qq and ı Qp, and
trajectories approximating the dynamic equilibrium are obtained.

Before discussing the quality of this approximation in the next section, it is interesting to note
that the boundary conditions are imposed a posteriori, together with the set of equations (21). This
amounts to solve nmq C nmp C 2n equations for the nmq parameters �qi , the nmp parameters
�pi , the vector Qp.tiC1/C 2 .Rn/�, and the vector Qq.ti /� 2 Rn. By doing so, we do not restrict
the variations ı Qq and ı Qp to vanish at the time interval boundaries, that is, at the time instants ti ,
i D 0; 1; : : : ; N . This turns out to be essential for guaranteeing symplectic integration as shown
in Section 3.2. Moreover, Equation (16) can be interpreted as a stationarity condition with respect
to the ansatz parameters �qi and �pi leading to a discrete analogue of Hamilton’s principle in the
absence of non-potential forces.

3. PROPERTIES

In the next section, some properties of the integration algorithm based on the stepping equations (21)
are analyzed. Given a family of ansatz functions, for example, polynomials, that are dense in
C.Œti ; tiC1�;Rn/, respectively C .Œti ; tiC1�; .Rn/�/, the approximate solution converges to the exact
trajectory in the limit of mq ! 1 and mp ! 1.|| This is because ı Qq and ı Qp can approximate
any continuous variation arbitrarily well (uniform convergence) by the Stone–Weierstrass theorem.
Solving therefore Equation (21) amounts in requiring the virtual action to vanish for all piecewise

¶From the boundary condition and the left continuity of Qq, it follows that Qq.ti /� D Qq.ti /, and therefore, solving for
Qq.ti /

� is trivial in the sense that the known boundary condition Qq.ti / can be directly inserted into the expression for
Ap in Equation (21).

||The time intervals Œti ; tiC1�, i D 0; 1; : : : ;N � 1 are assumed to be small enough such that the trajectories of
the mechanical system are unique. Local uniqueness is guaranteed by the theorem of Piccard–Lindelöf, for example,
[25, p. 156].
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continuous variations ıq and ıp and guarantees, according to Postulate 2.1, dynamic equilibrium
for all times t 2 I (almost everywhere).

In addition, expression (16) is invariant to the choice of ansatz parameters. Assume two
parametrizations related by O�qi D f .�qi /, where f W Rn�mq ! Rn�mq is a diffeomorphism. Given
that the expression of the virtual action vanishes for all variations ı�qi , it vanishes also for all
variations ı O�qi , which is because of the relationship

ı O�qi D
@f

@�q
ı�qi ; with

@f

@�q
invertible: (22)

Therefore, the trajectories obtained by solving Equation (21) are only dependent on the choice of
ansatz functions (e.g., polynomials) but independent of their actual parametrization (e.g., linear
combination of monomials and linear combination of Legendre polynomials). In practice, however,
the choice of the parametrization influences the conditioning of the (implicit) equations.

Moreover, the presented algorithms are shown to have some additional beneficial properties. To
simplify the analysis, the non-potential forces f NP are assumed to vanish in the following.

3.1. Conservation of energy

As introduced previously, the ansatz Qq is assumed to be left continuous and Qp right continuous. It is
again assumed that the ansatz Qq.t/ depends on time and only on the parameters �qi 2 Rn�mq within
the interval t 2 .ti ; tiC1�. Similarly, Qp.t/ is assumed to depend on time and only on the parameters
�pi 2 Rn�mp within the interval t 2 Œti ; tiC1/. Thus, as in the previous section, variations given by
Equation (17) are introduced. The following additional assumption on the two ansatz functions is
made.

Assumption 3.1
Let

Qq 2 QC 1pc

�
I �Rn�mq �N ;Rn

�
and Qp 2 QC 1pc

�
I �Rn�mp �N ; .Rn/�

�
;

be such that there exists for every ıt 2 R and every �qi 2 Rn�mq , �pi 2 Rn�mp two vectors
ı�qi 2 Rn�mq and ı�pi 2 Rn�mp that fulfill

@ Qq.�qi ; t /

@�qi
ı�qi D

PQq.�qi ; t / ıt; 8t 2 Œti ; tiC1/ and

@ Qp.�pi ; t /

@�pi
ı�pi D

PQp.�pi ; t / ıt; 8t 2 .ti ; tiC1�; i D 0; 1; 2; : : : ; N � 1:

Example 1
As an example, consider q.t/ 2 R for t 2 Œ0; 1�. Choosing a polynomial ansatz function of second
order leads to

Qq.t;�q/ D �0 C �1t C �2t
2

with �q D .�0; �1; �2/
T, t 2 Œ0; 1�. Because PQq D �1 C 2�2t lies in the subspace spanned by

ı Qq D ı�0 C ı�1t C ı�2t
2, Assumption 3.1 is fulfilled.

It is clear that the variations introduced in Assumption 3.1 are not variations with respect to time
as described in [21] or [26], as for example, the time instants ti , i D 0; 1; : : : ; N remain fixed.
Variations of the form ı Qq D PQq ıt and ı Qp D PQp ıt are merely a trick to extract the conservation of an
energy-like quantity from the virtual action. In the case of polynomials, Assumption 3.1 requires that
the ansatz functions should be able to capture an arbitrary time shift, such that the same trajectory
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is being obtained regardless of choosing Qq.t � Ot ;�qi / or Qq.t;�qi / as ansatz (for a fixed Ot 2 R).
This condition is well known in the finite elements literature where ansatz functions are required to
capture rigid body modes (for example [27, p. 31]). Ansatz functions fulfilling Assumption 3.1 are
sometimes referred to as complete.

For this particular choice of variations, that is, ı Qq D PQq ıt , ı Qp D PQp ıt , the strong form of the
virtual action (15) simplifies to

ıA D �ıt PQp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
C ıt PQq.tiC1/

T
�
Qp.tiC1/

C � Qp.tiC1/
�
�

C ıt

Z
.ti ;tiC1/

�
@H

@p
PQp C

@H

@q
PQq

�
dt

D �ıt PQp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
C ıt PQq.tiC1/

T
�
Qp.tiC1/

C � Qp.tiC1/
�
�

C ıt

Z
.ti ;tiC1/

�
dH

dt
�
@H

@t

�
dt

D �ıt PQp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
C ıt PQq.tiC1/

T
�
Qp.tiC1/

C � Qp.tiC1/
�
�

C ıt

0
B@H . Qp.tiC1/

�; Qq.tiC1/
�; tiC1/ �H

�
Qp.ti /

C; Qq.ti /
C; ti

�
�

Z
.ti ;tiC1/

@H

@t
dt

1
CA :

Because the virtual work is required to vanish for all ı Qq and all ı Qp, it must also vanish for this
particular choice of variations (hence for all ıt ), which leads to

PQq.tiC1/
T
�
Qp.tiC1/

C � Qp.tiC1/
�
�
CH . Qp.tiC1/

�; Qq.tiC1/
�; tiC1/ D

PQp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
CH

�
Qp.ti /

C; Qq.ti /
C; ti

�
C

Z
.ti ;tiC1/

@H

@t
dt: (23)

If the system is conservative, that is, the Hamiltonian is not explicitly dependent on time, this
simplifies further to

PQq.tiC1/
T
�
Qp.tiC1/

C � Qp.tiC1/
�
�
CH . Qp.tiC1/

�; Qq.tiC1/
�/ D

PQp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
CH

�
Qp.ti /

C; Qq.ti /
C
�
:

(24)

The aforementioned equations can be interpreted as the conservation of an energy-like quantity in
the following sense: All the terms appearing in Equation (24) can be expressed in terms of the
values Qq.ti /, Qp.ti / using the stepping equation (21). By moving the terms to the left-hand side the
expression

�H . Qp.ti /; Qq.ti // D 0; (25)

is obtained, which is valid for all time instants ti , i D 0; 1; : : : ; N � 1. This can be inter-
preted as an energy balance, augmented with the terms PQq.tiC1/T

�
Qp.tiC1/

C � Qp.tiC1/
�
�

and
PQp.ti /

T
�
Qq.ti /

C � Qq.ti /
�
�

accounting for the discontinuities of Qq and Qp.

3.2. Symplectic integration

To show symplectic integration, we choose an oriented smooth two-dimensional manifold with
boundary, denoted by � , which is embedded in the phase space, � � Rn � .Rn/� (e.g., [28, p.
411]). The boundary @� defines a closed contour along which we choose initial conditions Qq.ti ; s/
and Qp.ti ; s/ (parametrized by s 2 Œ0; 1/). Solving Equation (21) for initial conditions along @�
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determines the parameters �qi .s/ and �pi .s/ as well as the final state Qq.tiC1;�qi .s//,
Qp.tiC1;�pi .s// for each s 2 Œ0; 1/. The invariance of the two-form dq ^ dp follows directly by
integrating Equation (21) along @�:

0 D

Z
@�

�
Aq.s/

T
@�qi
@s
CAp.s/

T
@�pi
@s

�
ds

D

Z
@�

0
B@ � d

�
. Qp.ti /

C/T Qq.ti /
C
�
C . Qq.ti /

�/Td Qp.ti /C . Qp.tiC1/
C/Td Qqi .tiC1/

�d
Z

.ti ;tiC1/

�
QpT PQq �H. Qp; Qq; t /

�
dt

1
CA

D

Z
@�

Qq.ti /
Td Qp.ti /C Qp.tiC1/

Td Qq.tiC1/:

Applying Stoke’s theorem (e.g., [28, p. 411]) to the previous equation leads toZ
�

d Qq.ti / ^ d Qp.ti / D
Z
�

d Qq.tiC1/ ^ d Qp.tiC1/: (26)

In other words, the integration preserves the two-form dq ^ dp and is therefore symplectic.
In practice, the integrals occurring in Equation (21) are typically approximated using quadra-

ture. Nonetheless, the resulting integration scheme is guaranteed to be symplectic (under mild
assumptions on the quadrature rule)**, as the previous argument can be carried over.

4. HOLONOMIC CONSTRAINTS

Next, the addition of holonomic constraints is discussed. The constraints are parametrized by the gap
function g 2 C 2 .Rn � I;Rnc / such that the system lies on the constraint manifold at time t 2 I if

g.q.t/; t/ D 0:

The integer nc denotes the number of constraints, that is, the dimension of g.q.t/; t/. Similar to
Section 2, we postulate the principle of virtual action in the constrained case.

Postulate 4.1
Let q 2 C 1pc.I;R

n/, p 2 C 1pc.I; .R
n/�/, pg 2 C 1pc.I; .R

nc /�/, and I D Œt0; tN � � R. The
HamiltonianH.p; q; t / corresponding to the unconstrained system is defined almost everywhere by
Equation (3). It is assumed that the non-potential forces f NP .t/ are absolutely continuous for all
t 2 I and that compliant initial conditions with g.q.t0/; t0/ D 0 are provided. If the virtual action
expressed by

ıA WD

Z
I

ıqTdp � ıpTdq � ıgTdpg C ıp
T
gdg C

�
ıH.p; q; t / � ıqTf NP .t/

�
dt; (27)

vanishes for all variations ıq; ıp, and ıpg , then the system is almost everywhere in dynamic
equilibrium for times t 2 I .

**In particular, symplectic integration is guaranteed if the integrals in the expressions Aq and Ap are approximated
using the same quadrature rule.
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Compared with Section 2, the expression of the virtual action is augmented by the two terms
�ıgTdpg and ıpT

gdg to account for the constraint. The addition of the second term, ıpT
gdg,

enforces the constraint on the velocity level. More precisely, it implies d
dt g.q.t/; t/ D 0, whenever

q is continuously differentiable and g.q.td /�; td / D g.q.td /C; td / at time instants td , where q is
discontinuous.†† Hence, provided that a compliant initial condition g.q.t0/; t0/ D 0 is given, the
term ıpT

gdg ensures that the constraint will be fulfilled for all t 2 I (almost everywhere).
The addition of the first term, �ıgTdpg , which can be expanded to

� ıgTdpg D �ıq
TW .q.t/; t/dpg ; with W .q.t/; t/ WD

@g

@q

T

; (28)

describes the impulse dpg imposing the constraint. The matrix W .q.t/; t/ assigns to each com-
ponent of the impulse dpg a vector orthogonal to the tangent space of g.q.t/; t/. Whenever pg
is continuously differentiable, dpg can be expressed as Ppgdt , where the components of Ppg repre-
sent the constraint forces and the columns of W .q.t/; t/ the corresponding directions (e.g., [26, p.
141], [29, p. 51]). Together they form the generalized force W .q.t/; t/ Ppg imposing the constraint.
Clearly for admissible variations,

ıqad.t/ 2
®
� 2 Rn jW .�; t /T� D 0

¯
; (29)

ıqad.t/
TW .q.t/; t/dpg vanishes. Provided that the constraint g.q.t/; t/ D 0 is fulfilled for all

t 2 I , the virtual action reduces therefore for admissible variations to the expression given by
Equation (7) in Section 2, which is in accordance with the principle of d’Alembert–Lagrange (e.g.,
[29, p. 48]).

Using the expression of the virtual action given by Equation (27), the procedure of Section 2 is
applied next to derive a variational integration algorithm for the constrained case.

4.1. Variational integration – the constrained case

Three ansatz functions Qq, Qp, and Qpg for q, p, and pg , belonging to QC 1pc, are introduced. We
will make the additional assumption that Qq is left continuous, whereas Qp and Qpg are both right
continuous, which is analogous to Section 2. The time interval of interest, I D Œt0; tN �, with
tN > t0, is again divided into sub-intervals Ii WD Œti ; tiC1� � R. The intervals Ii � R are chosen
(i D 0; 1; 2; : : : ; N � 1) such that

SN�1
iD0 .Ii n ¹tiC1º/ D I n ¹tN º. The ansatz functions

Qq 2 QC 1pc

�
I �Rn�mq �N ;Rn

�
; Qp 2 QC 1pc

�
I �Rn�mp �N ; .Rn/�

�
;

Qpg 2 QC
1
pc

�
I �Rnc �mg �N ; .Rnc /�

�
;

(30)

are chosen to be continuous in the interior of the intervals Ii , i D 0; 1; : : : ; N � 1, and are only
allowed to be discontinuous at the time instants ti , i D 0; 1; 2; : : : ; N .

The ansatz is inserted into the virtual action given by Equation (27). By requiring the virtual
action to vanish for all variations ı Qq, ı Qp, and ı Qpg , an approximation to the dynamic equilibrium is
obtained. We choose variations ı Qq, ı Qp, and ı Qpg , which are zero everywhere except for t 2 Œti ; tiC1�
to cut the interval Ii out of the virtual action (for a fixed integer i > 0). We then require the
virtual action to vanish for all variations ı Qq, ı Qp, and ı Qpg , vanishing everywhere except for t 2 Ii .
Repeating this procedure for all intervals Ii , i D 0; 1; : : : ; N � 1, is equivalent to requiring the
virtual action to vanish for arbitrary variations ı Qq, ı Qp, and ı Qpg . This leads naturally to an iterative
algorithm yielding approximate solutions to the dynamic equilibrium. We evaluate the virtual action
for variations that vanish everywhere except on Ii . This results in

††The continuity of the gap function implies that limt"td g.q.t/; t/ D g.q.td /
�; td / and limt#td g.q.t/; t/ D

g.q.td /
C; td / hold.
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ıA D

Z
¹ti º

ı QqTd Qp � ı QpTd Qq C ı Qpg
Td Qg � ı QgTd Qpg C

Z
¹tiC1º

ı QqTd Qp � ı QpTd Qq C ı Qpg
Td Qg � ı QgTd Qpg

C

Z
.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ı QpT

g Pg � ı Qg
T PQpg C ıH . Qp; Qq; t / � ı QqTf NP

�
dt :

The differential measures d Qq, d Qp, and d Qpg are again expressed by PQq dt , PQp dt , and PQpg dt in the
interval .ti ; tiC1/. Note that Qg stands for Qg WD g. Qq.t/; t/, so for example, Qg.ti /C is a shorthand
notation for limt#ti g. Qq.t/; t/. In the same way, the variation ı Qg is an abbreviation of ıg. Qq.t/; t/ D
W . Qq.t/; t/Tı Qq.t/.

The left and right continuities of Qq, Qp, and Qpg , implying that ı Qq.ti / D 0, ı Qp.tiC1/ D 0,
ı Qpg.tiC1/ D 0 due to the assumption that the variations vanish outside the interval Œti ; tiC1�,
simplify the previous expression to

ıA D �ı Qp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
C ı Qq.tiC1/

T
�
Qp.tiC1/

C � Qp.tiC1/
�
�

C ı Qpg.ti /
T
�
Qg.ti /

C � Qg.ti /
�
�
� ı Qg.tiC1/

T
�
Qpg.tiC1/

C � Qpg.tiC1/
�
�

C

Z
.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ı Qpg

T Qg � ı QgT PQpg C ıH . Qp; Qq; t / � ı QqTf NP

�
dt ;

(31)

which is nothing but the strong form of the virtual action.
Applying integration by parts to the terms ı QqT PQp and ı QgT PQpg results in‡‡

ıA D �ı Qp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
�
�
ı Qq.ti /

C
�T
Qp.ti /

C C ı Qq.tiC1/
T Qp.tiC1/

C

C ı Qpg.ti /
T
�
Qg.ti /

C � Qg.ti /
�
�
C
�
ı Qg.ti /

C
�T
Qpg.ti /

C � ı Qg.tiC1/
T Qpg.tiC1/

C

�

Z
.ti ;tiC1/

h
ı
�
QpT PQq � QpT

g
PQg �H . Qp; Qq; t /

�
C ı QqTf NP

i
dt ;

(32)

that is, the weak form of the virtual action.
As in Section 2, it is assumed that the ansatz Qq depends on time and only on the parameters

�qi 2 Rn�mq within the interval t 2 .ti ; tiC1�. Likewise, Qp and Qpg are assumed to depend on time
and only on the parameters �pi 2 Rn�mp and �pgi 2 Rnc �mg within the interval t 2 Œti ; tiC1/. This
simplifies the variations ı Qq, ı Qp, and ı Qpg , which were chosen to vanish for t 62 Œti ; tiC1� to

ı Qq D

´
@Qq
@�qi

ı�qi ; t 2 .ti ; tiC1�

0; else
; ı Qp D

´
@ Qp
@�pi

ı�pi ; t 2 Œti ; tiC1/

0; else
and

ı Qpg D

´
@ Qp

@�pgi
ı�pgi ; t 2 Œti ; tiC1/

0; else
:

(33)

Factorizing the time-independent variations �qi , �pi , and �pgi out leads to

ıA D ı�TqiAq C ı�
T
pi
Ap C ı�

T
pgi
Apg ; (34)

with

‡‡For a holonomic constraint, it holds that d
dt .ıg.Qq.t/; t// D ı

�
d

dt g.Qq.t/; t/
�
.
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Aq WD �
@ Qq

@�qi

ˇ̌̌
ˇ̌
T

t#ti

�
Qp.ti /

C �W
�
Qq.ti /

C; ti
�
Qpg.ti /

C
�

C
@ Qq

@�qi

ˇ̌̌
ˇ̌
T

tDtiC1

�
Qp.tiC1/

C �W . Qq.tiC1/; tiC1/ Qpg.tiC1/
C
�

�

Z
.ti ;tiC1/

 
@ PQq

@�qi

T

Qp �
@ PQg

@�qi

T

Qpg �
@ Qq

@�qi

T
 
@H

@q

T

� f NP

!!
dt;

Ap WD �
@ Qp

@�pi

ˇ̌̌
ˇ̌
T

tDti

�
Qq.ti /

C � Qq.ti /
�
�
�

Z
.ti ;tiC1/

 
@ Qp

@�pi

T
 
PQq �

@H

@p

T
!!

dt ;

and

Apg WD
@ Qpg

@�pgi

ˇ̌̌
ˇ̌
T

tDti

�
g
�
Qq.ti /

C; ti
�
� g. Qq.ti /

�; ti /
�
C

Z
.ti ;tiC1/

@ Qpg

@�pgi

T

Pg. Qq.t/; t/ dt :

According to Equation (33), the generalized coordinates Qq.ti / at time ti are only dependent on
the parameters �qi�1 , and owing to the left continuity of Qq, it holds that Qq.ti /� D Qq.ti / ¤ Qq.ti /C.
As in the unconstrained case, Qq.ti /� is considered to be a fixed vector in Rn when approximating
the trajectories in the interval Œti ; tiC1�.

The ansatz for Qp and Qpg is by definition right continuous, which implies that Qp.tiC1/� ¤
Qp.tiC1/ D Qp.tiC1/

C and Qpg.tiC1/
� ¤ Qpg.tiC1/ D Qpg.tiC1/

C. According to Equation (33), the
variables Qp.tiC1/, Qp.tiC1/C and Qpg.tiC1/, Qpg.tiC1/

C are only dependent on the parameters �piC1
and �pg.iC1/ , respectively. By examination of Aq in Equation (34), it is apparent that the term
Qp.tiC1/

C and Qpg.tiC1/
C, describing the coupling to the neighboring time interval, appears only in

the linear combination

Qp.tiC1/
C �W . Qq.tiC1/; tiC1/ Qpg.tiC1/

C D

"
Qp.t/ �W . Qq.t/; t/ Qpg.t/

#ˇ̌̌
ˇ̌
tDtiC1

; (35)

which is therefore regarded as a fixed vector in .Rn/� when solving for the approximate trajectories
in the interval Œti ; tiC1�.

As the expression on the right-hand side of Equation (35) is extensively used in the following, the
function

p´
�
q.t/;p.t/;pg.t/; t

�
WD p.t/ �W .q.t/; t/ pg.t/ (36)

is introduced. To simplify notation, its arguments q.t/;p.t/;pg.t/ will be omitted and Qp´.t/ will
be used to denote Qp´.t/ D p´. Qq.t/; Qp.t/; Qpg.t/; t/. It follows from the discontinuity of Qq, Qp, and
Qpg that Qp´ is neither left nor right continuous.

As pointed out in Section 2, making the virtual action vanish for all variations ı Qq, ı Qp, and ı Qpg
is equivalent to requiring the virtual action to vanish for all variations ı�qi , ı�pi , and ı�pgi , with
i D 0; 1; : : : ; N � 1. The latter amounts in solving the set of equations

Aq

�
�qi ;�pi ;�pgi

; Qp´.tiC1/
�
D 0;

Ap
�
�qi ;�pi ; Qq.ti /

�
�
D 0;

Apg

�
�qi ;�pgi

; Qq.ti /
�
�
D 0;

(37)
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for the parameters �qi , �pi , �pgi , and the vectors Qq.ti /� and Qp´.tiC1/. Note that the quantities
Qp.ti /

C, Qpg.ti /
C, Qq.ti /C are all dependent on the parameters �qi , �pi , and �pgi and are therefore

not listed as arguments ofAq ,Ap ,Apg in Equation (37). Given initial conditions Qq.ti / and Qp´.ti /,
this allows to calculate the approximate trajectories Qq, Qp, and Qpg in the interval .ti ; tiC1/. Fur-
thermore, the values Qq.tiC1/, given by evaluating Qq.t;�qi / at t D tiC1, and Qp´.tiC1/ are obtained
and are used as boundary conditions for the next time interval. More precisely, given the boundary
conditions

®
Qq.ti /; Qp´.ti /

¯
, we solve Equation (37) together with

Qq.ti / D Qq.ti /
�; Qp´.ti / D Qp

�
ti ;�pi

�
�W . Qq.ti /; ti / Qpg.ti ;�pgi / (38)

for �qi ;�pi ;�pgi , Qq.ti /
�, and Qp´.tiC1/. This amounts in solving nmq C nmp C ncmg C 2n

equations for the nmq parameters �qi , the nmp parameters �pi , the ncmg parameters �pgi , the
vector Qp´.tiC1/ 2 .R

n/�, and the vector Qq.ti /� 2 Rn.§§ Note that the values Qq.ti /� and Qp´.tiC1/
are regarded as unknown vectors in Rn and .Rn/� when solving the stepping equations (37). To
initialize the algorithm, compliant initial conditions q0 and p0 must be provided, that is, fulfilling
g.q0; t0/ D 0, and the boundary condition on the generalized momentum is set by Qp´.t0/ D p0.

4.2. Properties

The properties of the integration are analyzed next. To simplify the analysis, non-potential forces
f NP are again assumed to be absent.

A similar argument as in Section 3 can be made to ensure convergence of the approximate
trajectories for mq !1; mp !1, and mg !1.

4.2.1. Conservation of the gap function g. It will be shown that the gap function g.q.t/; t/ is
conserved if the ansatz fulfills the following condition.

Assumption 4.1
Let Qpg 2 QC

1
pc.I � Rnc �mg �N ; .Rnc /�/ be such that for each k 2 ¹1; 2; : : : ; ncº and each i 2

¹0; 1; : : : ; N � 1º, a j 2 ¹1; 2; : : : ; nc �mg �N º exists, which fulfills

Qpgk .t;�pgi
/ D �pgj ; 8t 2 Œti ; tiC1/; (39)

where Qpgk denotes the kth component of Qpg and �pgj the j th component of �pg .

This assumption implies that the ansatz has at least a constant element. It is assumed to hold
throughout the next section.

Evaluating the kth component of Apg in Equation (37) with respect to the variation ı�pgj , such
that ı Qpgk .t;�pgi / D ı�pgj , leads to

Apgk D gk
�
Qq.ti /

C; ti
�
� gk . Qq.ti /

�; ti /C

Z
.ti ;tiC1/

Pgk. Qq.t/; t/ dt

D gk . Qq.tiC1/
�; tiC1/ � gk . Qq.ti /

�; ti / D 0:

By Assumption 4.1, this holds likewise for all k 2 ¹1; 2; : : : ; ncº and concludes that

g . Qq.tiC1/
�; tiC1/ D g . Qq.ti /

�; ti / :

In other words, if the algorithm is initialized with an initial configuration q0 compliant with the
constraint, the approximate trajectory will always stay in accordance with the constraint at the

§§Like in the unconstrained case, solving for Qq.ti /� is trivial in the sense that the known boundary condition Qq.ti / can
be directly inserted into the expressionsAp andApg in Equation (37).
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discontinuous time instants ti , i D 0; 1; 2; : : : ; N . This ensures that no additional regularization
is needed.

4.2.2. Conservation of energy. Given that Assumption 3.1 holds for Qq, Qp, and Qpg , an energy-like
quantity is shown to be conserved, similar to Section 3.1. Again, applying the specific variations
ı Qq D PQq ıt , ı Qp D PQp ıt , and ı Qpg D PQpg ıt to the strong form of the virtual work leads to

PQq.tiC1/
T
�
Qp´.tiC1/ � Qp´.tiC1/

�
�
CH . Qp.tiC1/

�; Qq.tiC1/
�; tiC1/ D PQp.ti /

T
�
Qq.ti /

C � Qq.ti /
�
�

� PQpg.ti /
T
�
Qg.ti /

C � Qg.ti /
�
�
CH

�
Qp.ti /

C; Qq.ti /
C; ti

�
C

Z
.ti ;tiC1/

 
@H

@t
�
@ QgT

@t
PQpg

!
dt :

(40)

Similar to the discussion in Section 3.1, the aforementioned equation can be expressed using the
boundary values Qq.ti /, Qp´.ti /, yielding the discrete energy balance

�Hc
�
Qq.t0/; Qp´.t0/

�
D �Hc

�
Qq.t1/; Qp´.t1/

�
D � � � D �Hc

�
Qq.tN�1/; Qp´.tN�1/

�
D 0; (41)

in case the Hamiltonian and the gap function are not explicitly dependent on time.

4.2.3. Symplectic integration. Next, it will be shown that the transformation from ¹ Qq.ti /; Qp.ti /º to
¹ Qq.tiC1/; Qp.tiC1/º is symplectic. We choose an oriented smooth two-dimensional manifold with
boundary [28, p. 411], denoted by � , which is embedded in the phase space, � � Rn � .Rn/�,
and is compliant with the constraint, that is, g.q; ti / D 0, 8.q;p/ 2 � . The boundary @� defines
a closed contour, along which initial conditions Qq.ti ; s/, Qp.ti ; s/, parametrized by s 2 Œ0; 1/, are
chosen. Thus, the generalized coordinates Qq.ti ; s/ are in agreement with the constraint, that is,

g. Qq.ti ; s/; ti / D 0; 8s 2 Œ0; 1/: (42)

Solving Equation (37) yields the parameters �qi .s/, �pi .s/, and �pgi .s/ for every s 2 Œ0; 1/,
which parametrize the approximate trajectories Qp.t;�pi .s//, Qq.t;�qi .s//, and Qpg.t;�pgi .s// for
t 2 .ti ; tiC1/.¶¶

Integration of Equation (34) along @� leads to

0 D

Z
@�

Aq.s/
Td�qi CA

T
pd�pi CA

T
pq

d�pgi

D

Z
@�

0
B@�d

Z
.ti ;tiC1/

�
QpT PQq � Qpg

T PQg �H . Qp; Qq; t /
�

dt � d
��
Qq.ti /

C
�
T Qp.ti /

C
�

Cd
��
Qpg.ti /

C
�T
Qg.ti /

C
�
C Qp´.tiC1/

Td Qq.tiC1/C Qq.ti /
Td Qp.ti / � Qg.ti /

Td Qpg.ti /

1
CA

D

Z
@�

Qp´.tiC1/
Td Qq.tiC1/C Qq.ti /

Td Qp.ti / � Qg.ti /
Td Qpg.ti /:

(43)

Because Qq.ti ; s/ is chosen such that g . Qq.ti ; s/; ti / D 0; 8s 2 Œ0; 1/, it holds according to
Section 4.2.1 that g . Qq.tiC1; s/; tiC1/ D 0; 8s 2 Œ0; 1/. Hence, it follows that

¶¶The dependence on s is occasionally omitted in the following to simplify notation.
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Qp´.tiC1/
Td Qq.tiC1/ D

�
Qp.tiC1/ �W . Qq.tiC1// Qpg.tiC1/

�T

d Qq.tiC1/

D Qp.tiC1/
Td Qq.tiC1/ � Qpg.tiC1/

Tdg. Qq.tiC1//

D Qp.tiC1/
Td Qq.tiC1/;

which simplifies Equation (43) to

0 D

Z
@�

Qp.tiC1/
Td Qq.tiC1/C Qq.ti /

Td Qp.ti /:

Applying Stoke’s theorem [28, p. 411] to the previous equation yields

Z
�

d Qq.ti / ^ d Qp.ti / D
Z
�

d Qq.tiC1/ ^ d Qp.tiC1/; (44)

which shows the invariance of the two-form dq ^ dp and implies symplectic integration.
Note that the integration scheme remains symplectic even if the integrals occurring in (37) are

approximated using quadrature (under mild assumptions on the quadrature rule); the argument
showing symplectic integration is analogous.

5. RELATION TO RUNGE–KUTTA METHODS

In the next section, the presented integration methods are related to well-known Runge–Kutta meth-
ods. This is carried out by approximating the action integral with quadrature. Note that links between
previously proposed variational integration schemes and Runge–Kutta methods are, for example,
given in [1, 9, 14], and references therein. However, the integration scheme proposed herein is
different, and therefore, the connection to the Runge–Kutta methods is shortly discussed.

To simplify notation, the derivations are presented on the example of a one-dimensional system
(n D 1), where linear basis functions are chosen. Note that it is straightforward to extend the
derivation to systems with more degrees of freedom or more complex basis functions.

Consider the interval Œ0; 1� with the following ansatz for Qq and Qp:

Qq
�
t;�q

�
WD

²
q0; t D 0
1C
p
3

2
�q0 C

1�
p
3

2
�q1 C

p
3
�
�q1 � �q0

�
t; t 2 .0; 1�;

(45)

Qp.t;�p/ WD
1C
p
3

2
�p0 C

1�
p
3

2
�p1 C

p
3
�
�p1 � �p0

�
t; t 2 Œ0; 1/

p1; t D 1;
(46)

where �q D .�q0; �q1/
T and �p D .�p0; �p1/

T. The dependence of Qq on q0 and Qp on p1 is omitted
to simplify notation. Note that the ansatz is parametrized in such a way that the evaluation at the
Gauss quadrature points tg1 D 1

2
�
p
3
6

and tg2 D 1
2
C
p
3
6

corresponds exactly to the ansatz
parameters, that is, Qq

�
t D tg0;�q

�
D �q0 and Qq

�
t D tg1;�q

�
D �q1. The same applies for Qp.

Next, the ansatz is inserted in Equation (21). However, instead of solving the integrals exactly,
they are approximated by Gauss quadrature, which leads to

0 D �
@ Qq

@�q

ˇ̌̌
ˇ̌
T

t#0

Qp.0/C C
@ Qq

@�q

ˇ̌̌
ˇ̌
T

tD1

Qp.1/ �
1

2

1X
jD0

2
4 @ PQq

@�q

ˇ̌̌
ˇ̌
T

tDtgj

Qp.tgj /

C
@ Qq

@�q

ˇ̌̌
ˇ̌
T

tDtgj

 
�
@H

@q

ˇ̌̌
ˇ
tDtgj

C fNP .tgj /

!35 ;
(47)
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0 D �
@ Qp

@�p

ˇ̌̌
ˇ̌
T

tD0

. Qq.0/C � Qq.0// �
1

2

1X
jD0

@ Qp

@�p

ˇ̌̌
ˇ̌
T

tDtgj

 
PQq.tgj / �

@H

@p

ˇ̌̌
ˇ
tDtgj

!
: (48)

Given initial conditions q0 and p0 such that Qq.0/ D q0 and Qp.0/ D p0, the previous set of equations
can be solved for �q , �p , and p1. This results in

�q0 D q0 C
1

3

@H

@p

ˇ̌̌
ˇ
tDtg0

C
1 �
p
3

6

@H

@p

ˇ̌̌
ˇ
tDtg1

;

�q1 D q0 C

p
3C 1

6

@H

@p

ˇ̌̌
ˇ
tDtg0

C
1

3

@H

@p

ˇ̌̌
ˇ
tDtg1

;

Qq.1/ D q0 C
1

2

@H

@p

ˇ̌̌
ˇ
tDtg0

C
1

2

@H

@p

ˇ̌̌
ˇ
tDtg1

;

and

�p0 D p0 C
1

6

 
�
@H

@q

ˇ̌̌
ˇ
tDtg0

C fNP .tg0/

!
C

 
1

3
�

p
3

6

! 
�
@H

@q

ˇ̌̌
ˇ
tDtg1

C fNP .tg1/

!
;

�p1 D p0 C

 
1

3
C

p
3

6

! 
�
@H

@q

ˇ̌̌
ˇ
tDtg0

C fNP .tg0/

!
C
1

6

 
�
@H

@q

ˇ̌̌
ˇ
tDtg1

C fNP .tg1/

!
;

Qp.1/ D p0 C
1

2

 
�
@H

@q

ˇ̌̌
ˇ
tDtg0

C fNP .tg0/

!
C
1

2

 
�
@H

@q

ˇ̌̌
ˇ
tDtg1

C fNP .tg1/

!
:

Thus, the expression for the states at time t D 1, ¹ Qq.1/; Qp.1/º, corresponds exactly to a partitioned
Runge–Kutta procedure with the Butcher tableau depicted in Figure 3.

However, in the Runge–Kutta setting, the trajectories are only evaluated at discrete time instants,
that is, given initial conditions q0 and p0, the Runge–Kutta method provides the trajectories eval-
uated at time t D 1, Qq.1/ and Qp.1/. In contrast, the approach presented herein that provides
approximate trajectories in the time interval Œ0; 1� (c.f. Equations (45) and (46)) is guaranteed to
be symplectic and conserves an energy-like quantity. Furthermore, the approach is flexible as the
choice of basis functions or the quadrature rule is not restricted.

6. NUMERICAL EXAMPLES

Next, the variational integration methods are illustrated in two examples. In a first step, the numerical
integration of the mathematical pendulum, parametrized by polar coordinates, is discussed. In a
second step, the pendulum is described by Cartesian coordinates, providing the need to include
holonomic constraints.

Figure 3. Butcher tableau formq D mp D 1. Left: update equations for q and right: update equations for p.
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6.1. The pendulum in polar coordinates

The pendulum is modeled as point mass (with mass m) subjected to gravity and constrained to the
circle of radius l . In polar coordinates, the Hamiltonian of the system is given by

H.p; q/ D
1

2ml2
p2 �mlg cos q; (49)

where q 2 Œ��; �/ refers to the angle, p 2 R denotes the corresponding generalized momentum,
and g D 9:81m=s2 denotes the gravitational acceleration. The angle is introduced such that q D 0

corresponds to the hanging equilibrium.
For simplicity, we choose polynomial ansatz functions over equidistant time intervals of length T

for both Qq and Qp, that is,

Qq
�
t;�q

�
D

8̂̂̂
<
ˆ̂̂:
q0 t D 0

�q0 C �q1t C �q2t
2 t 2 .0; T �

�q3 C �q4.t � T /C �q5.t � T /
2 t 2 .T; 2T �

:::

(50)

Qp.t;�p/ D

8̂<
:̂
�p0 C �p1t C �p2t

2 t 2 Œ0; T /

�p3 C �p4.t � T /C �p5.t � T /
2 t 2 ŒT; 2T /

:::

: (51)

Next, we will consider the time interval t 2 Œ0; T � in more details. Because the Hamiltonian is
not explicitly time-dependent, we can treat the subsequent time intervals analogously. For the time
interval t 2 Œ0; T �, the ansatz functions can be rewritten as

Qq
�
t;�q0

�
D

²
q0 t D 0

�.t/T�q0 t 2 .0; T �;
Qp
�
t;�p0

�
D

²
�.t/T�p0 t 2 Œ0; T /

�p3 t D T;
(52)

where �.t/ WD .1; t; t2/T, �q0 WD .�q0; �q1; �q2/
T, and �p0 WD .�p0; �p1; �p2/

T. The dependence
on q0 and �p3 is omitted to simplify notation. In Section 2, it was shown that requiring the virtual
action to vanish for all variations ı�q , ı�p is equivalent to impose that the set of equations (21) has
to be fulfilled. By inserting the ansatz functions, we obtain

Aq

�
�q0;�p0; Qp

�
T;�p

�C�
D ��.0/�.0/T�p0 C �.T / Qp

�
T;�p

�C
�

Z
.0;T /

P��Tdt �p0 Cmlg
Z

.0;T /

� sin�T�q0dt D 0;
(53)

Ap
�
�q0;�p0; Qq

�
0;�q

���
D ��.0/�.0/T�q0 C �.0/ Qq

�
0;�q

�
�

Z
.0;T /

� P�Tdt �q0 C
1

ml2

Z
.0;T /

��Tdt �p0 D 0: (54)

The initial conditions for q and p, denoted by qG0 and pG0 , determine the value Qq.0;�q/ and
Qp.0;�p/. They can be enforced by adding the two equations Qq.0;�q/ D q

G
0 and Qp.0;�p/ D p

G
0 , or

equivalently

q0 � q
G
0 D 0; �.0/T�p0 � p

G
0 D 0; (55)
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to the set of equations (53) and (54). By solving Equations (53), (54), and (55) for the unknowns
�q0, �p0, q0, and Qp

�
T;�p

�C
, the approximate trajectories for the time interval t 2 Œ0; T � are

obtained. The values Qq
�
T;�q

�
and Qp

�
T;�p

�
, which is by right continuity equal to Qp

�
T;�p

�C
,

determine the initial conditions for the next time interval, that is, t 2 ŒT; 2T �.
The numerical values of the different parameters are listed in Table I. To solve the nonlinear step-

ping equations, the Newton method with a relative tolerance of 10�13 has been used. The integrals
in Equations (53) and (54) are calculated analytically, except for

Z
.0;T /

� sin�T�q0dt;

which is approximated by the rectangle method using a width of 10�4s. Figure 4 shows the phase
portrait. The total energy is depicted in Figure 5, where it can be confirmed that the energy oscil-
lates around the correct value. Both plots indicate a physically consistent integration. The root mean
squared error is approximately 1:24 � 10�4rad for the angle and 1:40 � 10�2kg m2=s for the angular

Table I. Parameters and initial
conditions.

Mass m = 1kg
Pendulum length l D 2m
Time interval T D 0:3s

Initial coordinates qG0 D 120deg
Initial momenta pG0 D 0kg m2=s

Figure 4. Phase diagram of the pendulum.

Figure 5. Total energy of the pendulum. The thin black line indicates the exact value of 9.81 J.
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momentum, which is small compared with the integration timesteps.|||| Moreover, owing to the
symplectic integration, an excellent long-time behavior (no energy drift) can be observed.

6.2. Galerkin variational integration approach from [1, p. 415]

We compare the integration scheme from the previous section with the Galerkin variational
integrator approach presented in [1, p. 415].

Similarly, polynomial basis functions of second order over equidistant time intervals of length T
are used to approximate the generalized coordinates Qq, that is,

Qq
�
t;�q

�
D

8̂̂̂
<
ˆ̂̂:
q0 t D 0

�q0 C �q1t C �q2t
2 t 2 .0; T �

�q3 C �q4.t � T /C �q5.t � T /
2 t 2 .T; 2T �:

:::

(56)

In contrast to the approach presented in the previous section, the generalized coordinates are
required to be continuous, which yields the constraints q0 D �q0, �q3 D �q0C �q1T C �q2T 2, and
so on. The integration scheme is derived by requiring the action

A D

Z
Œ0;NT �

L
�
Qq; PQq

�
dt D

N�1X
kD0

Z
.kT;.kC1/T �

L
�
Qq; PQq

�
dt (57)

to be stationary with respect to the ansatz parameters �q and with fixed boundaries, ı Qq.0/ D 0,
ı Qq.NT / D 0, where TN refers to the length of the prediction horizon. Note that the time singleton
¹0º has zero Lebesgue measure, and therefore, the integral over ¹0º vanishes in the right-hand side
of Equation (57). The Lagrangian is given by the difference of kinetic and potential energy, which
leads for the pendulum in polar coordinates to

L.q; Pq/ D
1

2
ml2 Pq2 Cmlg cos q: (58)

We impose the continuity requirements on Qq using the Lagrange multipliers pk , k D 0; 1; : : : ; N �1
and augment the action (57) to

A D

Z NT

0

L
�
Qq; PQq

�
dt C

N�1X
kD0

pk

�
Qq
�
kT;�q

�C
� Qq

�
kT;�q

��
: (59)

Consequently, the action can be made stationary by requiring its variation with respect to the ansatz
parameters �q to vanish (disregarding the continuity requirements on Qq). Variations with respect to
the multipliers pk impose the continuity requirements on Qq.

We consider the time interval t 2 Œ0; T � in more details and rewrite the ansatz function as

Qq
�
t;�q0

�
D

²
q0 t D 0

�.t/T�q0 t 2 .0; T �;
(60)

with �.t/ D .1; t; t2/T, �q0 D
�
�q0; �q1; �q2

�T
. The dependence of Qq on q0 is omitted to simplify

notation. Because the Lagrangian is not explicitly dependent on time, we can treat the subse-
quent time intervals analogously. Requiring the action to be stationary with respect to the ansatz
parameters �q0 yields

||||The solutions from the variational integrator were compared with the trajectories obtained by MATLAB’s ode45
(MathWorks, Natick, MA, USA) with relative and absolute tolerances of 10�12.
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ıA D ı�Tq0

 Z T

0

�.t/
@L

@q
C P�.t/

@L

@ Pq
dt C �.0/p0 � �.T /p1

!
D 0; (61)

for all variations ı�q0. The variation with respect to p0 and p1 yields Qq.0;�q0/
C D q0, Qq.T;�q0/ D

Qq.T;�q/
C, respectively, and imposes continuity on Qq.

Therefore, the update step is given by the implicit equation

Aq
�
�q0; p0; p1

�
D �.0/p0 � �.T /p1 Cml

2

Z T

0

P� P�Tdt �q0 �mlg
Z T

0

� sin�T�q0dt D 0 (62)

together with the boundary condition q0 D qG0 and continuity requirement Qq
�
0;�q0

�
D

Qq
�
0;�q0

�C
. According to Marsden [1], the Lagrange multipliers p0 and p1 correspond to the gener-

alized momentum at the time instants t D 0 and t D T . Imposing the boundary conditions q0 D qG0
and p0 D pG0 and the continuity requirement Qq.0;�q0/ D Qq.0;�q0/

C, Equation (62) can be solved
for �q0 and p1, yielding the approximate trajectory Qq.t/ in the time interval t 2 Œ0; T �, as well as
the generalized momentum p1, which is used as boundary condition for the next time interval.

By comparing (62) with (53), it can be seen that the terms accounting for the potential energy
agree. By defining the generalized momentum as Qp WD ml2 PQq, the terms resulting from the kinetic
energy can be matched as well. In the previous section, the generalized momentum was assumed to
be right continuous, which implies Qp.T;�p/

C D Qp.T;�p/. Hence, the boundary terms �.T /p1 and
�.T / Qp.T;�p/

C can be identified with each other. The difference between Equations (62) and (53)
lies therefore in the way the boundary condition at t D 0 is incorporated. Indeed, it turns out that the
Galerkin variational integration approach as proposed in [1] can be derived as a special case from the
framework presented herein. It suffices to assume the generalized coordinates to be continuous and
the generalized momentum to be neither left nor right continuous. The corresponding derivations
are presented in Appendix B.

The values for the pendulum mass, the gravitational acceleration, and the pendulum length are
chosen as in the previous section (Table I). The nonlinear Equation (62), where the second integral is
again approximated by the rectangle rule (with a width of 10�4s), is solved using Newton’s method
with the same tolerance as in Section 6.1. The resulting phase portrait is depicted in Figure 6,
where the discontinuities of the generalized momentum are clearly visible. Note that the generalized
momentum is defined as Qp WD ml2 PQq. For the initial conditions given in Table I, the root mean
squared error of the integration scheme is compared with the approach presented in Section 6.1. The
root mean squared error is approximated by averaging over a time period of 15 s, which corresponds
to approximately five pendulum swings. The method from Section 6.1 has a smaller error in the
angle variable q as well as in the momentum p (c.f. Table II).

Figure 6. Phase diagram of the pendulum, simulated according to the Galerkin variational integration
approach presented in [1].
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Table II. Root mean squared error of the methods presented in
Section 6.1 and 6.2.

rms error q rms error p

Method from Sec. 6.1 1:24 � 10�4rad 1:40 � 10�2kg m2s�1

Method from Sec. 6.2 1:48 � 10�3rad 1:14 � 10�1kg m2s�1

Note that the root mean squared error of the method presented in 6.2
is roughly one order of magnitude larger.

6.3. The pendulum in Cartesian coordinates

Next, a description based on Cartesian coordinates is presented. Hence, the Hamiltonian is given by

H.p; q/ D
1

2m

�
p21 C p

2
2

�
Cmg q2; (63)

where q D .q1; q2/
T denotes the position of the point mass and p D .p1; p2/

T the corresponding
generalized momentum. Additionally, the point mass is constrained to a circle of radius l , which
leads to the gap function

g.q/ D q21 C q
2
2 � l

2: (64)

Again, polynomials up to second order are taken as ansatz functions. Similar to Equations (50)
and (51), a left continuous ansatz Qq.t;�q/ is chosen for q and a right continuous ansatz Qp.t;�p/
and Qpg.t;�pg / for p and pg . We recall that the generalized momentum pg is associated with the
constraint g.q/ D 0 and that Ppg represents the constraint force. The Hamiltonian is not explicitly
dependent on time, and therefore, it is enough to consider the interval t 2 Œ0; T � in more details, as
the remaining time intervals are treated in a similar manner. In the interval t 2 Œ0; T �, we choose the
following parametrization of the generalized coordinates

Qq
�
t;�q

�
D

�
1 t t2 0 0 0

0 0 0 1 t t2

�0B@
�q0
:::

�q5

1
CA D �.t/T�q0; t 2 .0; T �; (65)

and similarly for the generalized momenta

Qp
�
t;�p

�
D �.t/T�p0; Qpg

�
t;�pg

�
D .1; t; t2/

0
@ �pg0�pg1
�pg2

1
A D �g.t/T�pg0 ; t 2 Œ0; T /:

(66)

From Section 4, we infer that the virtual action vanishes for all variations ı Qq, ı Qp, and ı Qpg if and
only if the set of equations (37) is fulfilled. This yields

Aq

�
�q0;�p0;�pg0 ; Qp´.T /

�
D ��.0/

�
�.0/T�p0 �W

�
�.0/T�q0

�
�g.0/

T�pg0

�
C �.0/ Qp´.T /

�

Z
.0;T /

P��Tdt �p0 C
Z

.0;T /

P� W
�
�T�q0

�
�T
g dt �pg0 C

Z
.0;T /

�

�
0

mg

�
dt D 0;

(67)

Ap
�
�q0;�p0; Qq

�
0;�q

���
D ��.0/�.0/T�q0 C �.0/ Qq.0;�q/

�

�

Z
.0;T /

� P�Tdt �q0 C
1

m

Z
.0;T /

��Tdt �p0 D 0; (68)
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Ag
�
�q0;�p0; Qq.0;�q/

�
�
D �g.0/

�
g.�.0/T�q0/ � g

�
Qq.0;�q/

�
� 	

C

Z
.0;T /

�gW
�
�T�q0

�T
P�T dt �q0 D 0; (69)

where the matrixW .q/ is given by

W .q/ D
@g

@q

T

D

�
2q1
2q2

�
: (70)

The initial conditions qG0 , pG0 are set by imposing Qq.0;�q/ D q
G
0 and Qp´.0/ D p

G
0 , or equivalently

Qq
�
0;�q

��
� qG0 D 0; �.0/T�p0 �W

�
�.0/T�q

�
�g.0/

T�pg0 � p
G
0 D 0: (71)

Solving Equations (67), (68), (69), and (71) yields the parameters �q0, �p0, and �pg0 as well
as the boundary term Qp´.T /. This determines the approximate trajectories Qq.t;�q/, Qp.t;�p/, and
Qpg.t;�pg /, for t 2 Œ0; T /, as well as the boundary conditions Qq.T;�q/ and Qp´.T / for the next

time interval. Note that no initial (or boundary) condition is prescribed on the momentum pg . This
allows the integration algorithm to ‘absorb’ initial or boundary conditions that are not necessarily
in agreement with d

dt g.q.0// D 0. As the constraint force is given by the time derivative of pg , the
initial value of pg.0/ is not defined in a mechanical sense. For a physically consistent integration,
the simulation should be started with initial conditions qG0 and pG0 compatible with the constraint,
such that g

�
qG0
�
D 0 and d

dt g
�
qG0
�
D 1

m
W
�
qG0
�
TpG0 D 0.

Figure 7. Phase diagram of the x-coordinate q1 and p1 (left) and the y-coordinate q2 and p2 (right). At
higher angular velocities, the discontinuities in position and momentum are clearly visible.

Figure 8. Depicted is the gap function g (left) and the constraint force Ppg (right). The constraint force Ppg is
scaled by the magnitude of the vectorW .q/ in order to match the mechanical force experienced by the rod.
Note that the gap function vanishes only at the time interval boundaries, that is, for t D iT; i D 0; 1; : : : ; N
(up to numerical accuracy), which is not visible owing to the constraint violations for t 2 .iT; .i C 1/T /.
Furthermore, the ansatz for pg is of second order, and therefore, the constraint force PQpg is piecewise linear.
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The parameters given in Table I are used in the numerical experiment. The nonlinear stepping
equations are solved by the Newton procedure with a relative tolerance of 10�13. The resulting
phase diagrams are shown in Figure 7. Figure 8 shows the time history of the gap function, as well
as the constraint force. Again, a physically sensible integration is obtained. Owing to the symplectic
integration, a consistent long-time behavior is observed. Despite the comparably large step size of
T D 0:3s, the root mean squared position error is below 2:26 � 10�2m and the root mean squared
momentum error below 1:51 �10�1kg m=s. Note that no additional constraint stabilization was used.
Moreover, the Newton procedure used for solving the stepping equations converged in less than 15
iterations for each timestep, indicating a numerically stable algorithm.

7. CONCLUSION

This article discussed a particular approach to variational integration. After deriving integration
schemes from the principle of virtual work, some of their properties were analyzed and provided an
a posteriori justification. Next, the addition of holonomic constraints was elaborated. Provided that
sensible ansatz functions are chosen, the presented framework guarantees symplectic integration
and the conservation of an energy-like quantity without additional regularization. Application of the
method to a simple mechanical system including a holonomic constraint yielded promising results
and demonstrated physically consistent integration. In particular, a numerically stable long-time
behavior was observed even for large timesteps.

Simplifying the integration algorithm by approximating the action integral by quadrature showed
a connection to the well-known Runge–Kutta methods.

We believe that the close relation to continuous Hamiltonian mechanics, which enables to transfer
classical results, combined with a physically consistent long-time behavior (due to the fact that
the transformation from one time interval to the next is symplectic) indicates the potential of the
proposed integration methods.

APPENDIX A: PROOF OF POSTULATE 2.1

We prove Postulate 2.1 in two steps. Starting from the principle of virtual work, we conclude that
the system is in dynamic equilibrium if the corresponding equations of motion are fulfilled.*** Using
this fact, we then show that Postulate 2.1 holds.

According to [21], the principle of virtual work states that a mechanical system is in dynamic
equilibrium for times t 2 I WD Œt0; tN � if the virtual work

ıW WD
d

dt

�
ıqTp

�
� ıL � ıqTf NP (A.1)

vanishes for all variations ıq and all times t 2 I . Note that the Lagrangian L is defined as

L.q; Pq; t / WD
1

2
PqTM .q/ Pq � V.q; t / (A.2)

and the generalized momenta p are given by Equation (2).
The transition from Lagrangian to Hamiltonian formalism is carried out in two steps. First the

Lagrangian is rewritten as

L.q; Pq; t / D PqTp �H.q;p; t /; (A.3)

where the generalized momenta p are considered to be a placeholder for M .q/ Pq according to
Equation (2) and the Hamiltonian is defined in Equation (3). Then, the kinematic link between

***We assume that the generalized coordinates q are at least twice continuously differentiable for times t 2 I , such that
the equations of motion are well defined for all t 2 I .
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the generalized coordinates and the generalized momenta is enforced by (independent) variations
of the generalized momenta. Therefore, the variation of the Lagrangian in Equation (A.1) can be
replaced by

ı
�
PqTp �H.q;p; t /

�
; (A.4)

where the variations of ıp are independent of ıq.
As a result, it follows that the system is in dynamic equilibrium for times t 2 I if the virtual work

ıW D
d

dt

�
ıqTp

�
� ı

�
PqTp

�
C ıH � ıqTf NP (A.5)

vanishes for all variations ıq and all variations ıp, and for all t 2 I .
Using the fact that time differentiation and variation commute, the virtual work can be rewritten

as

ıW D ıqT

 
Pp C

@H

@q

T

� f NP

!
C ıpT

 
�Pq C

@H

@p

T
!
: (A.6)

Therefore, the principle of the virtual work implies that the system is in dynamic equilibrium for
times t 2 I if

Pp D �
@H

@q

T

C f NP ; Pq D
@H

@p

T

(A.7)

is fulfilled for times t 2 I .
We now show that Postulate 2.1 holds by proving that if the virtual action in (7) vanishes for

all (discontinuous) variations ıq, ıp, the equations of motion are fulfilled almost everywhere and
the trajectories are continuous, except at finitely many discontinuous time instants where left and
right limits agree. The generalized coordinates q and the generalized momenta p are assumed to be
piecewise continuously differentiable. Therefore, we can choose variations ıq and ıp, which are
everywhere zero except on an interval .t0; t1/ � I , where q and p are continuously differentiable.
For these specific variations, Equation (7) reduces toZ

.t0;t1/

ıqT Pp � PqTıp C ıH�ıqTf NP dt

D

Z
.t0;t1/

ıqT

 
Pp C

@H

@q

T

� f NP

!
C ıpT

 
�Pq C

@H

@p

T
!

dt;

(A.8)

and has to vanish for all ıq and ıp (which are zero except on the interval .t0; t1/). The fundamental
lemma of the calculus of variations [22] implies that (A.8) vanishes if and only if

Pq D
@H

@p

T

; Pp D �
@H

@q

T

C f NP ; (A.9)

for all t 2 .t0; t1/. Hence, the system is in dynamic equilibrium for all t 2 .t0; t1/. Repeating the
same argument for all time intervals where q and p are continuously differentiable leads to the
conclusion that the system fulfills the equations of motion (A.7) for all t 2 I (almost everywhere).

It remains to show that the left and right limits of the generalized coordinates and momenta at
discontinuous time instants agree in order to conclude that the system is in dynamic equilibrium
for all t 2 I (almost everywhere). Note that by assumption, there are finitely many time instants at
which q and p are allowed to be discontinuous. We choose particular variations ıq, ıp, which are
everywhere zero, except at the discontinuous time instant td . The virtual action simplifies in that
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case to the integral over the time singleton ¹td º. By linearity of the integral and the fact that the
differential measure has a density with respect to an atomic measure, we obtain

ıA D

Z
¹td º

ıq.td /
Tdp � ıp.td /

Tdq D ıq.td /
T

Z
¹td º

dp � ıp.td /
T

Z
¹td º

dq

D ıq.td /
T.p.td /

C � p.td /
�/ � ıp.td /

T
�
q.td /

C � q.td /
�
�
:

(A.10)

Requiring the virtual action to vanish for all variations ıq.td / and ıp.td / yields therefore

p.td /
C D p.td /

�; q.td /
C D q.td /

�: (A.11)

Repeating the same argument for all discontinuous time instants leads to the conclusion that the
left and right limits agree at every discontinuous time instant. Therefore, the system is in dynamic
equilibrium for all t 2 I (almost everywhere) if the virtual action, as defined in Postulate 2.1,
vanishes for all variations ıq and ıp.

APPENDIX B: ADDENDUM TO SECTION 6.2

We derive the integration scheme in case the generalized coordinates are assumed to be continu-
ous and the generalized momenta are neither left nor right continuous. Thereby, we will show that
the boundary terms match exactly the Galerkin variational integration approach proposed in [1, p.
415] (c.f. Section 6.2). By approximation of the resulting integrals using quadrature, the integra-
tion scheme can be related to the Galerkin variational integration approach in [2] and, in case of
polynomial basis functions and a constant mass matrix, to the approach from [1, p. 415].

As in Section 2.4, the time interval of interest, I D Œt0; tN � with tN > t0, is divided into sub-
intervals Ii WD Œti ; tiC1� � R (i D 0; 1; : : : ; N � 1). The two ansatz functions Qq.t/ and Qp.t/
for q and p are required to be everywhere continuously differentiable, except at the time instants
t0; t1; : : : ; tN . Hence, they are piecewise continuously differentiable, with

Qq 2 QC 1pc

�
I �Rn�mq �N ;Rn

�
; and Qp 2 QC 1pc

�
I �Rn�mp �N ; .Rn/�

�
: (B.1)

Inserting the ansatz into the expression of the virtual action leads to

ıA D

Z
I

ı QqTd Qp � ı QpTd Qq C
�
ıH . Qp; Qq; t / � ı QqTf NP

�
dt: (B.2)

We require the virtual action to vanish for all variations ı Qq and ı Qp to obtain an approximation of the
dynamic equilibrium. However, Qq is required to be continuous, and therefore, the variations ı Qq must
be continuous as well. It is assumed that within the intervals t 2 .ti ; tiC1�, the ansatz Qq depends
on time but only on a subset of the parameters �q , denoted by �qi 2 Rn�mq . The continuity of Qq
imposes restrictions on the ansatz parameters �q , that is

Qq
�
ti ;�qi�1

��
D Qq

�
ti ;�qi

�
;

for all i D 0; 1; : : : ; N � 1. As a result, the variations of �qi are not allowed to be arbitrary because
it must hold that

ı Qq.ti /
� D

@ Qq

@�qi�1

ˇ̌̌
ˇ̌
t"ti

ı�qi�1 D
@ Qq

@�qi

ˇ̌̌
ˇ̌
tDti

ı�qi D ı Qq.ti /:
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In the following, we impose the continuity requirements on Qq using the Lagrange multipliers �i 2
.Rn/�, i D 1; 2; : : : ; N � 1, such that the parameters �qi and corresponding variations ı�qi can be

treated as if they were unconstrained.††† Hence, the virtual action is augmented with the terms

N�1X
iD0

ı
�
�T
i

�
Qq.ti /

C � Qq.ti /
��
D

N�1X
iD0

ı�T
i

�
Qq.ti /

C � Qq.ti /
�
C
�
ı Qq.ti /

C
�T
�i � ı Qq.ti /

T�i ; (B.3)

resulting in

ıA D

Z
I

ı QqTd Qp � ı QpTd Qq C
�
ıH. Qp; Qq; t / � ı QqTf NP

�
dt

C

N�1X
iD0

ı�T
i

�
Qq.ti /

C � Qq.ti /
�
C
�
ı Qq.ti /

C
�T
�i � ı Qq.ti /

T�i ;

(B.4)

where the variations ı�qi 2 Rnmq are unconstrained, i D 0; 1; : : : ; N � 1. Moreover, if the vari-
ations are restricted to be such that ı Qq.ti /� D ı Qq.ti /, i D 0; 1; : : : ; N � 1, the expression of the
virtual action given in Equation (B.4) reduces to the one given in (B.2).

For t 2 .ti ; tiC1/, the ansatz Qp, which is neither left nor right continuous, is assumed to depend
on time and only on a subset of the parameters �p , denoted by �pi 2 Rn�mp , i D 0; 1; : : : ; N � 1.
We fix 0 6 i 6 N � 1 and consider variations ı�qi , ı�pi , and ı Qp.ti /. In that way, we can ‘cut’ the
time segment Ii out of the virtual action. By repeating the procedure for all time intervals Ii , we
require the virtual action to vanish for all variations ı Qq and ı Qp, thereby approximating the dynamic
equilibrium in the entire interval t 2 I . This yields

ıA D

Z
Ii

ı QqTd Qp � ı QpTd Qq C
�
ıH . Qp; Qq; t / � ı QqTf NP

�
dt C

�
ı Qq.ti /

C
�T
�i � ı Qq.tiC1/

T�iC1

D

Z
¹ti º

ı QqTd Qp � ı QpTd Qq C
Z

¹tiC1º

ı QqTd Qp � ı QpTd Qq C .ı Qq.ti /
C/T�i � ı Qq.tiC1/

T�iC1

C

Z
.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ıH . Qp; Qq; t / � ı QqTf NP

�
dt:

The integral over the time singleton ¹tiº reduces toZ
¹ti º

ı QqTd Qp � ı QpTd Qq D ı Qq.ti /
T
�
Qp.ti /

C � Qp.ti /
�
�
� ı Qp.ti /

T
�
Qq.ti /

C � Qq.ti /
�
�

D �ı Qp.ti /
T
�
Qq.ti /

C � Qq.ti /
�
�
;

because ı Qq.ti / D 0 (only the parameters �qi and �pi are varied for now). Note that requiring
the virtual action to vanish for variations of the Lagrange multiplier �i results in the requirement
Qq.ti / D Qq.ti /

C. The ansatz Qq is by construction left continuous, and therefore, Qq.ti /� D Qq.ti /. As
a result, the virtual action evaluated for variations induced by ı�qi , ı�pi , and ı Qp.ti / simplifies to

†††This is without loss of generality because one could also work with constrained variations. The resulting integration
scheme would yield the same trajectories (almost everywhere).
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ıA D

Z
¹tiC1º

ı QqTd Qp C
�
ı Qq.ti /

C
�T
�i � ı Qq.tiC1/

T�iC1

C

Z
.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ıH . Qp; Qq; t / � ı QqTf NP

�
dt

D ı Qq.tiC1/
T
�
Qp.tiC1/

C � �iC1 � Qp.tiC1/
�
�
C
�
ı Qq.ti /

C
�T
�i

C

Z
.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ıH . Qp; Qq; t / � ı QqTf NP

�
dt:

(B.5)

The terms �iC1 and Qp.tiC1/C, describing the coupling to the neighboring interval, appear only as
linear combination. As in Section 4, where the quantity Qp´ was introduced, we define the generalized
momentum at time ti to be

Qp.ti / WD Qp.ti /
C � �i ; (B.6)

which will result in a causal integration scheme in accordance with the requirement that the virtual
action has to vanish for all variations ı Qq and ı Qp. This leads to the strong form of the virtual action,

ıA D
�
ı Qq.ti /

C
�T �
Qp.ti /

C � Qp.ti /
�
C ı Qq.tiC1/

T . Qp.tiC1/ � Qp.tiC1/
�/

C

Z
.ti ;tiC1/

�
ı QqT PQp � ı QpT PQq C ıH . Qp; Qq; t / � ı QqTf NP

�
dt: (B.7)

Applying integration by parts on the integrand ı QqT PQp results in the weak form,

ıA D �
�
ı Qq.ti /

C
�T
Qp.ti /C ı Qq.tiC1/

T Qp.tiC1/ �

Z
.ti ;tiC1/

�
ı
�
PQq
T
Qp �H . Qp; Qq; t /

�
� ı QqTf NP

�
dt:

(B.8)

By factorizing the time-independent parameter variations ı�qi and ı�pi out, the virtual action can
be rewritten as

ıA D ı�TqiAq
�
�qi ;�pi ; Qp.ti /; Qq.ti /

�
C ı�TpiAp

�
�qi ;�pi

�
; (B.9)

with

Aq
�
�qi ;�pi ; Qp.ti /; Qp.tiC1/

�
WD �

@ Qq

@�qi

ˇ̌̌
ˇ̌
T

t#ti

Qp.ti /C
@ Qq

@�qi

ˇ̌̌
ˇ̌
T

tDtiC1

Qp.tiC1/

�

Z
.ti ;tiC1/

"
@ PQq

@�qi

T

Qp �
@ Qq

@�qi

T
 
@H

@q

T

� f NP

!#
dt 2 Rn�mq

(B.10)

and

Ap
�
�qi ;�pi

�
WD �

Z
.ti ;tiC1/

@ Qp

@�pi

T
 
PQq �

@H

@p

T
!

dt 2 Rn�mp : (B.11)
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It follows that ıA vanishes for all ı�qi and ı�pi if and only if the set of equations

Aq
�
�qi ;�pi ; Qp.ti /; Qp.tiC1/

�
D 0;

Ap
�
�qi ;�pi

�
D 0

(B.12)

is fulfilled. For a given boundary condition ¹ Qq.ti /; Qp.ti /º, implying Qq.ti / D Qq.ti /C by continuity
of Qq, the set of equation is solved for �qi ;�pi , and the value Qp.tiC1/. This allows to generate
approximate trajectories of the system in the interval Œti ; tiC1�. The values at ¹tiC1º, that is, Qq.tiC1/
and Qp.tiC1/, yield the boundary conditions for the next time interval. By repeating this procedure
for all time intervals Ii , i D 0; 1; : : : ; N �1, the virtual action vanishes for all variations ı Qq and ı Qp,
thereby obtaining trajectories approximating the dynamic equilibrium.

By approximating the integrals using quadrature, the integration scheme can be traced back to the
algorithm presented in [2]. Thus, the framework presented herein encompasses the scheme from [2]
as a special case by assuming the generalized momenta to be neither left nor right continuous and
the generalized coordinates to be continuous.

In case polynomials are used as basis functions and the mass matrix is constant, such that

@H

@p

T

DM�1p; (B.13)

it can be shown that Equation (B.11) is equivalent to requiring M PQq.t/ D Qp.t/ for all t 2 .ti ; tiC1/.
Thus, for the pendulum example given in Section 6, the stepping equations (B.12) are equivalent to
the so-called Galerkin variational integration procedure, as presented in [1, p. 415] .
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