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Nonlinear Analysis and Control of a Reaction-
Wheel-Based 3-D Inverted Pendulum

Michael Muehlebach and Raffaello D’Andrea

Abstract— This paper presents control and learning algorithms
for a reaction wheel-based 3-D inverted pendulum. The inverted
pendulum system has two main features: the ability to balance on
its edge or corner and to jump from lying flat to its corner by
suddenly braking its reaction wheels. Algorithms that address
both features are presented. For balancing, a backstepping-
based controller providing global stability (almost everywhere)
is derived, together with a simple tuning method based on
the analysis of the resulting closed-loop system. For jump-up,
a computationally efficient gradient-based learning algorithm
is provided, which is shown experimentally to converge to
the correct angular velocities enabling a successful jump-up.
Moreover, a controller based on feedback linearization is derived
and used to track an ideal trajectory during jump-up, increasing
robustness and reliability.

Index Terms— Backstepping, feedback linearization, gradient-
based learning, nonlinear control, reaction-wheel-based inverted
pendulum.

I. INTRODUCTION

THIS paper presents control and learning algorithms for
a reaction-wheel-based 3-D inverted pendulum. The

inverted pendulum system consists of three perpendicular
reaction wheels embedded in a cubic housing. Due to its
relatively small footprint, i.e., a side length of 150 mm,
it is called Cubli, which is derived from the Swiss German
diminutive for cube. Fig. 1 shows the Cubli balancing on a
corner. Unlike other inverted pendulum test beds (see [2],
[4], [5], [18], [19], [21], and [22], and references therein),
it has the ability to jump-up from a resting position without
any external support by suddenly braking its reaction wheels
rotating at high angular velocities. While the mechatronic
design is covered in [7] and a linear controller is discussed
in [8], this paper presents nonlinear control strategies and a
learning algorithm enabling a successful jump-up.1

In [13], several design variants of a reaction wheel-
based 3-D inverted pendulum are compared. Moreover, a
swing-up control strategy is presented based on feedfor-
ward and linear state feedback, for which local stability is
shown. However, no braking system is used, which has the

Manuscript received August 31, 2015; accepted March 12, 2016. Manuscript
received in final form March 24, 2016. This work was supported by the SNSF
(Swiss National Science Foundation). Recommended by Associate Editor
A. Serrani.

The authors are with the Institute for Dynamic Systems and Control,
ETH Zürich, Zurich 8092, Switzerland (e-mail: michaemu@ethz.ch;
rdandrea@ethz.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2016.2549266
1A video showing the Cubli can be found at https://www.youtube.com/

watch?v=n_6p-1J551Y.

Fig. 1. Cubli balancing on a corner.

drawback that the design is not capable of swinging up from
arbitrary positions, as the electric motors provide only limited
torques.

Based on a reduced system description, two nonlinear
controllers are proposed herein. The first control design
is based on backstepping and provides a smooth globally
(almost everywhere) stabilizing control law characterized by
four tuning parameters. In contrast to [3], [13], and [16], the
full 3-D case is treated and global stability is proved (almost
everywhere). The work presented in [15] is extended by
relating these parameters to the closed-loop behavior, leading
to a simple tuning strategy suitable for implementation.

The second control design is based on feedback lineariza-
tion; an appropriate state transformation is introduced allowing
feedback linearization in the 3-D case. This extends the result
of [20], where the 1-D (planar) case is discussed.

Both controllers are implemented on the Cubli: the
controller based on backstepping is used for balancing. The
controller based on feedback linearization is used for tracking
predefined nonequilibrium motion; compared with other
methods, such as time-varying linear quadratic regulation,
feedback linearization has the advantage of providing a
time-invariant feedback law.

In addition, a low-complexity model describing the jump-
up is derived. The model is used to apply a gradient-based
learning algorithm, similar to [12], to the Cubli and is
experimentally shown to converge. To enhance the reliability
of the jump-up, a predefined jump-up trajectory is tracked
using the controller based on feedback linearization.
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Fig. 2. Cubli balancing on its corner. The vectors K �ei and I�ei , i = 1, 2, 3,
denote the principle axes of the body fixed frame {K} and inertial frame {I}.
The pivot point O is the common origin of coordinate frames {I} and {K}.
For illustration purposes, the coordinate system {I} is shifted to the left.

The remainder of this paper is structured as follows. The
dynamics are introduced in Section II, followed by the control
design in Section III. Aspects related to the jump-up are
covered in Section IV. Finally, the experimental results are
presented in Section V, and conclusions are summarized
in Section VI.

II. DYNAMICS OF THE REACTION-WHEEL-BASED

3-D INVERTED PENDULUM

In this section, the reaction-wheel-based 3-D inverted pen-
dulum dynamics are briefly outlined. After introducing the
notation, the equations of motion are presented and are used to
demonstrate the conservation of angular momentum. As will
be pointed out, this has important consequences for control
design. In addition, in the absence of motor torques, energy is
conserved. This will become important in Section IV, where
an ideal jump-up trajectory is determined via the conservation
of energy.

A. Notation

Let �wi , i = 1, 2, 3, denote the moment of inertia of
each reaction wheel (in the direction of the corresponding
rotation axis, referred to the corresponding suspension point),
and define �w := diag(�w1,�w2,�w3). Let �0 +�w denote
the total moment of inertia of the Cubli around the pivot
point O (see Fig. 2). Next, let �m denote the position vector
from the pivot point to the center of gravity multiplied by the
total mass and �g denotes the gravity vector. The projection of
a tensor onto a particular coordinate frame is denoted by a
preceding superscript, i.e., K�0 ∈ R

3×3 and Km ∈ R
3. The

arrow notation is used to emphasize that a vector (and tensor)
should be a priori thought of as a linear object in a normed
vector space detached from its coordinate representation in
a particular coordinate frame. The transformation matrix
RIK ∈ SO(3) relates vectors from the body-fixed frame to
their representation in the inertial frame, that is, Iv = RIK

Kv,

for all vectors Kv ∈ R
3. Moreover, the skew symmetric matrix

corresponding to a vector a ∈ R
3, denoted by ã, is defined

by a × b = ãb, for all b ∈ R
3, where a × b refers to the

cross product of the two vectors a and b. The Euclidean norm
is referred to as | · |, i.e., |a|2 = aTa, and a ‖ b is used to
indicate that the two vectors a ∈ R

3 and b ∈ R
3 are parallel

(that is, a × b = 0). In addition, the sphere of radius |g| is
denoted by S2.

Since the body-fixed coordinate frame {K} is the most com-
monly projected coordinate frame, its preceding superscript
is usually removed for ease of notation, that is, Km = m,
K�0 = �0, and so on.

Moreover, vectors are expressed as n-tuples (x1, x2, . . . , xn)
with dimension and stacking clear from context.

B. Equations of Motion

It was derived in [8] and [15] that the equations of motion
are given by

ṗωh = −ω̃h pωh + m̃g, ṗωw = T, ṘIK = RIKω̃h

pωh := �0ωh + �w(ωh + ωw), pωw := �w(ωh + ωw) (1)

where ωh ∈ R
3 denotes the angular velocity of the Cubli

housing, ωw ∈ R
3 the angular velocity of the reaction wheels,

and T ∈ R
3 the motor torque applied to the reaction wheels.

The fixed-body coordinate frame is aligned with the Cubli
housing, and therefore, the first component of ωw denotes
the angular velocity of the reaction wheel pointing in direc-
tion K �e1, the second component that of the reaction wheel
pointing in direction K �e2, and so on. The components of the
motor torque T have a similar interpretation.

The following observations are worth pointing out. The
dynamics are invariant to the initial reaction wheel positions,
leading to the conservation of the angular momentum pωw

in the absence of motor torques. Moreover, the evolution of
all possible initial conditions over time2 is symmetric around
the gravity vector leading to the conservation of angular
momentum pT

ωh
g. This can be easily checked by explicit

calculation
d

dt

(

pT
ωh

g
) = ṗT

ωh
g + pT

ωh
ġ = pT

ωh
ω̃h g − pT

ωh
ω̃h g = 0 (2)

where ġ is expressed by ġ = ṘT
IK

Ig = −ω̃h g or by noting that
gravity exerts no torque in direction I�e3. The conservation of
the angular momentum gT pωh has an important consequence
for control design: independent of the control input applied,
the momentum in direction �g is conserved, and depending
on the initial condition, it may be impossible to bring the
system to rest. For example, a yaw motion in the upright
position can be slowed down by increasing the velocity of
the reaction wheels. However, the yaw motion and the reaction
wheel velocity cannot be driven to zero at the same time. Note
that the conservation of angular momentum in direction �g is
independent of the mass distribution or inertia of the Cubli
and independent of the motor torque T .

In the presence of friction between the pivot point and
the ground, exerting a friction torque about I �e3, the angular

2Commonly referred to as the flow of the system.
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momentum pT
ωh

g is no longer conserved, and as a result, a yaw
motion in the upright position will decay slowly.

In addition, in the absence of motor torques, the total energy
given by

H = 1

2
ωh

T�0ωh + 1

2
(ωh + ωw)T�w(ωh + ωw)

− mTg − |m| |g| (3)

is conserved. Due to the fact that pωw = �w(ωh + ωw) is
constant for T = 0, the energy related to the Cubli housing,
given by

Hh = 1

2
ωh

T�0ωh − mTg − |m| |g| (4)

is conserved as well. Note that the energy is normalized
such that it attains zero for the upright equilibrium. The
conservation of energy will become important in Section IV,
where it will be used to derive an ideal jump-up trajectory.

Using the gravity vector expressed in the Cubli’s body-fixed
coordinate frame, i.e., g = RT

IK
Ig, to represent the attitude, the

dynamics given by (1) can be reduced to

ṗωh = −ω̃h pωh + m̃g, ṗωw = T, ġ = −ω̃h g

pωh = �0ωh + �w(ωh + ωw), pωw = �w(ωh + ωw). (5)

This comes, however, at the cost of losing the yaw information.
A formal treatment of this reduction step can, for example,
be found in [6].

C. Equilibria

In this section, the equilibria of the Cubli are briefly
discussed. The reduced equations of motion (5) give rise to
equilibria corresponding to limit cycles in the full configura-
tion, so-called relative equilibria [1].

The relative equilibria are obtained by setting the right-hand
side of (5) to zero, leading to

−ω̄h × p̄ωh + m × ḡ = 0, T̄ = 0, −ω̄h × ḡ = 0 (6)

where ḡ, p̄ωh , and ω̄h denote the equilibrium configurations.
The last equation implies that ω̄h ‖ ḡ or likewise ω̄h = λ1 ḡ,
with λ1 ∈ R. Thus, the relative equilibria are characterized by

ω̄h = λ1 ḡ, λ1 p̄ωh + m = λ2 ḡ, T̄ = 0 (7)

with λ1, λ2 ∈ R, ḡ ∈ S2, and ω̄h, p̄ωh , T̄ ∈ R
3. The

hanging and upright equilibria, which are of interest for the
remainder of this paper, are obtained by setting λ1 = 0
implying ḡ ‖ m. As expected, a linear analysis reveals that the
upright equilibrium is unstable, while the hanging equilibrium
is marginally stable.

III. NONLINEAR CONTROL

In the next section, two different control strategies are pre-
sented, which asymptotically stabilize the upright equilibrium.
The first approach is based on backstepping and provides a
smooth control law characterized by four tuning parameters.
In a subsequent step, the tuning parameters are related to the
closed-loop behavior, extending the result presented in [15].

The second approach is based on feedback linearization and
extends the result in [20] to the 3-D case.

For the control design and subsequent analysis, the reduced
dynamics (5) are used. The state space is chosen to be
(g, pωh , pωw) ∈ X := S2 × R

3 × R
3. Using the reduced

attitude representation, the feedback control laws derived next
will naturally be invariant to the orientation around the gravity
vector and to the reaction wheel positions.

Since the component of the angular momentum pωh in
the direction of gravity is a conserved quantity, only the
component of pωh that is orthogonal to g can be affected by
feedback control. Hence, it is convenient to split the angular
momentum pωh into two parts: one in the direction of gravity
and the other orthogonal to it, that is

pωh =: p⊥
ωh

+ pg
ωh

g

|g| , pg
ωh

:= pT
ωh

g

|g| . (8)

The control objective consists of balancing the Cubli in the
upright position and, at the same time, requiring ωh → 0
together with p⊥

ωh
→ 0 as time goes to infinity. Thus, the

control objective for balancing can be formulated as driving
the system to the closed invariant set

T = {

(g, pωh , pωw) ∈ X |gTm = −|g| |m|
p⊥
ωh

= 0, pωh = pωw

}

. (9)

Note that ωh is given by �−1
0 (pωh − pωw), and therefore,

pωh = pωw implies zero angular velocity of the Cubli housing.

A. Backstepping Approach

In the following section, a nonlinear controller is presented,
which stabilizes the set T asymptotically. In a subsequent step,
its closed-loop behavior is analyzed leading to a geometric
interpretation of closed-loop trajectories and a simple tuning
strategy.

For ease of notation, the hanging relative equilibria with
ωh = 0 are denoted by x−, that is

x− =
{

(g, pωh , pωw) ∈ X |g = |g|
|m|m, p⊥

ωh
=0, pωh = pωw

}

.

Next, the control law

T = K1m̃g + K2ωh + K3 pωh − K4 pωw (10)

with

K1 = I + (α + βγ + δ)�0

K2 = �0
(

α p̃⊥
ωh

+ βm̃g̃
) + p̃ωh

K3 = γ

(

I + α�0

(

I − ggT

|g|2
))

K4 = γ I, α, β, γ, δ > 0

and I ∈ R
3×3 being the identity matrix, is shown to asymp-

totically stabilize the upright equilibrium.
Theorem 1: The controller (10) renders the closed invariant

set T of system (5) stable and asymptotically stable on
x ∈ X \ x−.
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Proof: Consider the following Lyapunov candidate func-
tion V : X → R :

V (x) = 1

2
αp⊥T

ωh
p⊥
ωh

+ mTg + |m| |g| + 1

2δ
zT�−2

0 z (11)

with z := �0(αp⊥
ωh

+ βm̃g) + pωh − pωw .
Clearly, there exists a K∞ function3 a : [0,∞) → [0,∞)

such that V (x) ≥ a(|x − x0|) for all x ∈ X and all x0 ∈ T .
Furthermore, V (x = x0) = 0 implies x = x0, where
x0 ∈ T . Therefore, V is a positive definite function and a
valid Lyapunov candidate.

Next, V̇ is evaluated along trajectories of the closed-loop
system

V̇ (x) = αp⊥T
ωh

ṗ⊥
ωh

+ mT ġ + 1

δ
zT�−2

0 ż

= mT g̃
(

αp⊥
ωh

+ ωh
) + 1

δ
zT�−2

0 ż.

From the identity �−1
0 z = αp⊥

ωh
+ βm̃g + ωh , it follows that:

V̇ (x) = mT g̃
(

β g̃m + �−1
0 z

) + 1

δ
zT�−2

0 ż

= −β(g̃m)T(g̃m) + zT�−1
0 m̃g + 1

δ
zT�−2

0 ż.

Moreover, the control input T can be rewritten as

T = d

dt
(z + pωw) + γ z + δ�0m̃g. (12)

Using the fact that ṗωw = T , the closed-loop evolution of the
auxiliary variable z is given by

ż = −γ z − δ�0m̃g (13)

which can be used to simplify V̇ to

V̇ (x) = −β(g̃m)T(g̃m) − γ

δ
zT�−2

0 z ≤ 0 ∀x ∈ X .

Since V̇ (x) ≤ 0, for all x ∈ X , we conclude from the
Lyapunov stability theorem [10, Th. 4.8] that the equilibria
x0 ∈ T are stable.

To prove asymptotic stability of the set T for x ∈ X \ x−,
the set

R := {x ∈ X \ x−|V̇ (x) = 0} (14)

is considered in more detail. From V̇ (x) < 0, for all x ∈
X \ (R

⋃

x−), it can be inferred that any trajectory in X \ x−
is converging to an invariant set contained in R. The condition
V̇ (x) = 0 leads to z = 0 and m being parallel to g, such that
R can be rewritten as R = {x ∈ X \ x−|m ‖ g, pωw =
α�0 p⊥

ωh
+ pωh }. The dynamics on R can be simplified to

g ‖ m ⇒ g = − m

|m| |g| ⇒ ġ = 0

⇒ ωh ‖ g because ġ = −ω̃h g (15)

g ‖ m, z = 0 ⇒ ωh = αp⊥
ωh

⇒ ωh ‖ p⊥
ωh

. (16)

However, since p⊥
ωh

is orthogonal to g, by definition,
(15) and (16) imply ωh = 0 and p⊥

ωh
= 0. Therefore, T is

3A continuous function belongs to class K∞ if it is strictly increasing and
radially unbounded (see [10, Definition 4.2, p. 144]).

the largest invariant set contained in R. This implies that
by the Krasovskii–LaSalle principle [10, Th. 4.4], for any
trajectory x(t)

lim
t→∞ x(t) = x f , x(0) ∈ X \ x−, x f ∈ T .

1) Remarks:
a) Interpretation of the Lyapunov function: The

Lyapunov function given by (11) can be found via a
backstepping approach (see [10] or [11] for an introduction
to backstepping). The reduced Lyapunov function

VR(x) = 1

2
α p⊥T

ωh
p⊥
ωh

+ mTg + |m| |g| (17)

which is independent of the momentum pωw , can be used to
demonstrate stability given that pωw = α�0 p⊥

ωh
+ pωh +βm̃g

(corresponding to z = 0). Therefore, z accounts for the
momentum pωw and indirectly penalizes nonzero wheel
velocities.

b) Extension of the controller: In practice, modeling
errors can cause steady-state deviations, e.g., an erroneous
estimate of the center of gravity leads to nonvanishing steady-
state reaction wheel velocities when balancing. Integral control
can be used to prevent these steady-state deviations. Therefore,
the controller is extended with the state zint, i.e., û = u+νzint,
where

zint(t) = z0 +
∫ t

0
z(τ )dτ

and ν > 0. In that case, closed-loop stability can be proved
by augmenting the Lyapunov function given by (11)

VI (x) = V (x) + ν

2δ
zT

int�
−2
0 zint.

In [15], an alternative approach to account for nonzero steady-
state wheel velocities is presented, which has the advantage
of directly providing an estimate of the center of gravity.

c) Interpretation of the control law: Rewriting (10) yields

u = ṗωh + γ pωh + α�0
(

ṗ⊥
ωh

+ γ p⊥
ωh

)

+ �0m̃(β ġ + (δ + γβ)g) − γ pωw (18)

where

pωw = u0 +
∫ t

0
u(τ )dτ. (19)

Therefore, the controller given by (10) is a linear proportional–
integral–derivative controller in the variables pωw, p⊥

ωh
, and g.

The only nonlinearity of the controller lies in the projection
of pωh into p⊥

ωh
and pg

ωh . Nevertheless, the control law
guarantees global asymptotic stability (almost everywhere) as
has been shown previously.

2) Closed-Loop Behavior: Due to its smoothness and its
dependence on only four tuning parameters, the controller
is well suited for practical implementation. A simple tuning
strategy based on the closed-loop behavior is outlined next.
We will analyze the closed-loop response subject to two
different initial conditions, providing an interpretation of the
tuning parameters. In the first case, the Cubli will be released
at rest, but with a nonzero inclination angle. For this specific
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initial condition, the closed-loop dynamics of the inclination
angle are given by a third-order differential equation, which
allows for pole placement. It will be shown that there is a
set of tuning parameters matching every desired pole location
(provided that the desired poles have negative real parts). This
determines three of the four tuning parameters (α, β, and δ).
In the second case, a pure yaw motion will be analyzed and
related to the remaining tuning parameter γ .

Proposition 2: Consider controller (10) applied to the sys-
tem governed by (5) with initial conditions at t = 0 such that
pωh (0) and ωh(0) are parallel to m × g(0) �= 0. Then, it holds
that for all t > 0, ωh(t), pωh (t), and m × g(t) remain parallel.

Proof: Since pωh (0) ‖ m × g(0), it implies that
p⊥
ωh

(t) = pωh (t) for all t > 0. Moreover, by combining the
control law given by (10) with the system dynamics, it follows
that:
ω̇h = �−1

0 ( ṗωh − T )

= αωh × pωh − (α + βγ + δ)m × g + βm × (ωh × g)

− γ (αpωh + ωh) (20)

together with

ṗωh = pωh × ωh + m × g and
d

dt
(m × g)=m × (g × ωh).

Note also that from the Lagrange identity [9]

m × (g × (m × g)) = −mTg m × g (21)

follows. Assume that pωh (t
∗), ωh(t∗), and m × g(t∗) are

parallel at time t = t∗. Together with (20) and (21), these
assumptions imply that

d

dt
(m × g(t∗)) ‖ m × g(t∗) (22)

ω̇h(t∗) ‖ m × g(t∗) (23)

and

ṗωh (t
∗) ‖ m × g(t∗). (24)

Hence, pωh (t), ωh(t), and m ×g(t) will remain parallel for an
infinitesimal time increment dt , that is, at time t = t∗ + dt .
By induction, the vectors pωh (t), ωh(t), and m × g(t) will
therefore remain parallel for all times t > t∗. Note that
the right-hand side of the closed-loop dynamics is locally
Lipschitz, which implies the local existence and uniqueness
of closed-loop trajectories [17]. Since the initial conditions at
t = 0 are such that pωh (0), ωh(0), and m × g(0) are parallel,
the result follows.

Note that the previous proposition applies especially in the
case where the Cubli is initialized with zero body angular
velocity and zero wheel velocity [ωh(0) = ωw(0) = 0] and
states that the Cubli’s center of mass will never leave the plane
normal to m × g(0) for all times t > 0. This sets the stage
for deriving a differential equation describing the inclination
angle in closed loop provided that pωh , ωh , and m × g are
parallel at t = 0.

It is convenient to introduce the unit vector

eϕ := m × g(0)

|m × g| , where m × g(0) �= 0 (25)

and define the inclination angle by

ϕ := arccos

(

− mTg

|m| |g|

)

(26)

with ϕ ∈ [0, π] for g ∈ S2. Note that

sin ϕ = | − g × m|
|m| |g| = |m × g|

|m| |g| (27)

holds. By Proposition 2, it follows that ωh is parallel to m ×g
and eϕ for all times t > 0. Furthermore, from (26) and the
system dynamics (5), it can be confirmed that ωh = ϕ̇eϕ .
Rewriting (20) yields

ω̇h = αωh × pωh − (α + βγ + δ)m × g

+ βm × (ωh × g) − γ (αpωh + ωh)

= −eϕ(α + βγ + δ)|m| |g| sin ϕ

− eϕβ|m| |g|ϕ̇ cos ϕ − γ (αpωh + eϕϕ̇). (28)

Taking the time derivative of the previous equation and using
the fact that ėϕ = 0 and ṗωh = eϕ |m| |g| sin ϕ result in
...
ϕ + (β|m| |g| cos ϕ + γ )ϕ̈ + (α + βγ + δ)|m| |g|ϕ̇ cos ϕ

− β|m| |g|ϕ̇2 sin ϕ + γα|m| |g| sin ϕ = 0. (29)

Linearizing (29) around the upright equilibrium, i.e., ϕ = 0,
yields
...
ϕ + (β|m||g|+γ )ϕ̈+(α + βγ + δ)|m||g|ϕ̇+γα|m||g|ϕ = 0

(30)

and provides a method to relate the closed-loop poles to the
parameters {α, β, γ, δ}. To simplify notation, the following
scaling is introduced, α̂ := α|m| |g|, β̂ := β|m| |g|, γ̂ := γ ,
and δ̂ := δ|m| |g|, such that (30) reads as:

...
ϕ + (β̂ + γ̂ )ϕ̈ + (α̂ + β̂γ̂ + δ̂)ϕ̇ + γ̂ α̂ϕ = 0. (31)

Moreover, the parameter γ̂ is related to the closed-loop yaw
motion by considering the case where the Cubli is initialized in
an upright relative equilibrium, with nonzero angular velocity,
ωh(0) �= 0. Hence, it follows that ωh(0) ‖ pωh (0) ‖ g(0) ‖ m
and that the closed-loop dynamics can be read as:

ġ = 0, ṗωh = 0, and ṗωw = −γ̂ (pωw − pωh ). (32)

This leads to the interpretation of γ̂ as a time constant
prescribing how fast the yaw rotation is slowed down.

Ideally, the parameters α̂, β̂, γ̂ , and δ̂ are chosen such that
the desired closed-loop poles of the inclination angle are
matched and that a prescribed time constant of the closed-
loop yaw motion is met. However, it turns out that depending
on γ̂ , this might be impossible, i.e., for a fixed γ̂ > 0, it might
be impossible to obtain α̂, β̂, γ̂ , and δ̂ such that the pole
configuration is met, while guaranteeing nonlinear closed-loop
stability with the proposed controller. This fact is illustrated
in the following.

For the given closed-loop pole locations of the inclination
angle, let the third-order characteristic polynomial correspond-
ing to (31) be denoted by

s3 + As2 + Bs + C = 0 (33)
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Fig. 3. Example for a desired pole configuration with three real poles. The
admissible regions for γ̂ are denoted by γr1 and γr2.

Fig. 4. Example for a desired pole configuration with one complex pole pair.
The admissible region for γ̂ is denoted by γr3.

where the coefficients {A, B, C} are related to the pole
locations by a homeomorphism. Therefore, it is sufficient
to analyze the function4 f : R

4+ → R
3+ mapping the

tuning parameters {α̂, β̂, γ̂ , δ̂} onto the constants {A, B, C}.
According to the Routh–Hurwitz criterion, the poles have
strictly negative parts if and only if the conditions A > 0,
B > 0, and AB > C > 0 are fulfilled (see [14]). Clearly,
if α̂, β̂, γ̂ , δ̂ > 0, it follows that A > 0, B > 0, and
AB > C > 0, which corresponds to a stable pole configuration
(as expected, nonlinear closed-loop stability implies linear
closed-loop stability). The converse is not true; for a fixed
γ̂ > 0, there might be no α̂, β̂, δ̂ > 0, such that the desired
pole location is matched. This fact is illustrated by expressing
the level set of f (α̂, β̂, γ̂ , δ̂) = (A, B, C) as

{(α̂, β̂, γ̂ , δ̂) ∈ R
4|α̂γ̂ = C, β̂ = A − γ̂

γ̂ δ̂ = γ̂ 3 − Aγ̂ 2 + B γ̂ − C}. (34)

Hence, given that A, B , and C > 0, the condition α̂, β̂, γ̂ ,
δ̂ > 0 reduces to

A > γ̂ > 0, h(γ̂ ) := γ̂ 3 − Aγ̂ 2 + B γ̂ − C > 0. (35)

Note that h(−s) = −(s3 + As2 + Bs + C) holds, which
implies that the zeros of h(γ̂ ) are just the negative values
of the desired poles. Thus, if the desired pole locations s0,
s1, and s2, with s2 < s1 < s0 < 0, are all real and distinct,
then there are two different γ̂ -regions, e.g., γ̂ ∈ (−s0,−s1)
and γ̂ ∈ (−s2, A), where h(γ̂ ) > 0 (see Fig. 3). If there are
two complex conjugated poles or nondistinct poles, then there
might be only one γ̂ -region, where h(γ̂ ) > 0 (see Fig. 4).

4The positive real numbers are denoted by R+ := {x ∈ R|x > 0}.

Note that in all cases, γ̂ needs to be greater than
mini {−real(si )}, where s0, s1, s2 are the desired pole locations.
Hence, the closed-loop yaw motion needs to have a time
constant at least as fast as the smallest pole of the (closed-
loop) inclination angle dynamics, in order to guarantee global
closed-loop stability with the proposed controller.

On summarizing, the following tuning recipe is proposed.

1) Choose the desired pole locations of the closed-loop
inclination angle dynamics, which determines possible
intervals for γ̂ .

2) Choose γ̂ within those intervals such that the time
constant of the yaw dynamics matches the desired one
as close as possible. Solving (34) yields the parameters
{α̂, β̂, γ̂ , δ̂}.

B. Feedback Linearization

Next an explicit input-to-state feedback linearization is
found extending the result presented in [20]. The generalized
momentum pωh is chosen to be the virtual output. However,
to remove the conserved component (in direction �g), it is
convenient to project pωh in the inertial frame, where the
dynamics of the Cubli are given by

Iṁ = Iωh × Im
I ṗωh

= Im × Ig
I ṗωw

= IT + Iωh × I pωw
. (36)

The virtual output y is formed by the first two elements
of I pωh

, that is

y := (I pωh 1,
I pωh 2

)

(37)

since the third component of I pωh
is conserved. This choice

can be motivated by the feedback linearization of the 1-D
reaction wheel-based inverted pendulum presented in [20].
Using the matrices

J =
(

0 1
−1 0

)

and P =
(

1 0 0
0 1 0

)

(38)

the first two components of the cross product a × b with
a ∈ R

3 and b ∈ R
3 can be expressed by

P(a × b) = −a3 J Pb + b3 J Pa. (39)

Thus, P(Im × Ig) simplifies to P(Im × Ig) = −|g|J P Im.
Taking the time derivative of y, ẏ, and ÿ leads to

ẏ = −|g|J P Im (40)

ÿ = −|g|J P(Iωh × Im) (41)
...
y = −|g|J P

(Iω̇h × Im + Iωh × Iṁ
)

. (42)

In addition, Iω̇h is given by

Iω̇h = RIK�−1
0 ( ṗωh

− ṗωw)

= RIK�−1
0 (m × g − ωh × pωh − T ). (43)

Solving for the input torque T , i.e., using the change of the
variable T → Iv with

T = −ωh × pωh + m × g − �0 RT
IK

Iv (44)
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Fig. 5. Cubli jumping from lying flat to its upright equilibrium.

leads to Iω̇h = Iv . Using the identity given by (39) allows us
to rewrite (42) as

...
y = |g|(Im3 P Iv − Iv3 P Im − J P Iω̃h

Iω̃h
Im

)

. (45)

Choosing the first two components of Iv to be

P Iv = 1
Im3

(

Iv3 P Im + J P Iω̃h
Iω̃h

Im + 1

|g|w
)

(46)

with w ∈ R
2 leads to

...
y = w. Note that the transformation is

not defined for Im3 = 0. This parallels the 1-D case, where
it was shown that a feedback linearization exists only for an
inclination angle ϕ such that ϕ �= ±(π/2) (see [20]).

Hence, by choosing the state transformation

x = (y, ẏ, ÿ, Iωh3) (47)

together with the input transformation given by (44) and (46),
the following linear system dynamics are obtained for the
case Im3 �= 0 :

ẋ =

⎛

⎜

⎜

⎝

02×2 I2×2 02×2 02×1
02×2 02×2 I2×2 02×1
02×2 02×2 02×2 02×1
01×2 01×2 01×2 0

⎞

⎟

⎟

⎠

x +
(

04×3
I3×3

) (

w
Iv3

)

.

(48)

IV. JUMP-UP

By suddenly braking its reaction wheels spinning at high
angular velocities, the Cubli is able to jump up from lying flat
to its upright equilibrium, as shown in Fig. 5.

The jump-up is divided into two parts: the braking phase,
where the reaction wheels are almost instantaneously slowed
down, and the guiding phase, where additional control action
is used to guide the Cubli to its upright equilibrium. Iden-
tifying and modeling the braking exactly is difficult due to
large process uncertainties such as the friction between the
brake and the wheel, the timing of the different brakes, and the
inaccuracies in the state estimation due to high accelerations.
However, these uncertainties are mostly time invariant and

can therefore be circumvented using a low-order model in
combination with a learning algorithm. The learning algorithm
accounts, therefore, for the repeatable modeling errors and is
used to adapt the initial wheel velocities of the reaction wheels.

To further improve the reliability of the jump-up, an ideal
trajectory is tracked during the guiding phase using feed-
back linearization. Compared with a linear reference tracking
approach, this has the advantage of providing a time-invariant
control law.

The next section is divided into the following parts. First,
a low-complexity model for the jump-up is outlined for
both the braking and the guiding phase. Then, the learning
framework is introduced and discussed in general, before being
applied to the Cubli jump-up.

A. Impact-Based Braking Model

The jump-up is modeled by assuming that the reaction
wheels are stopped instantaneously. To simplify the analysis
further, it is assumed that after braking, the angular momentum
associated with the reaction wheels is zero, that is, pωw(0)+ =
�w(ωh(0)+ + ωw(0)+) = 0. This assumption is used to
determine an ideal jump-up trajectory; it guarantees the con-
servation of angular momentum around the figure axis in the
absence of control inputs, reducing the Cubli model to a sym-
metric spherical pendulum (see Section IV-B). Note that this
assumption is not entirely fulfilled since in reality, the wheel
speed ωw(0)+ is actually zero after braking. Compared with
the reaction wheel momentum before braking, pωw(0)+ is,
however, negligible. The braking is assumed to happen at the
time instant 0; ωw(0)− and ωw(0)+ denote the left and right
limits of the reaction wheel angular velocity ωw , respectively.
Note that the left and right limits of a discontinuous function f
(of locally bounded variation) are defined by

f (0)− := lim
t↑0

f (t) and f (0)+ := lim
t↓0

f (t). (49)

The impact is modeled using conservation of angular
momentum. More formally, an impact torque density d
([d] = Nms) is introduced and the equations of motion
given by (5) are integrated over the impact time singleton {0}.
This yields

∫

{0}
d pωh = pωh (0)+ − pωh (0)−

=
∫

{0}
(−ω̃h pωh + m̃g)dt = 0 (50)

∫

{0}
d pωw = pωw(0)+ − pωw(0)−

=
∫

{0}
(T dt + d) = (0)+ − (0)− (51)

where d pωh and d pωw are the differential measures of
pωh and pωw , respectively, containing a density with respect to
the Lebesgue measure dt and the atomic measure dη, that is

d pωh = ṗωh dt + (p+
ωh

− p−
ωh

)dη

d pωw = ṗωw dt + (p+
ωw

− p−
ωw

)dη. (52)
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The time singleton {0} has zero Lebesgue measure.
By assumption, it holds that �w(ωh(0)+ + ωw(0)+) =
pωw(0)+ = 0. Since the Cubli is at rest when activating the
brakes, ωh(0)− = 0, and therefore, (50) yields

pωh (0)+ = �0ωh(0)+ = pωh (0)− = �wωw(0)− (53)

which relates the body angular momentum after braking to
the initial wheel velocity.

B. Guiding Phase

During the guiding phase, the Cubli is guided along an
ideal trajectory to the upright equilibrium. The trajectory
is tracked using feedback linearization, resulting in a time-
invariant control law. Next, this predefined trajectory is derived
using first integrals of the equations of motion.

To simplify the analysis, the following assumption is made.
Assumption 3 (Symmetric Housing Inertia): The inertia

tensor �0 has an eigenvector in direction m. The
associated eigenvalue is denoted by I3. The remaining two
eigenvalues are equal, i.e., I1 = I2.

In case T = 0 and pωw = 0, this assumption leads to an
additional conserved quantity, which is nothing but the angular
momentum around the figure axis, that is

d

dt

(

mT pωh

)

= mT(ωh × pωh )

= mTω̃h�0ωh + mTω̃h pωw = 0 (54)

where the first term of the previous expression vanishes due
to Assumption 3 and the second due to the fact that pωw = 0.

The ideal trajectory is defined as the trajectory leading
from the state just after braking, i.e., the right limit at time
t = 0, to the upright equilibrium without using any motor
torque. By assumption, the right limit of pωw vanishes at time
t = 0, which implies that pωw(t) remains zero for all t > 0
(see Section II). In the absence of motor torque, energy, the
angular momentum in direction �g, and the angular momentum
in direction �m are conserved [see (2), (4), and (54)], that is

Hh = 1

2
ωT

h �0ωh − mTg − |m| |g| = const

pg
ωh

= pT
ωh

g

|g| = const, pm
ωh

= pT
ωh

m

|m| = const. (55)

In other words, the Cubli is modeled as a symmetric spherical
pendulum during the guiding phase. It has as many first
integrals as degrees of freedom. This suggests to parametrize
the attitude of the Cubli by the inclination angle

ϕ := arccos

(

−mTg

|m| |g|

)

∈ [0, π]. (56)

Since the ideal trajectory is supposed to lead to the upright
equilibrium, with g0 = −(m/|m|)|g|, pωh0

= 0, and pωw0
= 0,

it follows that pg
ωh = 0, pm

ωh
= 0, and H = 0 along the motion.

Thus, the angular momentum can only have a component
orthogonal to g and m and is therefore simplified to

pωh = pϕ
ωh

eϕ

where the unit vector eϕ is given by

eϕ = m × g

|m × g| , for m × g �= 0. (57)

From the condition that the ideal trajectory lies on the zero
energy surface, it can be inferred that

(pϕ
ωh

)2 = 2(mTg − |m| |g|)
eT
ϕ�−1

0 eϕ

= 2I1|m| |g|(1 − cos ϕ) (58)

with I1 = eT
ϕ�0eϕ , which is constant. Due to a vanishing

wheel momentum pωw = 0, it follows from ωh = �−1
0 pωh

and the system dynamics that:

ωh = 1

I1
pϕ
ωh

eϕ = ϕ̇ eϕ. (59)

Hence, along the ideal trajectory the Cubli follows the
great circle of S2 passing through the upright equilibrium
represented by the north pole. The trajectory is implicitly
parametrized by (58), by prescribing the angular momentum
as a function of the inclination angle ϕ.

This ideal trajectory is tracked using the controller presented
in Section III-B. To that extent, the error y−ydes is introduced,
with y defined according to (37). From Section III-B, it can
be inferred that

...
e = ...

y − ...
y des = I w − ...

y des := u1
Iω̇h3 − Iω̇h3des = Iv3 − Iω̇h3des := u2. (60)

Using x = (e, ė, ë, Iωh3 − Iωh3des), the error dynamics are
rewritten as

ẋ =

⎛

⎜

⎜

⎝

02×2 I2×2 02×2 02×1
02×2 02×2 I2×2 02×1
02×2 02×2 02×2 02×1
01×2 01×2 01×2 0

⎞

⎟

⎟

⎠

x +
(

04×3
I3×3

)(

u1
u2

)

.

(61)

Thus, a time-invariant state feedback controller, e.g.,
u = (u1, u2) = K x , can be used to stabilize the error
dynamics. The controller gain K ∈ R

3×7 can be found by
linear control strategies such as a linear quadratic regulator
approach or pole placement. Once the virtual control inputs u1
and u2 are determined, the resulting input torque is calculated
by solving Iw and Iv3 for T . This transformation given by
(44) and (46) is bijective, except when the Cubli is inclined
by 90◦.5

For tracking the ideal jump-up trajectory, we impose that
Iωh3des = 0 and Iω̇h3des = 0 together with

ydes = I1ϕ̇des P RI K eϕ

ẏdes = |m| |g| sin ϕ P RI K eϕ

ÿdes = |m| |g| cos ϕ ϕ̇des P RI K eϕ

...
y des = |m|2|g|2

I1
sin ϕ (3 cos ϕ − 2) P RI K eϕ

ϕ̇des :=
√

2|m| |g|
I1

(1 − cos ϕ). (62)

5In practice, an inclination of 90◦ can never occur.
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The formulas are obtained by mere differentiation and
using (58), which prescribes the desired angular momentum
as a function of the inclination angle.

C. Learning Algorithm

For adapting the initial wheel velocities ωw(0)−, a learning
algorithm is used. The Cubli therefore makes multiple jump
trials and evaluates the quality of each jump according to
predefined criteria. The initial wheel velocities are adjusted
using a model-based gradient descent method. In the next
section, the learning framework is elaborated in more detail.

1) Gradient-Based Learning: The learning strategy used
can be seen as a variation of the Newton procedure for finding
the roots of a differentiable function. It has recently been
presented and successfully implemented in [12].

The underlying process, e.g., the Cubli jump-up, is assumed
to be dependent on the parameter vector θ ∈ R

p , which can
be adjusted, as well as the unknown parameters s ∈ R

q .6 The
goal is to adjust the parameters θ such that a certain error
e ∈ R

m vanishes. In the case of the Cubli jump-up, we would
like to adapt the initial wheel velocities ωw(0)− such that
the upright equilibrium is reached without using additional
control. The dependence of the error on the parameters (θ, s)
is described by the mapping E : R

p × R
q → R

m . The error
dimension m is assumed to be smaller than or equal to the
number of parameters p that can be adjusted (m ≤ p).

A model based on nominal parameters s0 is assumed
to be known, which predicts the error E(θ, s0). Based on
this model, the parameters θ0 leading to a vanishing error
E(θ0, s0) = 0 can be inferred, together with the gradient
of E with respect to θ , evaluated at θ0 and s0. Still, the
parameters of the real system s∗ are unknown. By performing
experiments, e.g., jump-up attempts, we can access noisy
measurements of the error, Ei = E(θ, s∗)+ Ni , where Ni are
bounded disturbances, such that |Ni | < D, i = 0, 1, 2, . . ..
The goal is therefore to iteratively find the zero of the
function E(·, s∗) for unknown parameters s∗. A natural
solution is to use Newton’s method. However, since the
gradient of E with respect to θ is unknown for s = s∗, the
model-based approximation is used instead.

This leads to the following simple and computationally
efficient update rule for the parameters θ:

θ i+1 = θ i − λi ∂ E

∂θ

∣

∣

∣

∣

†

θ0,s0

Ei , i = 0, 1, 2, . . . (63)

with λi ∈ (0, 2) a predefined sequence of step sizes,
i = 0, 1, 2, . . ., and where † denotes the pseudoinverse.

2) Application to the Cubli: Next, the learning algorithm is
applied to the Cubli jump-up. By suddenly braking its reaction
wheels rotating at high speeds, the Cubli is able to jump up
from lying flat to the edge-balancing position, from the edge-
balancing position to the corner balancing position, and from
lying flat to the corner balancing position. The analysis is
restricted to the face-to-corner jump-up (initially lying flat,
jump-up to the corner), as the other cases can be treated in a
similar manner.

6As pointed out in [12], the vector of unknown parameters can be infinite
dimensional.

From the modeling in Sections IV-A and IV-B, it can
be concluded that the Cubli has essentially three degrees
of freedom. The analysis further suggests to split them into
a rotation around its center of mass �m, a rotation around
the gravity vector �g, and a rotation around the direction
perpendicular to �m and �g. For a successful jump-up, where
the upright equilibrium is reached with zero angular velocity,
each degree of freedom must be controlled. Therefore, the
error is chosen to be composed of the angular momentum in
direction �m, the angular momentum in direction �g, and the
energy Hh , each of them evaluated at the top point

E(ωw(0)−, s) =
⎛

⎝

pm
ωh

(tt )
pg
ωh (tt )

Hh(tt )

⎞

⎠.

The top point is defined as the time instant t = tt at which
the Cubli has either reached the upright position

g(tt ) = − m

|m| |g|

or has no angular momentum in direction �m × �g, i.e.,
pωh (tt )

T(m × g(tt)) = 0. The parameters to be adjusted
are the initial wheel velocities ωw(0)− ∈ R

3, whereas the
vector s contains unknown system parameters, e.g., the inertia,
the center of mass, and the parameters related to the brake
properties. Clearly, the error vanishes only if the Cubli reaches
the upright equilibrium.

According to the model derived in Sections IV-A and IV-B,
the error components are all conserved quantities in the
absence of the input torque T . Hence

pm
ωh

(t t ) = pm
ωh

(0)+ = pm
ωh

(0)− = mT�wωw(0)−

pg
ωg

(t t ) = pg
ωh

(0)+ = pg
ωh

(0)− = g(0)T�wωw(0)− (64)

and

Hh(t t ) = Hh(0)+

= 1

2
(ωh(0)+)T�0ωh(0)+ − mTg(0) − |m| |g|

= 1

2
(ωw(0)−)T�w�−1

0 �wωw(0)−

− mTg(0) − |m| |g|. (65)

This implies that the gradient with respect to ωw(0)− evaluated
for the model parameters s0 yields

∂ E

∂ωw(0)−

∣

∣

∣

∣

s0

=
⎛

⎝

mT�w

(g(0)−)T�w

(ωw(0)−)T�w�−1
0 �w

⎞

⎠. (66)

The initial guess θ0 = (ωw(0)−)0 is calculated by requir-
ing the model-based error to vanish. This yields according
to Section IV-B

(ωw(0)−)0 = √

2I1|m| |g|(1 − cos ϕ0) eϕ(0)

eϕ(0) = m × g(0)

|m × g(0)| (67)

with ϕ0 the inclination angle when the Cubli is lying on its
face.
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3) Compensation for the Guiding Control Action: In the
previous section, the error function evaluating the quality of
a jump-up trial has been introduced and its gradient based on
the jump-up model has been derived. Therefore, the update
rule given by (63) can be applied to learn the initial wheel
velocities, which lead the Cubli to its upright equilibrium
without any control action.

In practice, however, not every jump-up succeeds as the
process noise, e.g., the randomness in the braking mechanism
is too high. To increase the chances of a successful jump-up,
the guiding controller introduced in Section IV-B is used. The
controller tries to maintain the Cubli on a successful jump-up
trajectory and is activated after releasing the brakes. Naturally,
the control effort of the guiding controller must be considered
when evaluating the error criterion E(θ i , s∗). In other words,
given the value E(θ i , s∗), the jump-up performance E ′(θ i , s∗),
which would have been obtained if no additional control action
would have been applied, needs to be determined. Since the
error E is composed of conserved quantities (in the absence
of motor torque), it suffices to estimate their values shortly
after braking, which yields

E ′(ωw(0)−, s) =
⎛

⎝

pm
ωh

(tt ) − ∫ tt
0 ṗm

ωh
dt

pg
ωh (tt )

Hh(tt ) − ∫ tt
0 Ḣhdt

⎞

⎠. (68)

Note that the momentum around the g axis is constant regard-
less of the motor torque. The time derivative of the momentum
around m is obtained from the reduced system dynamics (5)
and is given by

ṗm
ωh

= mT

|m| (−ωh × pωh ).

Moreover, the rate of change of the energy related to the Cubli
housing, Hh , can be calculated to be Ḣh = −ωT

h T .
Clearly, if the jump-up is ideal (in the sense of

Section IV-B), no correction is applied and therefore E and E ′
agree. Moreover, the error E ′ can be simplified to

E ′(ωw(0)−, s) = (

pm
ωh

(0)+, pg
ωh

(0)+,Hh(0)+
)

(69)

leading to the conclusion that the gradient of E ′ with
respect to θ is likewise given by the right-hand side of (66)
for s = s0.

The jump-up procedure is summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS

In the following section, the experimental results are
discussed. The control algorithms are implemented on a
Cortex M4 processor with a sampling time of 20 ms, except
for the guiding controller, which runs at 10 ms. The algorithm
presented in [21] is used for state estimation. The state
estimation exploits the fact that there is a single pivot point
being always at rest to derive a computationally lightweight
nonlinear attitude estimator. It is therefore model free in the
sense that the estimation is solely based on a kinematic model
and does not require knowledge of the center of gravity or the
inertia.

Algorithm 1 Cubli Jump-up

Fig. 6. Disturbance rejection measurements. Inclination angle over time.
Note that the inclination angle is not measured directly but estimated using
the algorithm presented in [21].

A. Balancing Performance

For balancing, an additional offset-correction filter is imple-
mented, which accounts for modeling errors in the parame-
ter m. Details of the implementation can be found in [15]. The
controller parameters are tuned using the strategy presented in
Section III and are chosen to be α = 15, β = 18, γ = 12,
and δ = 10−5. This yields closed-loop poles of the inclination
angle located at −32.7, −12.0, and −0.86 rad/s and a time
constant for the yaw motion of 0.083 s. With those parameters,
a root-mean-squared inclination angle error (at steady state)
below 0.025° can be observed.

Disturbance rejection measurements are depicted in
Figs. 6 and 7. The disturbance was chosen to be 0.17 Nm
and was applied to a single wheel for 60 ms. After less than
1.8 s, the inclination angle reaches steady state. Note that the
reaction wheels are barely turning in steady state (the jitter
visible in Fig. 7 is due to measurement noise).

B. Tracking Performance

Next, the tracking performance is evaluated. A simple state
feedback in the transformed error variable e is used, that is,
u = K x with x and u defined according to (61). The feedback
gain K is chosen such that the linearization of the controller
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Fig. 7. Disturbance rejection measurements. Reaction wheel velocities over
time, which are directly measured via a hall sensor. The different colors
correspond to the different elements of the vector ωw .

Fig. 8. Trajectory tracking: the evolution of ẏ1 and ẏ2 together with the ideal
trajectory (dashed line) for a successful jump-up. The black crosses indicate
the sampling instants. The starting points (right after braking) of the ideal
and actual trajectory are marked by black circles. The point (0, 0) denotes
the upright equilibrium. The area around the upright equilibrium separated by
the dotted circle arc represents the balancing region, i.e., the region where the
tracking controller is turned off and the balancing controller takes over.

around the upright equilibrium agrees with the linearization of
the balancing controller.

Fig. 8 shows the evolution of ẏ. Note that according to (40),
ẏ2 is proportional to Im1 and −ẏ1 to Im2. Therefore, the graph
can be interpreted as the time evolution of the center of mass
in the inertial frame. Although the center of mass is initially
away from the ideal trajectory, the tracking controller manages
to guide the Cubli back to the desired path. As soon as the
center of mass is close enough to the upright equilibrium, i.e.,
it reaches the region indicated by the dotted arc in Fig. 8,
the balancing controller takes over. Fig. 9 shows the time
evolution of the controller states y, which is associated with
the momentum I pωh

, and ÿ, which is proportional to Iωh × Im.
The reference trajectory is again depicted by the dashed
curves. It follows from Fig. 9 that the generalized momentum
I pωh

is accurately tracked. The error in the second derivative ÿ
is initially larger, but is decreased by the controller as time
evolves. However, a slight overshoot can be observed.

C. Learning Performance

The learning algorithm proposed in the previous section
is implemented for the face-to-corner jump. A constant step
size of λi = 0.8 for all iterations i = 0, 1, 2 . . . is used.

Fig. 9. Trajectory tracking: the evolution of y and ÿ (solid lines), where the
crosses indicate the sampling instants. The ideal trajectories ydes and ÿdes are
shown by the dashed curves.

Fig. 10. Initial wheel speeds of the reaction wheels starting from five different
initial conditions. The learning algorithm converges after a few iterations to
feasible wheel speeds resulting in a successful jump-up.

Fig. 10 shows the evolution of the initial wheel speeds
ωw1 and ωw2 . Due to the geometry of the Cubli, the third
reaction wheel is only slightly used to correct for a nonzero
momentum pg

ωh and is therefore not depicted. The initial wheel
speeds were chosen to be around 100 rad/s away from the
angular velocities leading to a successful jump-up. Hence, for
the initial wheel speeds, the Cubli barely moves or falls on the
opposite side. After around five trials, the error of the angular
momentum pωh (t0)

+ is small enough such that the guiding
controller can lead the Cubli to its upright equilibrium. At this
point, the learning algorithm compensates only for the control
action of the guiding controller leading to small correction
steps.

VI. CONCLUSION

This paper presents the aspects related to the dynamics
and control of a reaction-wheel-based 3-D inverted pendulum.
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The analysis of the equations of motion revealed the existence
of conserved quantities and relative equilibria and allowed one
to find a reduced description of the dynamics. In particular,
the reduced description was used for the control design.
Two different nonlinear control approaches were presented
and subsequently discussed. Finally, the aspects related to
the jump-up were presented, where the effect of repeatable
disturbances was decreased by an iterative learning algorithm.
To enhance robustness, feedback linearization was used to
guide the inverted pendulum system to its upright equilibrium
on a predefined trajectory. All control and learning algo-
rithms were evaluated in experiments, which confirmed their
effectiveness.
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