Application: Co-design of future mobility systems

- Now: Co-design of vehicle and future mobility systems
 - <u>Co-Design to Enable User-Friendly Tools to Assess the Impact of Future Mobility Solutions</u>
 - Co-Design of Embodied Intelligence: A Structured Approach

Takeways:

- Using co-design, it is easy to formalize **hierarchical models** (never possible before)
- Very **intuitive** modeling approach (no "acrobatics" needed)
- Rich modeling capabilities: analytic models, catalogues, simulations
- Compositionality and modularity allow interdisciplinary collaboration
- Co-design produces **actionable information** for designers to **reason** about their problems

Co-design of vehicle and future mobility systems

- Co-Design to Enable User-Friendly Tools to Assess the Impact of Future Mobility
 Solutions
 - We co-design intermodal mobility solutions (AVs, micromobility) with the infrastructure (trains, roads)

- <u>Co-Design of Embodied Intelligence: A</u>
 <u>Structured Approach</u>
 - We co-design an AV, all the way from hardware (vehicle, sensors, computers, ..) to software (perception, control, ..) components

Co-design of future mobility systems

- ▶ We look at the problem from the perspective of municipalities and policy makers
 - Important decisions to make:

How many AVs should we allow? What's the influence of AVs on public transit systems?

How performant should AVs be? How many trains should we buy?

Co-design of future mobility systems

- ▶ We look at the problem from the perspective of municipalities and policy makers
 - Important decisions to make:

How many AVs should we allow? What's the influence of AVs on public transit systems?

How performant should they be? How many trains should we buy?

- Existing work only solves **specific problems** and does not **co-design** the whole system:
 - No joint design of mobility solutions and the system they enable
 - No modularity and compositionality: problem-specific
 - Often, not producing actionable information for stakeholders

Co-design of future mobility systems

- ▶ We look at the problem from the perspective of municipalities and policy makers
 - Important decisions to make:

How many AVs should we allow? What's the influence of AVs on public transit systems?

How performant should they be? How many trains should we buy?

- Existing work only solves **specific problems** and does not **co-design** the whole system:
 - No joint design of mobility solutions and the system they enable
 - No modularity and compositionality: problem-specific
 - Often, not producing **actionable information** for stakeholders
- > Several disciplines involved (transportation science, autonomy, economics, policy-making)
- ▶ We allow **interfaces** between them via **co-design**:
 - Functionality: demand to be satisfied
 - Costs: investments (\$), externalities (CO₂ kg), service level (average waiting time, s)

▶ Co-design highlights the **structure** of the problem and provides **tools** to reason about it

Modeling the mobility system as a co-design problem

Subway:

Micromobility:

AV:

Fun: number of trains to buy Fun: speed of the vehicle

Fun: speed of the vehicle

Res: costs and externalities

Res: costs and externalities Res: costs, externalities, performance

Imp: acquisition contracts

Imp: vehicle models

Imp: vehicle *models* and autonomy

Co-Design produces actionable information for stakeholders

Fixed a **demand**, we find the **Pareto front** of **incomparable**, **minimal solutions** as **cost**, **time**, and **externalities**

Convert externalities into cost and interpret the results:

 $t_{\mathrm{avg}} \; [\mathrm{min}]$

Which one is the best? Depends on what is at upper level (policy-making, etc.)

Co-design of an autonomous vehicle

- ▶ Simple approach: a **catalogue** of existing **AVs**
- ▶ We want to model **AVs** more in detail, from the perspective of the **developers**
- We look at an example of the **methodology** to apply:
 - Can be applied to other autonomous systems
 - *Proof of concept* implementation (*no* real data)

Co-design of an autonomous vehicle

- ▶ Simple approach: a **catalogue** of existing **AVs**
- ▶ We want to model **AVs** more in detail, from the perspective of the **developers**
- ▶ We look at an example of the **methodology** to apply:
 - Can be applied to other autonomous systems
 - *Proof of concept* implementation (*no* real data)

Modeling approach:

- **Task** what do we need to do?
- Functional decomposition how to decompose?
- **Find components** *decompose until you find components* (hardware and software)
- Find common resources For instance, size, weight, power, computation, latency

▶ Implementation:

- **Skeleton** write structure using the formal language
- Fill-in the holes: catalogues, analytic models, simulations

Task abstraction and functional decomposition in autonomy

▶ Autonomy tasks can be usually characterized as a **design problem**:

Task abstraction and functional decomposition in autonomy

▶ Autonomy tasks can be usually characterized as a **design problem**:

• Given the **sub-tasks**, we can interconnect them

Note that composing tasks gives a task (compositionality)

Task abstraction and functional decomposition in autonomy

▶ Autonomy tasks can be usually characterized as a **design problem**:

• Given the **sub-tasks**, we can interconnect them

- ▶ Note that composing tasks gives a task (compositionality)
- Let's try with **urban driving**:

Co-design model of an autonomous vehicle

Co-design model of an autonomous vehicle

Co-design of a intermodal mobility system

Lateral control can be decomposed in **sub-tasks**:

Co-design of a intermodal mobility system

▶ Longitudinal control can be decomposed in **sub-tasks**:

We construct a poset of sensor functionalities

> Sensing performance:

Co-design of a intermodal mobility system

- The theory comes with a **formal language** and a **solver (MCDP)**
- Very intuitive to use:

```
mcdp {
    provides computation [op/s]
    requires cost [CHF]
    requires mass [g]
    requires power [W]
}
```

Choose query type:

Fixed the functionality, minimize the resources.

Given an implementation, evaluate functionality/resources. [UI not implemented]

Given min functionality and max resources, determine if there is a feasible implementation. [UI not implemented]

Given min functionality and max resources, find a feasible implementation. [UI not implemented]

"Solve for X": find the minimal component that makes the co-design problem feasible. [UI not implemented]

Co-design model of an autonomous vehicle

Solution of DPs

```
operational cost [CHF/km]
range [m]
capacity [pax/car]
speed cruise [m/s]
environment

AV

---
total computation [op/s]
total mass [kg]
total power [W]
system noise
latency [s]
```


Solution of DPs

Solution of DPs

AV cost [CHF]

Conclusions: Takeaways

- Using co-design, it is **easy** to formalize **hierarchical models** (never possible before)

 We formalized mobility systems all the way from sensors on the vehicles to interactions of fleets of AVs with the public infrastructure of a city
- Very intuitive modeling approach (no acrobatics like common in optimization theory)
 The interpreter allows one to easily model problems of interest
- ▶ Rich modeling capabilities:

Simulation: Flow optimization for mobility network, POMDP for brake control

Catalogues: Sensors, vehicles, computers, algorithms, ...

Analytical: LQG closed-form solutions, discomfort models, ...

- Compositionality and modularity allow interdisciplinarity

 We did all of it, but technically this could have been possible with different teams
- Co-design comes with a **formal language** and an **optimizer**After easily modeling the problem, you can directly solve **queries** of your choice
- ▶ Co-design produces actionable information for designers to reason about their problems We have shown actionable information for municipalities, as well as for AV developers

