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Abstract— We study the optimal control of fleets of identical
particles (e.g., robots, autonomous cars, etc.), which we capture
macroscopically as probability measures. First, we study fleet-to-
particle optimal control via dynamic programming in probability
spaces. Second, we investigate its compositionality properties:
Perhaps surprisingly, we show that in many cases of practical
interest we can find the optimal solution in a particle-to-fleet
fashion, combining two ingredients: (i) the solution of dynamic
programming of each particle and (ii) the solution of an optimal
transport problem. Intuitively, this means that the “low-level
control of the particles” (how to reach the destination?) and
“fleet-level control” (who goes where?) are decoupled. Beside
its practical relevance, this work opens the field for a rigorous
investigation on the compositionality of optimal control problems
via category theory.

I. INTRODUCTION

This work deals with the following fundamental question:
How to optimally control a (possibly very large) fleet of
identical particles? This problem has application across
various domains, including robotic coordination [10], [13], [7],
[21], mobility systems [25], [24], [18], social networks [2],
[15], and biological models [19], [22].

In general, one can adopt two different approaches: a
particle-to-fleet approach and fleet-to-particle approach. In
fleet-to-particle approaches, one jointly designs the control
strategies of all particles. This approach is of course very
principled, but suffers from the size of the fleet: For very
large scale systems, the analysis and computation of (optimal)
control strategies becomes intractable. In particle-to-fleet
approaches, instead, one first solves the optimal control (OC)
problem for every particle as if it was the only one, and
then composes these solutions to obtain a control strategy for
the fleet. This approach is particularly attractive for various
reasons. First, one can effectively deploy the rich theory for
the control of single agents. Second, the approach mildly
suffers from the size of the fleet: One only needs to combine
the solutions of the individual particles, but does not need
to jointly design their control strategies. Unfortunately, these
benefits are at the price of generally sub-optimal (from the
fleet perspective) control strategies.

In this work, we study the interplay between these two
approaches via OC and optimal transport (OT). Notably, in
many settings of practical interest they coincide: We can
compose the optimal control strategies of the individual
particles to obtain an optimal control strategy for the fleet.
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While the steering of probability measures has received
much attention in continuous time [12], [9], [11], there is a
lack of results in the discrete time settings, where the analysis
is limited to integrator and linear dynamics [4], [5], [6]. In
these works the approach is fleet-to-particle. Conversely,
in [16], [17] the approach is particle-to-fleet: First, an OC
problem for each particle yields a cost for every initial and
terminal state; second, an OT problem gives the control
strategy for the fleet. Yet, the optimality at a fleet level is not
assessed: Even if the control laws for the individual particles
are optimal, the macroscopic behaviour might be sub-optimal.

Our main contributions are (i) the rigorous study of discrete-
time OC in probability spaces via dynamic programming (DP)
(i.e., fleet-to-particle approach), and (ii) the characterization
of conditions under which the particle-to-fleet and fleet-to-
particle approaches coincide.

II. BACKGROUND IN OPTIMAL TRANSPORT

Let X be a Polish space (i.e., separable completely metriz-
able topological space, such as Rn or any finite space). The
space of all Borel probability measures over X is denoted by
P(X ). The pushforward of µ via f : X → X is defined by
(f#µ)(A) = µ(f−1(A)) for all Borel sets A ⊂ X . Given a
non-negative lower semi-continuous function c : X × X →
R≥0 (called transport cost) and two probability measures
µ, ν ∈ P(X ), the OT cost between µ and ν is defined by

C(µ, ν) := inf
γ∈Γ(µ,ν)

∫
X×X

c(x1, x2)dγ(x1, x2), (1)

where Γ(µ, ν) is the set of all probability measures over X×X
with marginals µ and ν, often called transport plans [23], [20],
[3]. The semantics are as follows: We seek the minimum cost
to transport the probability distribution µ onto the probability
distribution ν, when transporting a unit of mass from x1 to
x2 costs c(x1, x2). Accordingly, a transport plan γ ∈ Γ(µ, ν)
encodes the allocation of probability mass: if (x1, x2) ∈
supp(γ), then some of the probability mass at x1 is displaced
to x2. When the OT plan is of the form γ = (Id × T )#µ for
some measurable T , then T is the OT map from µ and ν.

III. PROBLEM SETTING

A. Fleets as probability measures

In agreeement with mean-field approches [1], we identify
a fleet of identical particles whose state takes value in X as
a probability measure µ over X . Accordingly, µ(A) denotes
the share of particles whose state belongs to the set A ⊂ X .
This setting encompasses many cases of practical interest:

Example 1 (Robots in a grid): Consider n robots in a grid
of W ×H cells, where the kth agent is located in the cell



(ik, jk). Then, µ = 1
n

∑n
k=1 δ(ik,jk), where δ(i,j) denotes a

delta measure at (i, j).
Via a simple augmentation of the state space, we can also

consider fleets of heterogeneous particles:
Example 2 (Intermodality): Consider n vehicles in a trans-

portation network, represented by N routes. Denote by ik
the route in which the kth vehicle is located, and by jk its
class: bicycle, car, train, etc. Then, the fleet is described
macroscopically as µ = 1

n

∑n
k=1 δ(ik,jk).

The discrete-time dynamics of the fleet of identical particles
usually results from a pushforward operation via a map f :
X → X ; i.e., µ+ = f#µ. Intuitively, this means that all
particles of µ located at x ∈ X are displaced to f(x) ∈ X .

Example 3: Consider a fleet of robots, where every robot
at x ∈ X receives as input u(x) ∈ U and evolves with the
dynamics f(x, u(x)): The fleet evolves as µ+ = f(·, u(·))#µ.

B. The optimal control of fleets

In this setting, the OC problem reads

J(µ0) = inf
uk∈Uk

N−1∑
k=0

Gk(µk, uk) + VN (µN ), (2)

subject to dynamics and input constraints. In contrast with
traditional OC, the optimization variables do not take values
in U (e.g., in Rp). Rather, they are continuous maps from the
particle space to the input space; i.e., uk ∈ Uk ⊆ C0(Xk, Uk).
Consequently, (2) is an infinite-dimensional optimization
problem. For the cost terms there are many options:

Example 4: Given a quantity h : X × U → R≥0, we can
consider its average value over the fleet Eµ [h(x, u(x))], and
its variance Varµ [h(x, u(x))]. More general terms can also
be considered; e.g., the OT cost C(µ, ν) from a reference
measure ν, or the Kullback-Leibler divergence.

Perhaps surprisingly, we can show that the conditions for
well-posedness of the DP recursion are aligned with traditional
DP; see [8, §4.2] and [14].

C. When things are compositional

Unfortunately, DP in probability spaces is often impractical:
There are limited instances with analytical solution, and a
computational approach is not practical due to the infinite
dimensionality of (2). Nonetheless, we prove that if (i) the
stage costs are of the type Gk(µ, u) = Eµ [gk(x, u(x))] and
(ii) the terminal cost is an OT problem with transport cost
vN between the fleet state µN at the end of the horizon and
a reference probability measure ν, then we can solve (2) in
a particle-to-fleet fashion.

In particular, the cost-to-go at stage k (i.e., Jk) is the
OT cost (1) with transport cost jk between the probability
measures µk (state of the fleet at stage k) and ν (same
reference probability measure as in the terminal cost), where
for all x ∈ Xk, y ∈ XN jk(x, y) is the cost to steer a particle at
stage k and state xk to y, with stage costs gk and terminal cost
vN . Moreover, each jk encodes the optimal strategy for the
individual particles (i.e., the solution to the DP recursion in the
ground space). Therefore, we effectively have a computational
compositional approach to optimally steer the fleet:

1) Perform DP for every pair of initial and terminal states
x ∈ supp(µk), y ∈ supp(ν) to find the optimal input
uk,xy and the cost-to-go jk(x, y); and

2) Find the OT map between µk and ν with transportation
cost jk(x, y) and apply uk(x) = uk,xTk(x).

D. Discussion

If we consider a single particle, the macroscopic description
reduces to a delta (µ = δx), and we recover the traditional
case: Let ν = δx∗ , then Tk(x) = x∗ and the fleet solution
collapses to the single particle one. This suggests that OT
induces a lifting operator from X to P(X ). Similarly, one can
prove that whenever the terms gk and vN satisfy the required
assumptions for well-posedness of DP, so do their “lifted”
counterparts Gk, VN [23], [3]. Moreover, a probability space
over a Polish space X (endowed with the narrow topology)
is itself a Polish space. Thus, our results can be rephrased in
the language of category theory (e.g., via functors).

IV. AN EXAMPLE

We now instantiate our results in Example 1. We endow
the grid world with the commutative group structure (i, j) +
(h, k) = (i + hmodW, j + kmodH). Each robot has five
actions available (UP ≡ (0, 1), RIGHT ≡ (1, 0), DOWN ≡
(0, H − 1), LEFT ≡ (W − 1, 0), and HOVER ≡ (0, 0)) and
moves with the integrator dynamics f(x, u(x)) = x+ u(x).
Additionally, some cells are blocked by bushes. The goal
is to drive the swarm towards a fixed final configuration ν,
minimizing the travelled distance and avoiding the obstacles.
The OC problem can be formulated for each particle via the
cost terms: (i) g(x, u(x)) = +1 if f(x, u(x)) ≡ FREE, and
+∞ if there is an obstacle or the agents goes left when in the
first column (to avoid trivial solution); and (ii) vN (x, y) = 0 if
x = y, else +∞. As we seek to minimize the total cost of the
fleet (i.e., expected value), we can exploit the compositionality
of the OC problem: We find all shortest paths, and solve an
OT problem (here, a linear program); see Fig. 1.

Fig. 1. Snapshots of a simulation for an instance of the Forest ride problem.
The time evolution is color-coded from red (start) to blue (end).

V. CONCLUSIONS AND FUTURE WORK

We studied OC in probability spaces. Notably, in many
cases of practical interest, optimal solutions are compositional,
and result from combining optimal solutions for each particle.
In future work, we would like to study the compositionality
properties of OC through the formalism of category theory.
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Ecole Doctorale Mathématiques et Informatique de Marseille, 2019.

[10] Francesco Bullo, Jorge Cortés, and Sonia Martı́nez. Distributed control
of robotic networks: A mathematical approach to motion coordination
algorithms. Kindle Direct Publishing, 2022.

[11] Giulia Cavagnari and Antonio Marigonda. Attainability property for
a probabilistic target in Wasserstein spaces. Discrete and Continuous
Dynamical Systems - Series A, 41(2), 2020.

[12] Yongxin Chen, Tryphon T. Georgiou, and Michele Pavon. Optimal
transport in systems and control. Annual Review of Control, Robotics,
and Autonomous Systems, 4(1), 2021.

[13] Silvia Ferrari, Greg Foderaro, Pingping Zhu, and Thomas A Wettergren.
Distributed optimalcontrol of multiscale dynamical systems: A tutorial.
IEEE Control Systems Magazine, 36(2):102–116, 2016.

[14] Willem K Klein Haneveld. On the behavior of the optimal value
operator of dynamic programming. Mathematics of Operations
Research, 5(2):308–320, 1980.

[15] Elizabeth Y Huang, Dario Paccagnan, Wenjun Mei, and Francesco Bullo.
Assign and appraise: Achieving optimal performance in collaborative
teams. IEEE Transactions on Automatic Control, 2022.

[16] Mathias Hudoba de Badyn, Erik Miehling, Dylan Janak, Behçet
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