
Constraint Programming for Component-Level Robot Design

Andrew Wilhelm1∗ and Nils Napp1

Abstract— Effective design automation for building robots
would make development faster and easier while also less prone
to design errors. However, complex multi-domain constraints
make creating such tools difficult. One persistent challenge in
achieving this goal of design automation is the fundamental
problem of component selection, a combinatorial optimization
problem where, given a general robot model, components must
be selected from a possibly large set of catalogs to minimize
design objectives while meeting target specifications. Different
approaches to this problem have used Monotone Co-Design
Problems (MCDPs) or linear and quadratic programming, but
these require judicious system approximations that affect the
accuracy of the solution. We take an alternative approach to
solve this optimization problem using constraint programming
(CP) and a depth-first branch-and-bound algorithm which does
not require any system approximations. As the efficacy of CP
critically depends upon the orderings of variables and their
domain values, we present two heuristics specific to the problem
of component selection that significantly improve solve time
compared to traditional constraint satisfaction programming
heuristics. We also propose a general method to further improve
run time by evaluating certain global constraints before all
relevant variables are assigned. We demonstrate that our
approach can find optimal solutions from over 20 trillion
candidate solutions in only seconds, up to 48 times faster than
an MCDP approach solving the same problem. Finally, for three
different robot designs we build the corresponding robots to
physically validate that the selected components meet the target
design specifications.

I. INTRODUCTION
Designing robots is difficult because it involves nested, multi-
domain, multi-objective constraints. Given a target perfor-
mance specification such as payload, endurance, or speed,
designers need expertise in several domains to translate it
into a final robot design. Errors in one part of the system
may result in subtle, difficult to diagnose failures in other
subsystems. For example, a designer proficient in systems
programming may forget to account for the combined tran-
sient power draw of components resulting in a design that
produces intermittent, difficult to replicate faults even though
it passes static and component-level testing. By decreasing
the chance of such design errors, automating component
selection for robot design can reduce both the development
time and likelihood of encountering failures during testing.

Component selection is a particularly difficult optimization
problem since the discrete solution space increases combi-
natorially as the number of available components increase,
making brute force search methods intractable except for the
smallest of problems. Furthermore, the categorical nature of

1Department of Electrical and Computer Engineering, Cornell University,
Ithaca, NY, 14850, United States

∗Correspondence to ajw343@cornell.edu

Fig. 1: Overview of the component selection problem for robot
design. Given high-level performance specifications, our bounded
constraint optimization algorithm selects components from an avail-
able parts list. We designed and physically validated three different
differential drive robot designs using our algorithm. (Component
images from pololu.com)

component choices makes it difficult to directly map the
problem onto well-developed industrial integer, or mixed-
integer solvers, such as IBM CPLEX [1], or Gurobi [2].
One approach is to build simplified robot models that map
onto such solvers, but this requires judicious approximations
typically by an expert, see Sec. II.

Another approach that has been explored in the context of
design problems is to formulate robots as a monotone co-
design problem (MCDP) [3]. Given one or more objectives,
these can be solved iteratively using a fixed-point algorithm
to compute the Pareto front of minimal solutions that meet
the target specification. This framework has a convenient
modeling language and unit-checking of designs and can
easily express non-linear (albeit monotone) relationships be-
tween components. This makes it somewhat easier to express
the component selection problems without approximations,
yet the current solver does not scale well with larger catalogs
and many circular dependencies between components.

We take an alternative approach of solving a useful sub-
class of problems and focus on a combinatorial optimization
problem without having to approximate our system as linear
or monotone. Our approach uses constraint programming
(CP) and a depth-first branch-and-bound algorithm, see Sec.
III. Compared to the MCDP formulation our approach cannot
handle continuous decision variables or determine a multi-
objective Pareto front of solutions, but it can compute
multiple minima if they exist.

Our key contributions are as follows:
• We formalize the component selection problem as a

combinatorial optimization problem and present an al-
gorithm that uses well-known CP techniques to solve

this problem without requiring an approximated model.
• The effectiveness of CP formulations depend on heuris-

tics for ordering variables and domains. We present
two heuristics that significantly speed up solving the
optimization problem for this specific problem type.

• We propose a method that further reduces run time
by using a lower bound on specific global constraints,
allowing us to evaluate these global constraints before
all relevant variables are assigned. In certain cases,
additional binary constraints can be added to even more
efficiently trim the search space.

We demonstrate our CP approach can determine optimal
solutions up to 48 times quicker than an MCDP approach
solving an identical problem, and we have physically built
three different robot designs and validated that they meet the
target specifications.

II. RELATED WORK
Ideally the robot design process can be automated, provide
formal guarantees, generate minimal solutions, and be fully
integrated in an end-to-end system [4]. Methods developed
for single-domain problems cannot achieve these goals so
deliberate progress must be made towards automating multi-
domain design and synthesis tools.

One approach to automate the design process is to use
expert-designed modular components that facilitate composi-
tion. When carefully chosen, even a small set of components
allows these approaches to meet a wide variety of perfor-
mance specifications. Modular components can abstract and
simplify the design process (and are even used in some
children toys [5], [6]), which is essential for non-expert users.

For instance, [7] developed a system to allow novice
users to design printable and foldable robots using a li-
brary of basic and pre-designed components. This system
was later extended in [8] to allow users to describe robot
behavior using structured English, but users still needed
to associate components with grammatical definitions and
specify structural parameters during the design process. [9]
also developed a tool to generate foldable robot designs
that simulated and evaluated proposed designs to provide
feedback and guide users via an iterative design process,
and [10] developed a visual design environment that used
a heuristic guided tree search algorithm to autocomplete
user designs. Similar to [8], these approaches used a limited
number of expert defined or hand-picked modules and did
not provide guarantees on the electronics system working.

In contrast to approaches that use modular components,
model-based approaches constrain or parameterize the robot
geometry but can accommodate a wider range of generic
components. Often these approaches receive limited or no
user feedback during the design process which makes them
suitable for optimization based synthesis.

If choosing components from a finite set, the problem
becomes a combinatorial optimization problem in which the
objective is to find an optimal object from a finite set of ob-
jects [11]. Without approximations and/or highly constrained
scenarios these optimization problems are frequently difficult

to solve since the problem tends to be a non-convex, non-
linear combinatorial optimization problem. There are several
approaches to solving constrained combinatorial optimiza-
tion problems including deep learning [12] or particle swarm
optimization [13], but here we present techniques specifically
used in system and robot design.

The most common model-based approaches are linear and
quadratic programming approaches. By linearizing their sys-
tem, [14] and [15] used more traditional linear optimization
techniques (mixed integer and binary programming, respec-
tively) to determine component selection for quadcopters.
Quadratic programming has also been extensively used in
[16], [17], and [18], but all three of these approaches used
parametrized components and without the ability to select
pre-defined components from a catalog.

MCDPs are a different model-based approach that can be
used to solve combinatorial optimization problems. Kleene’s
algorithm is used to compute an anti-chain of solutions
and determine the Pareto front of minimal solutions. For
the computational approach to work, the mappings between
functionalities and required resources of each component
need to be monotone, but can otherwise be non-linear, non-
convex, or non-continuous [3]. [19] later integrated uncer-
tainty into MCDPs which can not only model uncertainties
in the problem formulation but also reduce computational
complexity if uncertainty in the final solution is acceptable.

Many of these prior works primarily optimize the robot’s
morphology and use relatively small catalogs of (parame-
terized) components operating under the assumption that a
designer has a set of pre-selected suitable components. In
contrast our approach prioritizes component selection from
a large catalog (hundreds of distinct components compared
to dozens in previous methods) which is a typical situation a
designer might encounter using an online parts vendor. This
creates a much larger search space that can contain trillions
of candidate solutions.

Our approach utilizes a branch-and-bound algorithm to
efficiently trim and exhaustively search the entire combi-
natorial space. Branch-and-bound uses a branch step that
partitions the search space into subsets, and a bound step that
provides a lower bound on the cost for a given subset [20].
This bound is continually refined and used to prune regions
of the search space. The branch-and-bound technique is the
best known framework for many NP-hard combinatorial op-
timization problems [20] including design problems related
to robotics and automation, such as designing soft actuator
systems [21], spatial layout problems for manufacturing
equipment [22], and wiring inside logic circuits [23].

III. METHODS
This section first describes the notation and solution tech-
niques of the easier constraint satisfaction problem (CSP),
Sec. III-A as it forms the basis for the constrained optimiza-
tion problem (COP) we use to solve for optimal components,
Sec. III-B. Sec. III-C describes techniques for speeding up
the COP for robot component selection that are necessary to
achieve practical solve times.

Fig. 2: The bipartite constraints graph for our differential drive
robot model. The combinatorial optimization problem’s variables
are the components (center) represented as gray ovals. Unary,
binary, and global constraints are green, black, and blue rectangles,
respectively. Binary constraints that are partial checks of global
constraints are indicated by a dashed outline. Each constraint
node implies a mathematical constraint that expresses component
compatibility in terms of variable properties. An edge between a
constraint and a variable indicates that those variable properties are
present in that constraint.

In this paper, we use a differential drive, transport robot as
an example design problem since this type of robot contains
common components (such as motors, microcontroller, etc.)
and is widely used in industrial applications. We assume
the designer knows the robot model and, given a set of
target specifications such as speed, endurance, and maximum
navigable incline, would like to select components to meet
these high-level specifications while minimizing cost.

A. Constraint Satisfaction Problems

A CSP describes problems using constraints on variables
and is commonly applied to problems such as job scheduling,
map coloring, sudoku, and the 8-queens problem [24]. While
our goal for robot design is to optimize for cost, the goal of
solving a CSP is to find any feasible solution such that no
constraints are violated. The typical solution technique is to
use a back-tracking search that uses the constraints to skip

over infeasible regions of the search space, and our proposed
solution uses the same core ideas but simply keeps searching
and refining constrains, Sec. III-B.

A CSP has a finite set of variables V = {v1, v2, . . . , vn},
a set of finite domains (one for each variable) Di =
{di,1, di,2, . . . , di,m}, and a finite set of constraints C =
{C1, C2, . . . , Cp} that specify valid combinations of values.
This formulation lends itself to the component selection
problem where one knows a general robot model (e.g. a
differential drive robot) and needs to select specific items
from possibly large yet finite sets of potential components.
Each variable vi describes one component type that needs
to be selected, and the associated domain Di is the set of
all available components of that type. Here, the domains are
populated from parts that can be easily ordered from online
vendors. Each variable or component type has associated
properties, which are required for determining whether or
not component combinations are viable. For instance, in our
implementation the variable vmotor represents the motor class
of components, and this variable has properties such as ωmax

or Istall representing the maximum angular speed and stall
current of the motor, respectively, which are populated from
the motor documentation.

Constraints Ci are relational constraints between the prop-
erties of components that can be expressed as mathematical
expressions, e.g.

Vmax ≤ vmotor.ωmax ∗ vwheel.radius

where Vmax is the maximum speed of the robot, and the terms
of the right hand side refer to the associated properties of the
motor and wheel variables. These constraints encode not only
viable combinations of components but also the performance
specification of the robot, which can be expressed using
mathematical relations on variable properties.

For our example problem selecting components for a
differential drive robot, we use 7 different component types
which have between 3 and 9 associated properties. There
are 17 total constraints in our model, but 6 of these are
binary constraints added to improve run time (see Fig. 2 and
Sec. III-C.3). These constraints ensure the target performance
specifications are met (e.g. the motor can provide enough
torque and angular speed to move the maximum payload
up the maximum incline) and also account for system con-
siderations (e.g. compatible operating and logic voltages or
sufficient number of I/O lines). While these constraints may
involve several variables, the expressions themselves are not
complicated and have been omitted due to space limitations.

A satisfying assignment for a CSP is a list of specific
values for each variable that is chosen from the associated
domains such that all constraints are met. A partial assign-
ment is where only a subset of the variables have an assigned
domain value while other variables remain unassigned.

A key idea is that even a partial assignment restricts the
possible values of the unassigned variables. The search of
satisfying solutions proceeds by assigning variables and then
ruling out possible values of the unassigned variables from
their domains based on the constraints. If any of the domains

of unassigned variables become empty, there is no satisfying
solution that contains the assigned variables and that portion
of the search space can be eliminated without having to
enumerate all possible combinations.

Constraints can be classified based on the number of vari-
ables they are connected to, which determines how they are
used to rule out values during the search. Unary constraints
are constraints on the domain values of a single variable, and
can be treated in a pre-processing step to eliminate elements
of the domain. Binary constraints are connected to two vari-
ables and can be efficiently propagated via a method called
Maintaining Arc Consistency (MAC) [24], which uses the
AC-3 algorithm to propagate binary constraints. Constraints
on three or more variables are called global constraints.
These constraints are checked as soon as possible but are
not directly propagated by MAC, see Sec. III-C. We express
the structure of the constraints as a bipartite graph between
constraints and variables, where an edge between a variable
and a constraint indicates its mathematical expression uses
capabilities from that particular variable (see Fig. 2).

One way to improve efficiency is the order in which
to assign variables and their domain values using domain-
independent heuristics. In determining which order to select
variables, a common approach is the Minimum-remaining-
values (MRV) heuristic which chooses the variable with
the fewest “legal” values. The intuition behind this is to
pick a variable that is more likely to fail soon, resulting
in fewer combinations to check since the search space is
pruned more efficiently. In contrast, to determine the order
to select domain values, the least-constraining-value (LCV)
heuristic chooses domain values that eliminate the fewest
domain values of neighboring variables. Since the objective
of solving a CSP is to find any feasible solution, selecting
domain values by LCV helps to find a solution quicker since
it chooses the most likely values to be in a solution.

B. Component Selection as a Constrained Optimization
Problem

For the component selection problem, we assume the robot
model and performance specification have been expressed as
constraints between components, and among all satisfying
solutions for the associated CSP the designer is looking for
an optimal component selection to minimize total system
cost.

While many of the same CSP techniques can be used
in solving a COP, the approach to solving standard CSPs
is good at finding a feasible solution quickly but does not
provide an optimal solution. A CSP solver stops as soon
as it reaches a valid assignment for all variables, whereas
a COP solver must continue iterating to exhaustively check
the entire search space. Since the search space could contain
a large number of valid solutions, simply removing the
previously found combination and running the CSP solver
again would quickly become intractable. Instead, to find
an optimal solution we use a depth-first branch-and-bound
algorithm that uses the current minimal cost to further prune
the search tree as minimal solutions are found.

1) Depth-first Branch-and-Bound Using a Cost Bound:
The goal of branch-and-bound is to efficiently consider all
possible solutions while minimizing the number of solutions
that have to be evaluated. To do this, the search space is
recursively split into smaller sets, called branching. After
branching, a lower bound of the smaller search space is
determined and compared to a global upper bound. If the
lower bound is larger than the global upper bound, the
algorithm does not need to continue searching that solution
subset since the minimal solution cannot be in that subset.

In our example design problem, we are attempting to
minimize the cost of a differential drive, transport robot. In
this case the global upper bound is the cost of the cheapest
solution found so far. To determine a lower bound on cost, we
evaluate the total cost of the current partial assignment. Our
approach maintains a list of all solutions with the same cost

Algorithm 1 Constraint Programming Algorithm: Our CP
algorithm uses a recursive function backtrack to solve a COP.
Variables a, cb, v, and d represent the current assignment, global
cost bound, COP variable, and domain value, respectively. The
get next var and order domain vals functions use the variable and
value ordering heuristics presented in Section III-C.1 and III-
C.2 to select the next variable or domain value. The function
eval global constr evaluates the global constraints on partial vari-
able assignments.

Input: ConstraintOptimizationProblem cop
Output: solns

1: solns← {}, cb← 0
2: assert unary constraints(cop)
3: cb, solns← backtrack({}, solns, cb)
4: return solns
5:
6: function backtrack(a, solns, cb)
7: if is complete assignment(a) then
8: total cost←get total cost(a)
9: if total cost < cb then

10: cb← total cost
11: solns← {}
12: end if
13: solns.append(a)
14: return cb, solns
15: end if
16: v ← get next var(cop, a)
17: for d in order domain vals(cop, v, a) do
18: if cop.num constr conflicts(v, d, a) is 0 then
19: cop.assign(v, d, a)
20: if forward check(cop, v, d, a) then
21: if eval global constr(cop, v, d, a, cb) then
22: cb, solns← backtrack(a, solns, cb)
23: end if
24: end if
25: end if
26: end for
27: cop.unassign(v, a)
28: return cb, solns
29: end function

(solns in Algorithm 1) and clears the list if a cheaper solution
is found. If the algorithm is terminated early during solving,
it can still provide locally minimal (but not necessarily
globally minimal) solutions.

C. Improving Constrained Optimization for Component Se-
lection

Algorithm 1 gives the pseudocode for our recursive
bounded constraint optimization algorithm for component-
level robot design. Using the techniques discussed above,
the algorithm attempts to efficiently prune the search space
and provide the set of all minimal solutions for a given set
of specifications. If no solution exists, the algorithm returns
an empty set accordingly.

In the remainder of this section we present methods to
improve the solve time of our CP approach. Even with
depth-first branch-and-bound, application-specific heuristic
strategies are important for efficiently solving a COP [25].
In this context, we discuss heuristics for selecting variables
and domain values that are specific to robot design. Then
we present a general method for partially checking global
constraints to speed up solve time that is not specific to robot
design, and identify the conditions under which this partial
check can be performed.

1) Variable Ordering – Least Cost Difference (LCDiff):
In determining which variable to select next, we use the least
difference in cost between the cheapest and most expensive
domain values of each variable:

least cost diff = argmin
var

|di.cost− dj .cost|

for di, dj ∈ Dvar

The rationale behind this variable ordering is that the
solver can get caught in a regime where it is evaluating many
possible solutions that are providing only minor reductions to
the global cost (since backtracking changes the last variables
in the assignment). By ordering the variables such that the
largest difference variables are selected last, any changes to
complete assignments after backtracking have the potential to
provide a large reduction in the global cost bound, helping to
eliminate large portions of the search tree. Variable ordering
is performed on line 16 of Algorithm 1.

2) Domain Value Ordering – Least Cost Partial Order
(LCPO): Our approach to domain value ordering uses a
partial order to sort the components by their general “utility”
based on their properties (line 17 of Algorithm 1). First,
components are ordered by increasing cost since the problem
objective is to minimize system cost. In the event where two
domain values have the same associated cost, we create a par-
tial order based on their other properties where components
that can provide greater functionality with fewer resources
are ordered first.

The intuition behind this approach is to first and foremost
pick the cheapest component as the problem objective is cost
minimization. Otherwise, one should pick the “best” domain
value available. For instance, if two motors were the same
cost but one motor could provide a greater torque and angular
speed, then it would make sense to choose this motor since

it is more likely to be part of a feasible solution that meets
the design specifications.

3) Partial Checks of Global Constraints: In searching
for solutions, it is desirable to be able to check global
constraints before generating a complete assignment. Once
all variables in a global constraint are selected, then the
global constraint can be evaluated for violations. The earlier
a global constraint can be checked, the more computation
can be avoided checking non-feasible solutions if the current
partial assignment violates the global constraint.

However, under certain conditions a global constraint can
be evaluated before all of its associated variables have been
assigned. The key requirement is that after certain “critical”
variables have been assigned, assigning more variables will
not cause a constraint that is violated to become unviolated.
If this property were not to hold, then sections of the search
space could be trimmed even though viable solutions might
still exist in that space. In context of our target application
of robot design, we have found this is a common property
for global constraints to have since many global constraints
have summation terms that increase monotonically.

For example, the global constraint on torque is a function
of the system weight, wheel diameter, and motor torque:
vmotor.τ ≥ vwheel.radius ∗ system weight ∗max incline+
friction torque. Since system weight is the summation of
each component’s weight, this global constraint is connected
to all variables. However, only the motor and wheel are
“critical” variables since, after these variables are assigned,
the system weight can only increase monotonically as more
components are added and, once this constraint is violated,
it cannot be unviolated after assigning more variables.

If there is only one critical variable in the global constraint,
then additional binary constraints can be added to partially
evaluate the global constraint. Although a partial binary
check will provide a looser bound than the global constraint
(since only two variables are being evaluated instead of all
variables in the constraint), this is particularly advantageous
since MAC can then be used to propagate binary constraints
and reduce the size of the search space before proceeding to
check candidate partial assignments. Note that the original
global constraint is still in the model (as the partial binary
constraint is evaluated in addition to the global constraint), so
answer accuracy is not affected. The constraints with dashed,
black outlines in Fig. 2 are partial binary constraints derived
from global constraints that were added to our robot model
to improve run time. In Algorithm 1 we evaluate the global
constraints on line 21.

IV. RESULTS
We have used our CP algorithm to design and physically
implement three different robots, and have also analyzed the
algorithm’s run time for different ordering heuristics and
in comparison to the MCDP approach. We have chosen
to compare to MCDP since our robot model is already
monotone and it is straightforward to conduct a direct
comparison between methods as these are already solving
identical problems. To compare to LP or QP methods we
would otherwise need to linearize the model.

Steep
Incline
(Black)

Endurance
(Gray)

Heavy
Payload
(Orange)

Endurance (min) 30 120 45
Max Payload (g) 100 200 267

Nom. Velocity (m/s) 0.20 0.25 0.10
Max Incline 0.1 0.0 0.05

Number of Sensors 7 7 7

TABLE I: Minimum Performance Specifications: The three
different sets of performance specifications used to generate three
robots for testing purposes. Colors refer to the robots pictured
in Fig. 1. The objective of the component selection problem is
to choose components that meet these high-level performance
specifications while minimizing the cost for a given robot model.

Steep
Incline
(Black)

Endurance
(Gray)

Heavy
Payload
(Orange)

Motors
(1/1/3 Chosen)

6V, HP,
300:1

$16.95 x 2

6V, HP,
100:1

$16.95 x 2

6V, MP,
250:1

$16.95 x 2

Battery
(1/2/1 Chosen)

NiMH,
350 mAh

$7.55

NiMH,
2200 mAh

$15.15

NiMH,
350 mAh

$7.55
Wheel

(3/1/3 Chosen)
�60mm

$4.25
�32 mm

$2.95
�70 mm

$4.75
Motor Driver
(1/1/1 Chosen)

Dual 1 Amp
$3.33

Dual 1 Amp
$3.33

Dual 1 Amp
$3.33

Microcontroller
(4/4/4 Chosen)

16 MHz
A-Star, 5V

$4.95

16 MHz
A-Star, 5V

$4.95

16 MHz
A-Star, 5V

$4.95
Photosensor

(2/2/2 Chosen)
7×, analog

$5.40
7×, analog

$5.40
7×, analog

$5.40

Total Cost $59.38 $65.68 $59.88

TABLE II: Design System Results – Component Selection:
The components selected by our CP algorithm for each of the
three different sets of performance specifications. Each design uses
the same motor driver and voltage regulator. For each of these
designs, the tool determined 16 or more different combinations
of components could be used interchangeably and still meet the
performance specifications. To simplify physical testing, we chose
to test with only one of these combinations and have included those
component specifications in the table.

The high-level design specifications for the three robots
were selected to generate differential drive, transport robot
designs that each prioritize different possible functionalities
of the final design: navigating a steep incline (Steep Incline
specifications), operating for an extended period of time on
one battery charge (Endurance specifications), and carrying a
heavy payload (Heavy Payload specifications). Table I shows
the specifications used in our testing.

Table II shows the designs generated by the system using
651 distinct off-the-shelf components from Pololu’s online
catalog, a common robot parts supplier. These components
produce 21.8 trillion (2.18 · 1012) candidate solutions our
solver must search for an optimal solution. For each of the
three different sets of performance specifications, our algo-
rithm provided 16 or more optimal designs. These designs all
had the same cost, but used different wheels, motors, micro-
controllers, and photosensors. To simplify physical testing,
only the designs using a 5V @ 16 MHz microcontroller and
an analog output photosensor were tested.

First Solution Optimal
Solution

Solve
Time

MRV,
LCV

0.44 sec
(0.44, 0.46)

3556 sec
(3530, 3567)

4000 sec
(3973, 4013)

MRV,
LCPO

105 sec
(105, 106)

183 sec
(181, 184)

2523 sec
(2508, 2541)

LCDiff,
LCV

0.080 sec
(0.072, 0.092)

90.8 sec
(90.6, 90.9)

91.3 sec
(91.2, 91.5)

LCDiff,
LCPO

0.079 sec
(0.072, 0.089)

0.079 sec
(0.072, 0.089)

58.8 sec
(58.6, 59.1)

TABLE III: Run Time Results – Variable and Domain Value
Ordering: Run times of our CP algorithm with and without using
the variable and domain value ordering heuristic presented in
Sections III-C.1 and III-C.2. Each row uses a different combination
of variable and value orderings. Times shown are for the median
(bolded), 10th, and 90th percentiles over 10 trials when solving the
component selection problem using the Endurance robot specifica-
tion. Our proposed heuristics (bottom row) significantly improve
the algorithm’s performance compared to traditional CSP ordering
heuristics (top row).

Constraint Programming
Algorithm MCDP

First
Solution

Optimal
Solution

Solve
Time

Solve
Time

Steep
Incline
(Black)

0.031 sec
(0.031,
0.050)

14.3 sec
(14.3, 22.8)

118 sec
(113,
159)

52 min
(47,
125)

Endurance
(Gray)

0.079 sec
(0.072,
0.089)

0.079 sec
(0.072,
0.089)

58.8 sec
(58.6,
59.1)

48 min
(46,
170)

Heavy
Payload
(Orange)

0.040 sec
(0.040,
0.063)

115 sec
(114, 146)

245 sec
(245,
301)

64 min
(46,
354)

TABLE IV: Run Time Results – Algorithm Comparison: Run
times for our CP approach and the MCDP framework. Times shown
are for the median (bolded), 10th, and 90th percentiles over 10 trials.
As our algorithm provides intermediate answers while solving, we
have also included the time to find the first feasible solution and
the time to find the first optimal solution.

To demonstrate the efficacy of our proposed heuristics,
we ran trials to compare the run times using different
combinations of our proposed heuristics (LCDiff and LCPO)
with heuristics traditionally used in solving CSPs (MRV and
LCV). The results are in Table III. Provided run times were
collected over 10 trials on a standard office desktop computer
(2.10 GHz CPU with 12 cores, 16 GB RAM). As our CP
approach can provide intermediate solutions, we have also
included the times to determine the first and optimal solu-
tions. Each of our proposed heuristics individually reduces
the solve time, and using these heuristics in combination
solves the optimization problem almost 70 times quicker than
using MRV and LCV together.

We directly compared the run time of our CP approach
to an MCDP approach (Table IV) using the same computer
setup. Across all three robot designs, our CP approach
provides an optimal solution at least 15 times and up to
48 times faster than the MCDP approach and determines a
feasible solution within one tenth of a second.

Finally, each of the three robots were tested over three
trials to empirically verify that they met the target speci-
fications. At the maximum payload and speed, the average

endurance over three trials was 56.3 min, 207.2 min, and 69.5
min for the Steep Incline, Endurance, and Heavy Payload
robots, respectively. All three robots were able to operate
for longer than their minimum endurance and thus all three
surpassed their respective target performance specifications.

V. CONCLUSION
In this paper we presented an alternative approach using

constraint programming and a depth-first branch-and-bound
algorithm to solve the component selection problem for robot
design. To improve the run time of our algorithm, we pro-
posed two heuristics for ordering variable and domain values
specific to the component selection optimization problem,
and also presented a general method to use a lower bound
to evaluate global constraints before all relevant variables
are assigned. We demonstrate that the run time of our
approach is significantly quicker than the MCDP approach,
and physically built robots using the solutions generated from
our approach and validated they met the target specifications.

Our approach is well suited for the discrete combinato-
rial optimization problem of component selection in which
even small catalogs can produce billions or trillions of
combinations. However, our CP algorithm cannot solve for
solutions that have continuous or mixed domains, which the
MCDP framework and linear and quadratic programming can
handle.

Additionally, when using our CP algorithm the model
does not need to be made linear or monotone. For the
other approaches, these approximations provide trade-offs.
Linear and quadratic programming can have quicker solve
times since the linearization allows for computationally quick
matrix operations to be used to solve the problem, while
a monotone model allows MCDPS to solve multi-objective
optimization problems.

In future work we plan to conduct a further analysis of run
time, determining how the algorithm scales as component
catalogs increase in size and how the run time complexity
compares to other approaches. Since one would expect CP to
work better when the problem is highly constrained and there
are fewer satisfying solutions, it would be useful to compare
run times between such cases. As our implementation was
prototyped in Python, we are interested in seeing how
commercial CP solvers such as IBM’s OPL-CP perform on
this problem. They rely on highly optimized solver code
and can perform more complex constraint propagation than
MAC/AC3 out of the box. Finally, we plan to extend our
current work to a larger library of robot models and eventu-
ally develop a more complete, automated design system that
accounts for more aspects of robot design such as the robot
morphology and design of a suitable controller.

ACKNOWLEDGMENT
This material is based on work supported by the National
Science Foundation grants NSF#1846340 and the Graduate
Research Fellowship Program DGE#2139899. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] International Business Machines Corporation (IBM),
“User’s Manual for CPLEX,” 2023. [Online]. Available:
https://www.ibm.com/products/ilog-cplex-optimization-studio

[2] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[3] A. Censi, “A mathematical theory of co-design,” arXiv preprint
arXiv:1512.08055, 2015.

[4] A. Q. Nilles, D. A. Shell, and J. M. O’Kane, “Robot design: For-
malisms, representations, and the role of the designer,” arXiv preprint
arXiv:1806.05157, 2018.

[5] KINEMATICS GMBH, “Tinkerbots,” Accessed Mar. 1, 2022 [Online].
[Online]. Available: https://www.tinkerbots.de/?lang=en

[6] Mod Robotics, “Cubelets Robot Blocks,” Accessed Mar. 1, 2022
[Online]. [Online]. Available: https://modrobotics.com/

[7] A. M. Mehta, J. DelPreto, B. Shaya, and D. Rus, “Cogeneration of
mechanical, electrical, and software designs for printable robots from
structural specifications,” in 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2014, pp. 2892–2897.

[8] A. M. Mehta, J. DelPreto, K. W. Wong, S. Hamill, H. Kress-Gazit, and
D. Rus, “Robot creation from functional specifications,” in Robotics
Research. Springer, 2018, pp. 631–648.

[9] A. Schulz, C. Sung, A. Spielberg, W. Zhao, R. Cheng, E. Grinspun,
D. Rus, and W. Matusik, “Interactive robogami: An end-to-end system
for design of robots with ground locomotion,” The International
Journal of Robotics Research, vol. 36, no. 10, pp. 1131–1147, 2017.

[10] R. Desai, Y. Yuan, and S. Coros, “Computational abstractions for
interactive design of robotic devices,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
1196–1203.

[11] A. Schrijver et al., Combinatorial optimization: polyhedra and effi-
ciency. Springer, 2003, vol. 24.

[12] J. Whitman, M. Travers, and H. Choset, “Modular mobile robot design
selection with deep reinforcement learning,” in NeurIPS Workshop on
ML for engineering modeling, simulation and design, 2020.

[13] Q. Gu, Q. Wang, X. Li, and X. Li, “A surrogate-assisted multi-
objective particle swarm optimization of expensive constrained combi-
natorial optimization problems,” Knowledge-Based Systems, vol. 223,
p. 107049, 2021.

[14] Ø. Magnussen, M. Ottestad, and G. Hovland, “Multicopter design
optimization and validation,” 2015.

[15] L. Carlone and C. Pinciroli, “Robot co-design: beyond the monotone
case,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 3024–3030.

[16] A. Spielberg, B. Araki, C. Sung, R. Tedrake, and D. Rus, “Functional
co-optimization of articulated robots,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
5035–5042.

[17] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Computational
co-optimization of design parameters and motion trajectories for
robotic systems,” The International Journal of Robotics Research,
vol. 37, no. 13-14, pp. 1521–1536, 2018.

[18] T. Du, A. Schulz, B. Zhu, B. Bickel, and W. Matusik, “Computational
multicopter design,” 2016.

[19] A. Censi, “Uncertainty in monotone codesign problems,” IEEE
Robotics and Automation Letters, vol. 2, no. 3, pp. 1556–1563, 2017.

[20] B. H. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial
optimization. Springer, 2011, vol. 1.

[21] N. Ebrahimi, T. Guda, M. Alamaniotis, D. Miserlis, and A. Jafari,
“Design optimization of a novel networked electromagnetic soft ac-
tuators system based on branch and bound algorithm,” IEEE Access,
vol. 8, pp. 119 324–119 335, 2020.

[22] M. Solimanpur and A. Jafari, “Optimal solution for the two-
dimensional facility layout problem using a branch-and-bound algo-
rithm,” Computers & Industrial Engineering, vol. 55, no. 3, pp. 606–
619, 2008.

[23] B. Taylor and L. Pileggi, “Exact combinatorial optimization methods
for physical design of regular logic bricks,” in Proceedings of the 44th
annual Design Automation Conference, 2007, pp. 344–349.

[24] S. J. Russell, Artificial intelligence a modern approach. Pearson
Education, Inc., 2010.

[25] B. Liu and Y.-W. Ku, “Constraintlisp: an object-oriented constraint
programming language,” ACM SIGPLAN Notices, vol. 27, no. 11, pp.
17–26, 1992.

