Embeddable Variable Stiffness Elements for Load Alleviation in Morphing Lift Generating Structures

Dr. Andres F. Arrieta, Izabela Kuder, Tobias Waeber and Prof. Paolo Ermanni
Centre of Structure Technologies ETH Zurich
November 13th, 2013
Introduction to morphing: shape adaptation

Conventional devices:
- Discontinuities in the surface
- High performance for a limited set of flight conditions

Benefits of Morphing:
- Hinge- and gap-less surface
- High performance for a wider range of flight conditions

(Joshi 2004)

Bio-inspired

ng:
less surface for a wider onditions
Morphing with complaint systems

Integration of different functions:

- Structural
- Actuation
- Sensing

Reduced complexity:

- Joints
- Fixing elements
- No moving parts

Smart-adaptation

Robustness
Wing morphing for load alleviation

Spanwise morphing: Optimal operation
- Morphing wings can adapt to perform optimally at various flight states

Performance gains
- Control c_L can be achieved along the entire wingspan

Load alleviation:
- Higher structural efficiency
- Less fuel, materials required
Variable stiffness components for morphing

- Morphing challenge: conflicting stiffness Vs. compliance trade off

<table>
<thead>
<tr>
<th>Reference</th>
<th>Material</th>
<th>Stiffness variability</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[50]</td>
<td>Shape memory alloys</td>
<td>$E_{\text{hot}} / E_{\text{cold}} \approx 4$</td>
<td>82–38 °C</td>
</tr>
<tr>
<td>[51]</td>
<td>Polyurethane of polyester polyole series</td>
<td>$E_{\text{cold}} / E_{\text{hot}} \approx 100$</td>
<td>Below and above $T_g = 55$ °C</td>
</tr>
<tr>
<td>[52]</td>
<td>Polystyrene-based</td>
<td>$G_{\text{cold}} / G_{\text{hot}} \approx 326–517$</td>
<td>at T_{room} and $T = 95$ °C</td>
</tr>
<tr>
<td>[53,54]</td>
<td>CTD-DP-5.1 bulk thermoset resin</td>
<td>$E_{\text{cold}} / E_{\text{hot}} \approx 100$</td>
<td>20–80 °C</td>
</tr>
<tr>
<td>[55]</td>
<td>Elastomeric memory composites</td>
<td>$E_{\text{cold}} / E_{\text{hot}} \approx 79$</td>
<td>23–90 °C</td>
</tr>
<tr>
<td>[56–58]</td>
<td>Shape memory composite topology concepts</td>
<td>$E_{\text{cold}} / E_{\text{hot}} \approx 15–77$</td>
<td>35–75 °C</td>
</tr>
<tr>
<td>[59]</td>
<td>Fluidic flexible matrix composites</td>
<td>$E_{\text{closed}} / E_{\text{open}} \approx 25.1$</td>
<td>Discrete: closed/open-valve</td>
</tr>
</tbody>
</table>

Kuder et al. Variable stiffness material and structural concepts for morphing applications, Progress in Aerospace Sciences, 2013
Presentation outline

- Multi-stable composites
- Embeddable multi-stable composites: novel lay-out
- Stable configurations
- Parameter study
- Variable stiffness of multi-stable: longitudinal stiffness
- Integration into a wider structure
- Conclusion and discussion
Multi-stable composites

- Multi-stability arises due to a residual stress field in the laminates
 - Pre-stress
 - Unsymmetrical lamination
 - Complex lay-out

- For unsymmetric laminated composites residual stresses caused by a mismatch of CTE

\[[0,0,90,90]\]
Multi-stable components in morphing

- Multi-stability is been exploited for achieving large deformations
- Multi-stable structures
 - Reduced actuator systems weight and complexity due to bi-stability

![Configuration morphing](Daynes et al. 2009)
Structural response variability

- Stable states exhibit different structural directional response

- Ratio between:

\[
\frac{k_S}{k_C}
\]

\[\text{Obtained stiffness variability}\]
Previous embeddable configurations: cantilevered plates

- Thermally introduced multi-stable with simple cantilever lay-outs as shown below are already investigated:

 ![Diagram showing symmetric and unsymmetric lay-outs](image)

 - **Can be clamped**
 - **Symmetric**
 - **Unsymmetric**
 - **Lay-out**
 - **Curved**
 - **Straight**

- Symmetric part causes smooth reduction of curvature

 ![Graph showing first and second stable shapes](image)

 Fig. 11. Numerical equilibrium shapes.

 Analysis of thermally induced multistable composites, F. Mattioni, 2007
Embedding multi-stable components

- For the cantilevered configuration:
 - Simply clamping the other edge results in loss of multi-stability

- New lay-out required
Novel lay-out design

- Introduction of an elastic boundary condition on either side of a main central unsymmetric section

- Transition regions allow for:
 - Maintaining multi-stability when embedded by clamping both short edges
Stable configurations: straight state

- All produced specimens showed a multi-stable behaviour
- Moisture expansion (time dependent) has a significant influence to the shape and can be considered with a reduction of the thermal expansion coefficient in the FEA
- For the further FEA validation the α_2 is chosen according to this data
Stable configurations: curved state

- Curled EXP 3 h after curing
- Curled EXP 16 d after curing
- Curled FEM, moisture ($\alpha_2 = 2.5 \times 10^{-5} 1/K$)
- Curled FEM, moisture ($\alpha_2 = 2.25 \times 10^{-5} 1/K$)
- Curled EXP 4 d after curing

- Good agreement achieved for shape prediction for both stable states

w [mm] vs x [mm]

z y x
Longitudinal stiffness tests

- Show variability in structural response between states

- Objective - ratio between:\n \[
 \frac{k_S}{k_C}
 \]

- Lay-out design
 - Region length
 - Region lay-up

Diagram showing:
- Straight state, k_S
- Curved state, k_C
- Unsymmetric central region
- Transition regions
Parameter study: stiffness variability

- Lay-out designs are studied:
 - Two ply
 - Three ply

- 4 different shapes are found:
The longitudinal stiffness is investigated with a simulated compression test.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Plies</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>k_{straight} [N/mm]</td>
<td>19.97</td>
<td>11.53</td>
<td>3.81</td>
<td>89.00</td>
<td>159.20</td>
<td>84.35</td>
<td>117.83</td>
<td>180.96</td>
<td>166.30</td>
<td>9.83</td>
<td>7.57</td>
</tr>
<tr>
<td>k_{curved} [N/mm]</td>
<td>0.36</td>
<td>0.24</td>
<td>0.12</td>
<td>2.25</td>
<td>1.44</td>
<td>2.26</td>
<td>3.59</td>
<td>2.30</td>
<td>1.14</td>
<td>4.83</td>
<td>6.77</td>
</tr>
<tr>
<td>$k_{\text{straight}}/k_{\text{curved}}$ [-]</td>
<td>55.57</td>
<td>47.77</td>
<td>31.27</td>
<td>39.60</td>
<td>110.4</td>
<td>37.36</td>
<td>32.80</td>
<td>94.12</td>
<td>145.52</td>
<td>2.03</td>
<td>1.12</td>
</tr>
<tr>
<td>L [mm]</td>
<td>450.0</td>
<td>450.0</td>
<td>450.0</td>
<td>300.0</td>
<td>300.0</td>
<td>300.0</td>
<td>280.0</td>
<td>280.0</td>
<td>280.0</td>
<td>450.0</td>
<td>400.0</td>
</tr>
<tr>
<td>width [mm]</td>
<td>225.0</td>
<td>150.0</td>
<td>75.0</td>
<td>225.0</td>
<td>150.0</td>
<td>225.0</td>
<td>225.0</td>
<td>225.0</td>
<td>150.0</td>
<td>75.0</td>
<td>225.0</td>
</tr>
<tr>
<td>L4/L2 [-]</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

A significant change in stiffness can be seen in each case, best results for 2 ply
Experimental validation – Longitudinal stiffness (1)

- Experiment Curled
 - FEM Curled ($\alpha_2 = 2.5e-05 \text{ J/K}$)
 - FEM Straight ($\alpha_2 = 2.5e-05 \text{ J/K}$)

- Experiment Straight
 - FEM Straight ($\alpha_2 = 2.5e-05 \text{ J/K}$, $\delta = 2e-07$)

u [mm]

- The experimental data are in good agreement to the FE simulation
- STABILIZED option is need to simulate the post-buckling behaviour
Experimental validation – Longitudinal stiffness (2)

- Snaps from straight into curled state by introducing in-plane loads
- Snap instead of buckling → “Fail Safe”
Load alleviation mechanism

- **GOAL:** passive load alleviation for wing structures: wind turbine blades
 - Protection for rapidly changing aerodynamic: gusts

- **Requirement for bending stiffness and strength can be reduced**
 - Save costs and weight, an increased fatigue life

- **IDEA:** reducing the thrust by decreasing the camber of the airfoil (maintain low drag)

\[F_x = L \cos(\Phi) + D \sin(\Phi) \]
Integration into wider structure - 1st Demonstrator

Passive load alleviation aerofoil: inextensible skin

- NACA 0012, chord length 500 mm
- Skin and conventional rib
 - GFRP
 - 0.5 mm thickness
- Front reinforced with foam
 - Assumed to be rigid
- Reaction force of a pressure load of the compliant part is assumed to be acting at the second web at the bottom skin
Integration into wider structure - 1st Demonstrator

- Experimental Testing

Straight

6 N

0.64 mm

Curved

6 N

20.0 mm

Stiffness variability:

- Small displacements
 \[\frac{k_s}{k_c} \Big|_{\text{small}} = 5 \]

- Large displacements
 \[\frac{k_s}{k_c} \Big|_{\text{large}} = 5.5 \]
Integration into wider structure - 2nd Demonstrator

- Improved demonstrator

Corrugation [2] for proper aerodynamic shape:

\textit{Extensible skin}

Restriction of 2nd mode:

\textit{Increased stiffness}

Cambered aerofoil in 1st mode

Integration into wider structure - 2\(^{nd}\) Demonstrator

RF\(_{v}\) Restoring Force [N]

\(RF_{v} = 5.14u_{v}\)

\(RF_{v} = 0.13u_{v} - 0.92\)

\(RF_{v} = 0.18u_{v} - 1.70\)

\(k_{s}/k_{c}\) \(_{small} \approx 40\)
Conclusions

- Embeddable variable stiffness elements exploiting multi-stability are realised through a novel lay-out featuring symmetric unsymmetric regions are presented

- Parameter study:
 - Adequate lay-out design shows multi-stability with a significant change in stiffness in different states
 - The stiffness can be tailored
Conclusions

- Experimental validation show good agreement to FE results:
 - Shape
 - Compression test
 - Snap-through

- Two demonstrator proving feasibility of using bi-stable variable stiffness elements for load alleviation in lift generating structures
Thank you for your attention

Questions?

- The authors would like to thank the support of the ETH Research Commission and the Marie Curie Actions Cofund Program; Dr. A. F. Arrieta is partly funded through an ETH Postdoctoral Fellowship.