

But First ...

Frontiers in Energy Research Nonlinear Mechanics & Granular Media

Joseph Lydon

I. Introduce Nonlinear Mechanics

2. Discuss Two Areas of Energy Research

3. How Granular Crystals fit in with the Frontiers in Energy Research?

Linear Systems

"Simple Harmonic Motion"

 $U=1/2 kx t^2 \& F=-kx \cong$

- Math Friendly
- Low Amplitude
- Predictable

Disadvantages

ETH

Х

- Quality Factor/ Bandwidth Tradeoff
- Harmonic

Nonlinear Systems

Complex Motion

- $F=mg\sin(\theta)$
- *F*=*ax*+*bx*13
 - $F = \delta \hat{1} 3/2$

Advantages/ Disadvantages

- Unpredictable Response/Missing Math Tools
- Larger Amplitude
- Complex Dynamics
- Not Harmonic
- Not Described by Transfer Functions

Granular Crystals

Leads to a Tunable Stiffness

C=3/2 *Aδ*↓0*1*/2 *C*=3/2 (*AF*↓0)*1*/3

6 Hertz, H. (1882). Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik (Crelle's Journal). 1882: 156.

Granular Crystals

 $Bcos(2\pi ft)$

Modeled as a Nonlinear Lattice

Energy Harvesting in Perspective

FIGURE 1. ESTIMATED RENEWABLE ENERGY SHARE OF GLOBAL FINAL ENERGY CONSUMPTION, 2011

Frontiers of Energy Research

I. Nonlinear Resonance for Stability & Energy

2. Ambient (Vibrational) Energy Harvesting

Tacoma Narrows Bridge

- I. Forced Resonance
- 2. Aeroelastic Flutter Dynamic Instability

Tacoma Narrows Bridge Collapse (1940) (Sound Version)

2. Nonlinear Resonance for Stability and Energy

Actuator Laser Vibrometer

- Why use nonlinear systems?
- I. Frequency Shifting
- 2. Predictable Breakdown

2. Nonlinear Resonance for Stability and Energy

Ι.

2.

2. Nonlinear Resonance for Stability and Energy

Solution

2. Nonlinear Resonance for Stability

- Design Structures around resonances to more efficiently couple with harmonic energy sources nature.
- Use Nonlinear Mechanics to achieve a predictable breakdown mechanism.
- Harvest Energy in this high amplitude state.

Frontiers of Energy Research

I. Nonlinear Resonance for Stability & Energy

2. Ambient (Vibrational) Energy Harvesting

1. Ambient (Vibrational) Energy Harvesting

Energy Source	Harvested Power
Vibration/Motion	
Human	4 μW/cm ²
Industry	100 µW/cm ²
Temperature Difference	
Human	25 μW/cm²
Industry	1–10 mW/cm ²
Light	
Indoor	10 μW/cm²
Outdoor	10 mW/cm ²
RF	
GSM	0.1 µW/cm ²
WiFi	0.001 µW/cm ²
WiFi	0.001 μW/cm ²

1. Ambient (Vibrational) Energy Harvesting

Energy Source	Harvested Power
Vibration/Motion	
Human	4 μW/cm ²
Industry	100 μW/cm ²

- Low Power
 - My Samsung 7.98Wh
 - > 220 mW Avg. Consumption
- Distributed Energy
 - ▶ 1*m*² =10,000*cm*²

ET

- Tunable Nonlinearity
 - Different Amplitude Signals
- Localization Mechanism

Tunable Localization

Introduce a resonator defect to localize energy.

F0 = 0.3198

Control Localization

Compression Actuator Laser

Vibrometer

Piezoelectric_ Actuator

Increase Static

Compression

Delocalize Mode

Conclusion

- Nonlinear Mechanics introduces new possible directions for energy research
- I. Localize low amplitude vibrations
 - For more efficient energy harvesting
- 2. Utilize Resonances to more efficiently couple to natural systems
 - Nonlinear systems can be used to stabilize the oftentimes destructive breakdowns

Acknowledgments

- The Entire Daraio Group
 - Marc Serra Garcia
- Georgios Theocharis UMR-CNRS Universit e du Maine
- ▶ ETH IDES
- Funding Grants
 - NSF CMMI CAREER (844540)
 - US-AFOSR (FA9550-12-1-0332)

