ETH zürich

Enhanced photoelectrical performance of dye-sensitized solar cells (DSSCs) with novel electrodes

Shutao Wang

Background

Developing clean energy alternatives to fossil fuels technology has become one of the most important tasks undertaken by modern science.

Conversion Efficiencies vs. Time

Best Research-Cell Efficiencies 50 Multijunction Cells (2-terminal, monolithic) **Thin-Film Technologies** LM = lattice matched CIGS (concentrator) 48 MM = metamorphic CIGS Sharp Spectrolab (LM, 364x) IMM = inverted, metamorphic Junction (IMM, 302x) O CdTe Spire (LM, 942x) ▼ Three-junction (concentrator) O Amorphous Si:H (stabilized) Spectrolab | Fraunhofer ISE Semiconductor Three-junction (non-concentrator) Nano-, micro-, poly-Si 44.4% V 43.6% □ 44 (MM, 299x) (MM, 454x) (MM 406 (4-J. 319x) ٥. Multijunction polycrystalline Two-junction (concentrator) Boeing-Spectrolab Two-junction (non-concentrator) **Emerging PV** (MM, 179x) Boeina Four-junction or more (concentrator) O Dye-sensitized cells Spectrolab (5-J) 40 H Four-iunction or more (non-concentrator) (LM, 418x) • Perovskite cells Sharp (IMM) 38.8% Organic cells (various types) Boeing Single-Junction GaAs ▲ Organic tandem cells ▲ Single crystal Sharp (IMM) Inorganic cells (CZTSSe) 36 H Spec ▲ Concentrator Quantum dot cells -- (ravitvi) **V** Thin-film crystal 34.1% A NREL/ Crystalline Si Cells 32 Single crystal (concentrator) Alta Efficiency (%) 31.1% Single crystal (non-concentrator) Multicrystalline Varian (216x) FhG-ISE SunPowe Thick Ši film (205x) 28 27.6% Silicon heterostructures (HIT) Alta 26.4% 🛆 ▼ Thin-film crystal (140x) Devices 24 24.7% 22.8% • (T.I. Watson A (14x)NRE 20.4% 20 20.1% 16.2% 🔾 16 arch OKRICT NREL AstroPower State U. United Solar Solarex (small-area) 13.4% O Sola 12 AMETE ٠ 8.6% 🔷 8 United Sola NREL / Konarka EPFL 4 NREL 2005 1975 1980 1985 1990 1995 2000 2010 2015

There has been steady progress in the improvement of conversion efficiencies for a number of PV technologies over the last few decades.

The Typical Silicon Solar Cell

> This device structure is used by most manufacturers today.

• One piece of silicon has a small amount of boron added to it, which gives it a tendency to attract electrons. It is called the p-layer because of its positive tendency.

The other piece of silicon has a small amount of phosphorous added to it, giving it an excess of free electrons. This is called the n-layer because it has a tendency to give up negatively charged electrons.

The cell efficiencies for screen-printed multicrystalline silicon cells are typically in the range of 14 – 17%.

Copper-Indium-Gallium-Diselenide Cell

EMPA has demonstrated an efficiency of 20.4% for the CIGS solar cell.
 It typically requires relatively high temperature processing (> 500°C).

Spectrolab's Triple-Junction Solar Cell

Spectrolab has reported a conversion efficiency of 44.4% with this solar cell structure operating at Sharp.

The mechanism of power generation Dye-sensitized solar cells

Basic Components and Parameter

$$\eta = \frac{J_{sc} \bullet V_{oc} \bullet FF}{P_{in}}$$
$$IPCE(\lambda) = \frac{1240 \bullet J_{sc}}{\lambda \bullet P}$$

- Jsc-short-circuit photocurrent
- Voc-open-circuit photovoltage
- FF-fill factor
 - IPCE-incident monochromatic

photon-to-electron conversion efficiency

• η_{global} -The maximum energy conversion efficiency

Contents

※ Ref: S. Wang, et.al Angew. Chem., Int. Ed., 2011, **50**, 1855.

Carbon Nanotube Fiber

SEM and TEM

- The specific strength is 2.9 times of *T1000*, and the specific stiffness is 3.9 times of *M70J*.
- > The conductivities increase with increasing temperatures.

a, Mechanical properties of nanotube fibers (red circle),
engineering fibers (cyan triangle) and carbon fibers (blue square).
b, Temperature dependence of the conductivity for a nanotube fiber.

Polydiacetylene -Well distributed а

N719 molecules - also well distributed

a.) Confocal laser scanning microscopy image b,c) SEM images of a nanotube fiber before (b) and after (c) incorporation of N719.

Diameter (µm)	Jsc (mA/cm ²)	Voc (V)	FF	η (%)
6	11.0±0.7	0.45±0.02	0.41±0.03	2.03±0.20
10	7.6±0.2	0.48±0.03	0.39±0.01	1.42±0.10
13	3.1±0.3	0.25±0.04	0.40±0.02	0.31±0.03
17	2.1±0.1	0.18±0.01	0.38±0.02	0.14±0.02

The nanotube fibers with different diameters

Current densities decreased with increasing fiber diameters

Dependence of the shortcircuit current on the length (left), Raman spectra (right)

Conclusions

- High alignment of building nanotubes allows charges to separate and transport along the fibers efficiently.
- Expands the scope of materials and architectures available for high-performance photovoltaic devices.

• • • • •

Nanoparticle-TiO₂

Doping one- Zn/W Doping on FF

Doping one- Zn/W Doping on FF

Table. Measured performance parameters of all the DSSCs

Doping one- Zn/W Doping on FF

♦ Zn:

• The increase in FF with doping amount is due to doping induced improvement of *Voc* and reduction of m

• W:

• W-doping induced increase in m and decrease in *Voc* result in the reduction of FF

Conclusion:

• The ratio of *Voc*/m could directly determine FF in a high-accurate approximation for the cells

Shed light on the influencing factors of FF and guide the design of new materials towards high FF for DSSCs

*** Ref:** S. Wang, et.al, *Appl. Phys. Lett.*, 2011, **99**, 113503.

Doping two- Fe²⁺/Fe³⁺ Doping

As compared to the typical single valence state of metal ions (Fe³⁺)doped DSSCs, the multi-valence -doped DSSCs improves shortcircuit photocurrent (J_{sc}) by 17.6% and power conversion efficiency by 17.2%.

Doping two- Fe²⁺/Fe³⁺ Doping

The surface of Fe²⁺doped TiO₂ particles become steric regularity and homogeneously.

TEM of (a) undoped, (b) 0.5wt% Fe²⁺ doped and (c) 1wt% Fe²⁺ doped

Shifted toward the higher energy side
 532.0 eV implies surface OH⁻groups or chemisorbed water molecules
 Fe²⁺-Fe³⁺ co-exist for 0.5wt% Fe²⁺ ions doping

XPS spectra: (a), $Ti^{4+} 2p$ (b), $O^{2-} 1s$ (c), and Fe 2p

Doping two- Fe²⁺/Fe³⁺ Doping

7.5

6.0

4.5

3.0

1.5

0.0

0.0

Jsc/mA cm²

undoped

0.2

0.25%Fe²⁺-0.25%Fe³⁺

0.4

Potential/V

Current-voltage curves of DSSCs

0.6

0.8

Absorbance spectra of the absorbed dye on the samples

IPCE spectra of DSSCs

Conclusions

- The dependence of FF on Voc and m for DSSCs with Zn- or W-doped TiO₂ is analyzed based on a singlediode model.
- Fe-doping results in a relatively positive surface, and reduces the direct excitation of TiO₂.

Innovative Design

	Sr/Ti ratio	$J_{\rm sc}$ / mA cm ⁻²	$V_{\rm oc}$ / V	FF	η (%)
TiO ₂		6.28±0.06	0.788±0.012	0.69±0.02	3.41±0.12
TiO ₂ -TiCl ₄		7.53±0.07	0.815±0.015	0.69±0.01	4.23±0.04
TiO_2 -Sr(OAc) ₂ -TiCl ₄	0.02%	8.83±0.06	0.833±0.005	0.69±0.01	5.08±0.03

Double Layer Coating

Effect on dye adsorption and IPCE

The $Sr(OAc)_2$ -TiCl₄ treatment enhanced dye loading is attributed to the higher isoelectric point for $SrCO_3$ than that for TiO₂ CIE and CCE both must also be responsible for the significant increase in IPCE.

*** Ref:** S. Wang, et.al, *Phys. Chem. Chem. Phys.*, 2012, **14**, 816.

Effect on conduction band level and electron transport

*** Ref:** S. Wang, et.al, *Phys. Chem. Chem. Phys.*, 2012, **14**, 816.

Effect on charge recombination

*** Ref:** S. Wang, et.al, *Phys. Chem. Chem. Phys.*, 2012, **14**, 816.

• • 35

Conclusions

Two surface treatments cause positive shift of CB Caused significant improvements of both Jsc, Voc and η

Reduced recombination

Insulating layer blocks the access of the injected electrons back to the surface

Double Layer Coating

Novel solar cell from flexible, lightweight, ultrastrong, and semiconductive nanotube fiber

Modify surface polarity that caused surface positively charged, repressed charge recombination

0.80 0.78 (b).0.6 0.60).55 0.76 0.5 >0.50< 0.70 ⊥ 0.74 ⊥ 0.72 ш Ш_{0.65} 0.45 E 0.40 0.70 0.3 >0.35 0.60 0.68 0.30 0.66 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0 0 Zn/Ti ratio / % W/Ti ratio / % FF increases with the doping amount of Zn(II) but decreases with W(VI) in TiO₂ TiO₂ cm⁻² TiO₂ TiO₂ Ā TiO -TiO SrCO₃ TiO_-SrCO_-TiO 0.2 0.4 0.6 0.8 <u>0.0</u> Voltage / V

Insulating layer of SrCO₃ increases dye adsorption and improves charge separation efficiency

