

DMAVT

Departement Maschinenbau & Verfahrenstechnik

Department of Mechanical & Process Engineering

Superhydrophobicity to Supericephobicity: A technological Challenge

Tanmoy Maitra

Laboratory of Thermodynamics in Emerging Technologies Mechanical & Process Engineering

Icing in aeronautics

LTNT

DMAVT Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

- a serious problem leading to:
 - excessive fuel usage due to increased drag
 - excessive energy consumption to combat icing
 - required power: order of kW/m2, 1-2% total engine power
 - aircraft crashes or engine damage
 - 12th Feb 2009: 49 people died in Buffalo.
 - 1st June 2009 : Air France Flight 447 from Rio de Janeiro to Paris, killing all 216 passengers and 12 crew members.

Tanmoy Maitra

Icing and condensation: daily-life problems

Aircraft Structures

- **SAFETY:** June 2009, Air France Flight 447 Rio de Janeiro Paris, 228 people died.
- **COSTS**: 30 accidents/year in the US. Costs up to 2 million USD for engine damages

STEAM CONDENSATION

in heat exchangers

Influencing icing of surface:

Freezing of sessile water drop on surface

Current study:The behavior of water with engineered surfaces at low temerature

Tanmoy Maitra

DEPART Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Superhydrophobicity: to repel water; good strategy to avoid icing?

Superhydrophobicity: Basic Principle

Advantages in Cassie-Baxter state:

- Low adhesion between water/surface
- Easy roll-off of water drop

Impalement through *roughness*

Non-impaled state

DEPARTMENT Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Why superhydrophobicity breaks down?

• In dynamic condition: with increasing Impacting velocity

 $We = \frac{\rho V^2 d}{1 - 1}$ \mathcal{V}

 ρ density of water, V impact velocity, d drop diameter, γ surface tension of water

Rebound

Impalement

• In static condition: due to evaporation

Due to evaporation in dry condition

Loss of Superhydrophobicity

DEPART Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Dynamic condition

Micro/Nanoengineered surfaces

T.Maitra, M.K.Tiwari, C.Antonini, P. Schoch, S. Jung, P. Eberle and D.Poulikakos, Nano Letters (2014)

Dynamic Event: Drop impact

Inclusion of air between impacting drop and surface

T.Maitra, M.K.Tiwari, C.Antonini, P. Schoch, S. Jung, P. Eberle and D.Poulikakos, Nano Letters (2014)

DEPART Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Capillary pressure (P_c) Vs. Model Pressure (P_{max}):

Entrappment of air during drop Impact on surface

Visualization by X-ray after the drop impact

T.Maitra, M.K.Tiwari, C.Antonini, P. Schoch, S. Jung, P. Eberle and D.Poulikakos, Nano Letters (2014)

T.Maitra et al. Scientific Reports (2014)

Effect of drop impact at lower substrate temperature

<u>Viscosity</u> of water rises up by <u>5 times</u> compared to room temperature and surface tension and density varry by less than 10%

T.Maitra, M.K.Tiwari, C.Antonini, P. Schoch, S. Jung, P. Eberle and D.Poulikakos, Nano Letters (2014)

With controlled morphology (drop impalement stability)

Controlled morphology of nanostructures decides the *ultimate* water meniscus impalement stability

T.Maitra, M.K.Tiwari, C.Antonini, P. Schoch, S. Jung, P. Eberle and D.Poulikakos, Nano Letters (2014)

DEPART Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Static condition

In static study: Stable Superhydrophobicity

Why superhydrophobicity breaks down?

- In dry environment, evaporation occurs.
- Due to evaporation, droplet radius increases and so as *Laplace* pressure.

Considering the force balance,

 $\Delta p_L = 2\sigma_{\rm lg} / R \qquad \text{Laplace Pressure}$ $P_C = \left(\frac{4\phi}{a_o (1-\phi)}\right) \gamma \cos \theta_A^* \qquad \text{Capillary Pressure}$

Visualization: X-ray projection imaging

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Mechanism of break down of Superhydrophobicity

T.Maitra et al. Scientific Reports (2014)

Tanmoy Maitra

Conclusions:

- Influence of Micro/Nano engineered surface on dynamic stability of water meniscus at low temprature.
- Mechanism of transition of Cassie to Wenzel (breaking down the Superhydrophobicity)

Practical Applicability:

- So far silicon-based surface; little applicability.
- Use of substrate greatly accepted in engineering application (?).
- Use scalable approach.

Superhydrophobic surface: a review

Rough morphology

Coating with **low surface** energy molecules

Possible substrate:

- Aluminum ("Chemical etching" to create rogh morphology)
- Multifunctionality to substrate (mechanical stability, drop meniscus stability and chemical stability)

Process schematic for fabrication of superhydrophobic surface:

Multiple hydrophobic coatings to combat different *functionalities*

T.Maitra et al. Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions, Submitted, 2014

Multifunctionality of superhydrophobic surface:

1. Chemical stability:

2. Water meniscus stablity:

Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Multifunctionality of superhydrophobic surface:

Multifunctionality of superhydrophobic surface: another approach

With *polymer/nanoparticle* Composite solution

<u>Multifunctional</u> properties of the surface

Multifunctional Superhydrophobic Polymer/Carbon Nanocomposites: Graphene, Carbon Nanotubes or Carbon Black? Submitted, 2014

DMAVT Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Conclusion

Fundamental studies on surface

Droplet and surface at -16deg.C