MODEL-BASED ANALYSIS OF THE EUROPEAN ENERGY SUPPLY SECURITY

MODELING PROCESS AND INTERMEDIATE RESULTS FOR THE SUPPLY SECURITY OF NATURAL GAS

APRIL 15, 2014

CONTENTS

1. INTRODUCTION

- 2. BACKGROUND ON NATURAL GAS MARKETS
- 3. ENERGY MARKET MODEL
- 4. CALIBRATION
- 5. SENSITIVITY ANALYSIS
- 6. INTERMEDIATE RESULTS AND OUTLOOK

1. INTRODUCTION

1. INTRODUCTION PROJECT SCOPE

ANALYSIS OF THE EUROPEAN SUPPLY SECURITY OF ENERGY

- Electricity
- Gas
- Oil

WITH RESPECT TO POTENTIAL THREATS

- Societal (e.g. terroristic attacks)
- Economical (e.g. financial crisis)
- Natural (e.g. landslide)

MEDIUM-TERM PERSPECTIVE

i.e. analysis of the reaction of the energy systems within days to months

Includes, e.g.

- Oil crisis in the 1970'
- Russian-Ukrainian gas conflicts 2006/2009/present
- German nuclear power phase-out 2011

Does not include, e.g.

- Lightning, causing a line outage
- Climate change

1. INTRODUCTION REQUIREMENTS & CHOICE OF MODEL TYPE

REQUIREMENTS

Model should be able to represent

- Energy system reaction within days to months to unexpected changes (threats)
- Multiple interacting energy carriers

CHOICE OF MODEL TYPE

Market equilibrium model

- Allows for representation of the coupling between energy prices and their production/consumption
- Energy carriers are coupled via their relative prices and conversion factors
- Allows for comparison of counterfactual situations (market equilibria before and after the threat)
- Does not allow for analysis of transient system behavior

Project decision: start with natural gas

2. BACKGROUND ON NATURAL GAS MARKETS

GAS MARKET STRUCTURE

WORLD-WIDE

- Regional market segmentation as a consequence of capital-intensive infrastructure and high transportation cost
- Development of infrastructure for liquefied natural gas (LNG) shipping leads to converging prices between regions

EUROPE

- Traditionally, gas has been traded based on oil-indexed long-term (30y) contracts
- Since 1990s: liberalization and creation of a single EU market
- In 2012: 44% spot-priced volumes (increasing)

SWITZERLAND

- No plans for liberalization, however:
 - large consumers can choose their supplier (since 1964)
 - Swiss gas industry agreed on a common tariff calculation method for 3rd party access

2. BACKGROUND ON NATURAL GAS MARKETS WORLD-WIDE PRODUCTION AND CONSUMPTION OF GAS

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

2. BACKGROUND ON NATURAL GAS MARKETS

WORLD-WIDE TRADE OF GAS

Major trade movements 2012 Trade flows worldwide (billion cubic metres)

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

2. BACKGROUND ON NATURAL GAS MARKETS

EUROPEAN GAS INFRASTRUCTURE

2. BACKGROUND ON NATURAL GAS MARKETS EU: CONSUMPTION, PRODUCTION AND IMPORTS

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Tobias Baltensperger | 15 April 2014 | 11

2. BACKGROUND ON NATURAL GAS MARKETS SWITZERLAND: CONSUMPTION AND IMPORTS

3. ENERGY MARKET MODEL

- Each country / group of countries is represented as a node
- Pipelines and LNG transportation is represented as links between nodes
- At each node, several economic actors exchange gas on several markets
- Producers, traders and service providers optimize a quadratic objective function over the time period of one year
- The traders are modelled to have «market power», i.e. they have knowledge about the consumer reaction to changes in supply
- The consumers are divided into 3 sectors (households & commercial consumers, industrial consumers and electricity producers); each sector is modelled by an affine inverse demand curve

3. ENERGY MARKET MODEL GRANULARITY AND COVERAGE

DETAILED MODEL SCHEME AND NOMENCLATURE

Producers' Objective Function

$$\begin{array}{ll} \displaystyle \max_{sales_{pdy}^{P}} & \displaystyle \sum_{y \in Y} \sum_{d \in D} days_d \left(\pi_{n(p)dy}^{P} \cdot sales_{pdy}^{P} - c_{p}^{P}(sales_{pdy}^{P}) \right) \quad \forall p & \quad \text{Income - Production cost} \\ s.t. & \displaystyle sales_{pdy}^{P} \leq \overline{PR}_{p}^{P} \left(\alpha_{pdy}^{P} \right) \leq \forall p, d, y, \\ \displaystyle \sum_{\substack{y \in Y} d \in D \\ sales_{pdy}^{P} \geq 0 \quad \forall p, d, y} \leq \overline{PROD}_{p} \left(\beta_{p}^{P} \right) \quad \forall p, & \quad \text{Dual variables} \\ \end{array} \right)$$

Producers' KKT conditions

$$\begin{array}{lll} 0 & \leq & days_d \left(-\pi_{n(p)dy}^P + \frac{dc_p^P(sales_{pdy}^P)}{dsales_{pdy}^P} \right) + \alpha_{pdy}^P + days_d \cdot \beta_p^P \perp sales_{pdy}^P \geq 0 \quad \forall p, d, y \\ 0 & \leq & \overline{PR_p^P} - sales_{pdy}^P \perp \alpha_{pdy}^P \geq 0 \quad \forall p, d, y \\ 0 & \leq & \overline{PROD_p} - \sum_{y \in Y} \sum_{d \in D} days_d \cdot sales_{pdy}^P \perp \beta_p^P \geq 0 \quad \forall p \end{array}$$

Production Cost Function

 $\begin{array}{lll} c_p^P(sales_{pdy}^P) & = & k + a_p^P \cdot sales_{pdy}^P + b_p^P \cdot (sales_{pdy}^P)^2 \\ \frac{dc_p^P(sales_{pdy}^P)}{dsales_{pdy}^P} & = & a_p^P + 2b_p^P \cdot sales_{pdy}^P \end{array}$

Allows for representation as linear complementarity problem

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3. ENERGY MARKET MODEL MODEL EQUATIONS: TRADERS

Traders' Objective Function

$$\max_{\substack{sales_{tndy}^{T \to C} \\ flow_{tnmdy}^{T} \\ purch_{tndy}^{T} \\ p$$

Inverse demand function

$$\Pi_{ndy}^{W(T)} = INT_{ndy}^C - SLP_{ndy}^C \sum_{t \in T(n)} \cdot sales_{tndy}^{T \to C}$$

MODEL EQUATIONS: INVERSE DEMAND FUNCTION

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3. ENERGY MARKET MODEL MODEL EQUATIONS: TRADERS

$$s.t. \begin{array}{l} purch_{tndy}^{T\leftarrow P} + \sum\limits_{m\in N_s(A(n))} (1 - loss_{mn}^A) \cdot flow_{tmndy}^{TA} \\ + \sum\limits_{m\in N_s(B(n))} (1 - loss_m^L)(1 - loss_m^R) flow_{tmndy}^{TB} + xtr_{tndy}^{T\rightarrow S} = \\ sales_{tndy}^{T\rightarrow C} + \sum\limits_{m\in N_e(A(n))} flow_{tnmdy}^{TA} + \sum\limits_{m\in N_e(B(n))} flow_{tnmdy}^{TB} + inj_{tndy}^{T\rightarrow S} (\phi_{tndy}^T) \end{array} \forall n \in N(t), d, y, \\ sales_{tndy}^{T\rightarrow C} \geq \underline{obl}_{tndy}^{TC} (\epsilon_{tndy}^{TC}) \quad \forall \{t; n(c)\}, d, y, \\ sales_{tndy}^{T\rightarrow C} \leq \overline{res}_{tndy}^{TC} (\alpha_{tndy}^{TC}) \quad \forall \{t; n(c)\}, d, y, \\ purch_{tndy}^{T\leftarrow P} \geq 0 \quad \forall \{t; n(p(t))\}, d, y, \\ flow_{tnmdy}^{TA} \geq 0 \quad \forall \{t; n(p(t))\}, d, y \\ flow_{tnmdy}^{TB} \geq 0 \quad \forall \{t; s(t)\}, d, y \\ inj_{tdy}^{T\rightarrow S} \geq 0 \quad \forall \{t; s(t)\}, d, y \\ xtr_{tdy}^{T\rightarrow S} \geq 0 \quad \forall \{t; s(t)\}, d, y \end{array} \right)$$

MODEL EQUATIONS: STORAGE OPERATORS

Storage Operators' Objective Function

$$\begin{array}{ll} \max_{\substack{sales_{sdy}^{SI}\\sales_{sdy}^{SX}\\sales_{sdy}^{SX}}} & \sum_{y \in Y} \sum_{d \in D} days_d \cdot \left[\tau_{sdy}^{SI} \cdot sales_{sdy}^{SI} + \tau_{sdy}^{SX} \cdot sales_{sdy}^{SX}\right] \quad \forall s \\ s.t. & sales_{sdy}^{SI} \leq \overline{CAP}_s^{SI} \quad (\alpha_{sdy}^{SI}) \quad \forall s, d, y \\ & sales_{sdy}^{SX} \leq \overline{CAP}_s^{SX} \quad (\alpha_{sdy}^{SX}) \quad \forall s, d, y \\ & \sum_{d \in D} days_d \cdot sales_{sdy}^{SX} \leq \overline{WG}_s^S \quad (\alpha_{sy}^{SW}) \quad \forall s, y \\ & sales_{sdy}^{SI} \geq 0 \quad \forall s, d, y \\ & sales_{sdy}^{SX} \geq 0 \quad \forall s, d, y \end{array}$$

MODEL EQUATIONS: TRANSMISSION SYSTEM OPERATORS

TSO's Objective Function

$$\begin{split} \max_{\substack{sales_{nmdy}^{A}, \\ sales_{ndy}^{L}, \\ sales_{ndy}^{R}, \\ sales_{ndy}^{R}, \\ sales_{ndy}^{R}, \\ sales_{mdy}^{R}} \end{split} \sum_{\substack{y \in Y \ d \in D}} \sum_{\substack{days_d \\ f \in N_s(B) \\ + \sum_{\substack{n \in N_s(B) \\ n \in N_e(B)}} \tau_{ndy}^R \cdot sales_{ndy}^R \\ + \sum_{\substack{n \in N_e(B) \\ n \in N_e(B)}} \tau_{ndy}^R \cdot sales_{ndy}^R \\ s.t. \quad sales_{nmdy}^A \leq \overline{CAP}_{nmy}^A \quad (\alpha_{nmdy}^A) \quad \forall (n,m) \in A, d, y, \\ sales_{ndy}^L \leq \overline{\frac{CAP}_{ny}^{L,in}}_{1-loss_n^L} \quad (\alpha_{ndy}^L) \quad \forall n \in N_s(B), d, y, \\ sales_{ndy}^R \leq \overline{\frac{CAP}_{ny}^{R,in}}_{1-loss_n^R} \quad (\alpha_{ndy}^R) \quad \forall n \in N_e(B), d, y, \\ sales_{ndy}^A \geq 0 \quad \forall (n,m) \in A, d, y, \\ sales_{ndy}^L \geq 0 \quad \forall n \in N_s(B), d, y, \\ sales_{ndy}^R \geq 0 \quad \forall n \in N_s(B), d, y, \\ sales_{ndy}^R \geq 0 \quad \forall n \in N_e(B), d, y, \end{split}$$

3. ENERGY MARKET MODEL

MODEL EQUATIONS: MARKET CLEARING CONDITIONS

$$0 = \sum_{p \in P(n)} \left(sales_{pdy}^{P} - purch_{t(p)ndy}^{T \leftarrow P} \right), \quad \pi_{ndy}^{P} (\text{free}) \quad \forall n \in N(P), d, y$$
(12)

$$0 = sales_{nmdy}^{A} - \sum_{t \in T(n,m)} flow_{tnmdy}^{TA}, \quad \tau_{nmdy}^{A}(\text{free}) \quad \forall (n,m) \in A, d, y$$
(13)

$$0 = sales_{ndy}^{L} - \sum_{t \in T(n,m)} \sum_{m \in N_e(B)} flow_{tnmdy}^{TB}, \quad \tau_{ndy}^{L}(\text{free}) \quad \forall n \in N_s(B), d, y$$
(14)

$$0 = sales_{mdy}^{R} - \sum_{t \in T(n,m)} \sum_{n \in N_{s}(B)} flow_{tnmdy}^{TB} \cdot (1 - loss_{n}^{L})(1 - loss_{nm}^{B}), \quad \tau_{mdy}^{R} (\text{free}) \quad \forall m \in N_{e}(B), d, y$$

$$(15)$$

$$0 = sales_{sdy}^{SI} - \sum_{t \in T(N(s))} inj_{tsdy}^{TS}, \quad \tau_{sdy}^{SI}(\text{free}) \quad \forall s, d, y$$
(16)

$$0 = sales_{sdy}^{SX} - \sum_{t \in T(N(s))} xtr_{tsdy}^{TS}, \quad \tau_{sdy}^{SX}(\text{free}) \quad \forall s, d, y$$
(17)

$$0 = \pi_{ndy}^{W} - \left(INT_{ndy}^{C} - SLP_{ndy}^{C} \cdot \sum_{t \in T(n)} sales_{tndy}^{T \to C} \right), \quad \pi_{ndy}^{W}(\text{free}) \quad \forall n \in N(C), d, y \quad (18)$$

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

LINEAR COMPLEMENTARITY PROBLEM

$$0 \le Mx + q_{-|_{-}}x \ge 0$$
$$M = \begin{pmatrix} A & -B^T & -C^T \\ B & 0 & 0 \\ C & 0 & D \end{pmatrix}$$

A: diagonal, psd D: diagonal, pd

EQUIVALENT QP FORMULATION

$$\begin{array}{ll} \min & x^T Q x + q^T x \\ \text{s.t.} & M x + q \ge 0 \\ & x \ge 0 \end{array}$$
$$Q = \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & D \end{pmatrix}$$

Q: diagonal, psd LCP feasible if min $x^T Q x + q^T x = 0$

4. CALIBRATION

4. CALIBRATION

MODEL CALIBRATION

CALIBRATION VARIABLES

- Base case wholesale price: $\pi^{W0}_{ndy} \rightarrow \pi^{W,M}_{ndy}$
- (Base case consumption: sales^{w0}_{ndy} → sales^{w,M}_{ndy})
- Node-specific market power: δ^c_{ndy} → [0...1]
 [The trader-specific market power is fixed beforehand, and the overall market power is δ^c_{tndy} = f(δ^c_t, δ^c_{ndy})]

CALIBRATION PROCEDURE

- For now: by iteration
- In future: formulate optimization problem
 - leads to an MPEC (Mathematical Problem with Equilibrium Constraints)

CALIBRATION FORMULAS

$$\begin{split} \delta^{C}_{ndy}(k+1) &= \delta^{C}_{ndy}(k) + \gamma_{\delta^{C}_{ndy}} \cdot \left(-\frac{\pi^{W}_{ndy}(k)}{\pi^{W,M}_{ndy}} + \frac{sales^{W}_{ndy}(k)}{sales^{W,M}_{ndy}} \right) \\ \pi^{W0}_{ndy}(k+1) &= \pi^{W0}_{ndy}(k) + \gamma_{\pi^{W0}_{ndy}} \cdot \left(-\frac{sales^{W}_{ndy}(k)}{sales^{W,M}_{ndy}} \right) \end{split}$$

TERMINATION CRITERIA

$$\begin{split} | sales^{W}{}_{ndy}(k) \, / \, sales^{W,M}{}_{ndy} \text{-}1 | \text{-}TOL \, \text{AND} \\ | \pi^{W0}{}_{ndy}(k) \, / \, \pi^{W,M}{}_{ndy} \text{-}1 | \text{-}TOL \, \text{OR} \, \delta^{C}{}_{ndy} \, \pi^{W0}{}_{ndy} \, \text{don't} \\ \text{change anymore} \end{split}$$

Note: calibrated parameters are not unique

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

4. CALIBRATION MODEL CALIBRATION

CALIBRATION VARIABLES

- Base case wholesale price: $\pi^{W0}_{ndy} \rightarrow \pi^{W,M}_{ndy}$
- (Base case consumption: sales^{w0}_{ndy} → sales^{w,M}_{ndy})
- Node-specific market power: δ^c_{ndy} → [0...1]
 [The trader-specific market power is fixed beforehand, and the overall market power is δ^c_{tndy} = f(δ^c_t, δ^c_{ndy})]

CALIBRATION PROCEDURE

- For now: by iteration
- In future: formulate optimization problem
 - leads to an MPEC (Mathematical Problem with Equilibrium Constraints)

CALIBRATION FORMULAS

$$\begin{split} \delta^{C}_{ndy}(k+1) &= \delta^{C}_{ndy}(k) + \gamma_{\delta^{C}_{ndy}} \cdot \left(-\frac{\pi^{W}_{ndy}(k)}{\pi^{W,M}_{ndy}} + \frac{sales^{W}_{ndy}(k)}{sales^{W,M}_{ndy}}\right) \\ \pi^{W0}_{ndy}(k+1) &= \pi^{W0}_{ndy}(k) + \gamma_{\pi^{W0}_{ndy}} \cdot \left(-\frac{sales^{W}_{ndy}(k)}{sales^{W,M}_{ndy}}\right) \end{split}$$

TERMINATION CRITERIA

$$\begin{split} | sales^{W}{}_{ndy}(k) / sales^{W,M}{}_{ndy} - 1 | < TOL \ AND \\ | \pi^{W0}{}_{ndy}(k) / \pi^{W,M}{}_{ndy} - 1 | < TOL \ OR \ \delta^{C}{}_{ndy}, \ \pi^{W0}{}_{ndy} \ don't \\ change \ anymore \end{split}$$

Note: calibrated parameters are not unique

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

4. CALIBRATION

CALIBRATION RESULTS: MEASURED AND CALIBRATED PRICES

5. SENSITIVITY ANALYSIS

5. SENSITIVITY ANALYSIS SETUP & RESULTS

VARIATION OF MOST UNCERTAIN PARAMETERS

Base case wholesale price

 $\pi^{W0}_{\ \ ndy}$

 δ^{C}_{ndy}

[-50%, -10%, +10%, +50%]

Node-specific market power

[-0.5, -0.1, +0.1, +0.5]

Price sensitivity

η_n

[-0.2, -0.1, +0.1, +0.2]

RESULTS

Overall satisfying:

- Country, in which the parameter is changed, is affected the most (red symbols)
 - Especially high change of sales^W_{ndy} if π^{W0}_{ndy} is varied
- In all other countries, π^W_{ndy} and sales^W_{ndy} only change moderately (blue symbols)
 - $|\pi^{W}_{ndy} \pi^{W0}_{ndy}| < 20\%$
 - | sales^W_{ndy}-sales^{W0}_{ndy} | < 8%

➔ the cases, which lead to particularly high changes can be dealt with separately if required

5. SENSITIVITY ANALYSIS ABSOLUTE PRICE CHANGE

5. SENSITIVITY ANALYSIS RELATIVE PRICE CHANGE

5. SENSITIVITY ANALYSIS ABSOLUTE CONSUMPTION CHANGE

5. SENSITIVITY ANALYSIS

RELATIVE CONSUMPTION CHANGE

PLANNED CASE STUDIES

CONSEQUENCES FROM CUTBACKS IN

- Production
- Pipeline capacities
- Liquefaction and Regasification capacities

CONSEQUENCES OF THE EXPANSION OF

- Pipeline capacities
- Liquefaction and Regasification capacities
- Possibly coupled to a future gas market setting

ANALYZE EUROPEAN MARKET DYNAMICS

- Which countries are affected/can profit the most by which cutbacks/network expansions
- How can these burdens/gains be shared efficiently
- Is a top-down regulation necessary, or can the EU member states implement efficient measures by their own

FUTURE WORK (REQUIRES SUBSTANTIAL MODEL EXTENSION):

COUPLE TO OTHER ENERGY CARRIERS

- Couple gas, electricity, coal & oil markets
- Estimate price changes for the consumer taking the overall energy system into account, e.g.,
 - If a shock occurs in one market
 - If taxes are raised on certain carriers
 - ...

LINK CUTBACKS MORE SPECIFICALLY TO THREATS

Co-work with a risk-management specialist

EXAMPLE CASE STUDIES

RUSSIAN EMBARGO OF EUROPE

EU DIVERSIFICATION STRATEGY

Expansion of regasification capacities (in all countries, proportional to existing capacity)

EU AND N-AMERICAN JOINT ACTION

- Expansion of EU regasification capacities
- Simultaneous increase of N-American liquefaction capacities

EU AND N-AMERICAN JOINT ACTION <-> ROBUSTNESS IN CASE OF A RUSSIAN EMBARGO

- Increase of EU R-capacity
- Increase of N-American L-capacity
- Russian embargo of EU

GUIDING QUESTIONS:

- Which countries benefit? Which ones loose?
- Which countries pay for the benefits (of others)?

THE RESULTS IN CONTEXT:

- Which scenarios are likely?
- Accuracy of results
 - Cf. sensitivity analysis
 - Interferences with other (not modeled) energy systems?
 - e.g.: electricity, coal markets, expansion of renewable capacities

RUSSIAN EMBARGO OF EUROPE

EU DIVERSIFICATION STRATEGY

EU DIVERSIFICATION STRATEGY

6. INTERMEDIATE RESULTS AND OUTLOOK EU AND N-AMERICAN JOINT ACTION

X8: N-America

EU AND N-AMERICAN JOINT ACTION

EU AND N-AMERICAN JOINT ACTION <-> ROBUSTNESS IN CASE OF A RUSSIAN EMBARGO

EU AND N-AMERICAN JOINT ACTION <-> ROBUSTNESS IN CASE OF A RUSSIAN EMBARGO

THANK YOU FOR YOUR ATTENTION