

On Incentive-Based Market Design for Incorporation of Renewable Energy Sources and Demand Response

Presentation "Frontiers in Energy Research", ETH Zürich, Zürich, 05/26/2014 Tobias Haring

Agenda

Introduction to Power Systems / Power Markets

Current Challenges

On Achieving Allocative Efficiency in Power Markets

Demand Response – Engineering vs. Economics

Conclusion

Agenda

Introduction to Power Systems / Power Markets

Current Challenges

On Achieving Allocative Efficiency in Power Markets

Demand Response – Engineering vs. Economics

Conclusion

E *H zürich*

laboratory

What is a power system?

- **Power System = Multi-Stage-Decision Making Process**
- Economic interests vs. technical constraints

Power Systems in Comparison – Key Figures

Metrics (2010 Data)	EU+	Contiguous U.S.
Population	≈ 530 million	≈ 310 million
HV lines (≥220kV)	≈ 287,300 km	≈ 300,000 km
Peak load demand	≈ 550 GW in Winter ≈ 390 GW in Summer	≈ 652 GW in Winter ≈ 768 GW in Summer
Yearly load consumption	≈ 3300 TWh	≈ 4200 TWh

EU+: EU-27 + Balkans, Switzerland, Norway

Source: Ulbig (2012)

Power Systems in Comparison - Institutions

Tobias Haring | 29.05.2014

6

The Grid....

- Markets are interconnected
- **Kirchhoff's Laws are** working on their own....

Agenda

Introduction to Power Systems / Power Markets

Current Challenges

On Achieving Allocative Efficiency in Power Markets

Demand Response – Engineering vs. Economics

Conclusion

Renewable Energy Injection: An European perspective

- ENTSO-E (European Network of Transmission System Operators for Electricity)
- 42 transmission system operators (TSOs) in 34 European countries
- <u>www.entsoe.eu</u> (official website)
- <u>www.entsoe.net</u> (transparency)

Comparision of VG Deployment (2010)

(end-of year 2010 installed capacity)

Renewable Energy Injection: An European perspective

EWEA Report 2011- " Pure Power: EU Wind Energy Targets for 2020 and 2030"

	0	0	0	6		
	1995	2000	2007	2010	2020	2030
Wind energy share (reference)	0.2%	0.9%	3.7%	5.0%	11.6%	20.8%
Wind energy (RE & eff. case)		0.9%	3.7%	5.2%	14.3%	28.2%
Wind power production (TWh)		23	119	176	477	935
Reference Electricity demand (TWh)*		2,577	3,243	3,554	4,107	4,503
RE & Eff, case Electricity demand (TWh)*		2,57	3,243	3,383	3,345	3,322

Renewable Energy Injection: An European perspective

Intermittent RES-infeed requires **more power system flexibility/operational reserves**:

• Pumped-Hydro, but.....

ower svstems

boratory

 Another solution: distributed storage and demand response, but

Yearly peak base spread ζ and net arbitrage potential Δ_{net}

Year	ζ	Δ	$a_{net} \left[\frac{\in}{MWh}\right]$	$P_{spot}^{base} \left[\frac{\in}{MWh}\right]$
2006	1.59		17.06	50.79
2007	1.64		15.00	37.99
2008	1.51		17.12	65.76
2009	1.46		8.09	38.85
2010	1.33		3.71	44.49

Source: Hildmann (2011)

Renewable Energy Injection: An European perspective

Source: Jens Bömer, Ecofys

Remote intermittent RES-infeed requires **transmission capacity**:

- Forced curtailment of wind power in-feed due to grid constraints (and other contingencies) on MV level → has risen with higher deployment of wind turbines
- WG are paid for the energy curtailed

Renewable Energy Injection: An European perspective

Response in the media:

- IEEE Spectrum, Sept 09, 2013: German Energy Crisis
- Bloomberg, Oct 11, 2013: Europe Risks Energy Crisis From Green Subsidies

 Bloomberg, Oct 13, 2013: Clean Energy Investment Headed for Second Annual Decline

How to improve desirable goals of sustaining electricity markets?

Key point: Efficiency in Cost Allocation (first part of the talk)

- In-Feed tariffs and Grid tariffs but...
 - → make intermittent units and demand responsible for their schedule
 - → Cost allocation of reserves based on socialization gives no incentives to reduce balancing requirements
 - \rightarrow Reliability at a price

Key point: Efficiency in Production (second part of the talk)

Demand Response can provide backup capacity for frequency regulation but....

Agenda

Introduction to Power Systems / Power Markets

Current Challenges

On Achieving Allocative Efficiency in Power Markets

Demand Response – Engineering vs. Economics

Conclusion

What can be done?

"Develop market mechanisms which are proper to reduce costs and allocate the costs of different types of reserves?"

- Event-based reserves: Reserves needed with low probability (i.e. contingency)
- Non-Event based reserves: High probability of utilization (i.e. load following, ramping, etc.)

Cost Allocation Algorithm in a Centralized Market Setup (ISO)

1. Stage:

- Unit commitment for Lost -Opportunity Costs Calculation in Co-Opt Problem
- Unit Commitment → Includes Start-Up Costs and Costs of Operation
- No Reserve Scheduling so far.....

Cost Allocation Algorithm in a Centralized Market Setup (ISO)

2. Stage:

- Co-Optimization for efficient clearing of energy and reserves
 - Demand for event-based reserves
 - Demand for non-event-based reserves
 - Marginal costs of abating the need for non-event reserves

Principles:

- Cost Causality
- Market = decentralized decisions

Non-Event based reserves: High probability of utilization (i.e. load following, ramping, etc.)

Cost allocation of event-based reserves:

- Consider Reserves as public goods:
 - Non rivalry
 - Non excludability

- Event-based reserve demand per node
 - i.e. interruptible load contracts + direct load control
 - "Vertical addition" of demand curves enables cost sharing → "Lindahl equilibrium"
 - Formal: Samuelson condition

Cost allocation of non-event based reserves

Power System:

- Non-event based reserves/actions:
 - Regulation, ramping, etc. = negative externalities
- Pareto Efficient allocation of costs
 - System costs: i.e. lost opportunity costs, reserve procurement, redispatch cost,
 - Abatement costs: i.e. storage reservation, transaction costs,

Cost allocation of non-event based reserves

- Sharing penalty/subsidy of avoiding reserve requirements
- Revelation of abatement costs \rightarrow incentive mechanism necessary

Total injection/demand:

Cost allocation of non-event based reserves

- Sharing penalty/subsidy of avoiding reserve requirements
- Revelation of abatement costs \rightarrow incentive mechanism necessary

Assessment of policy: Where (load or wind-farm) does investment in elasticity give the highest leverage, i.e. reduced reserved capacity?

 Lowering marginal abatement costs of renewable in-feed more efficient (in this simulation)

(in our conceptual simulations: IEEE 24 RTS)

Wealth is limited!

200180160140120100 80 60 4020Wind farms Loads High Low Med. Elasticity Elasticity Elasticity

....of Abatement Cost Curve

Average non – event reserves [MW]

Assessment of policy: What technology helps in terms of ramping/avoiding balancing costs?

 Impact in balancing benchmark compared to ramping benchmark significant

In our simulation example:

- Wind farm \rightarrow balancing
- Loads → ramping

(in our conceptual simulations: IEEE 9 Bus)

Conclusions

Cost allocation of ancillary services

Pros:

- reduces significantly costs through reduced centralized procurement
- allows assessment of policies which ought to support demand response or renewable energy in-feed
- reduces welfare losses through the exploitation of scarcity conditions by the generators

Cons:

- Mispresentation of preferences is inherent
- Preference revelation mechanims:
 - Groves-Clarke has certain drawbacks
 - Preference revelation mechanims: probably complicated and computational effort may requires approximations

Principles may have problems on operational level but are useful on planning and regulatory level (alternative iterative auction designs for policy recommendations)

Agenda

Introduction to Power Systems / Power Markets

Current Challenges

On Achieving Allocative Efficiency in Power Markets

Demand Response – Engineering vs. Economics

Conclusion

The Engineer vs. The Economist?

• So, what exactly is DR?

- A mechanism to improve electricity markets?
- A new control variable that can enhance power system reliability and security?

Department of Energy (2006):

Demand response (DR) refers to the willingness of the consumer to respond to prices of electricity, or to receive incentive payments in times where grid reliability is jeopardized

How should we implement residential DR programs?

- Dynamic electricity prices?
- Direct load control?

Does our view of DR affect our preference for DR program design?

The engineer's view

- The power system is hard to accurately model and control because it is complex:
 - Huge!
 - Nonlinear
 - Uncoordinated controls
 - Must operate given stochastic loads, intermittent generation, and contingencies
- A new control knob to improve both power system planning and operation.

The economist's view

- Power markets suffer from several market failures:
 - Imperfect competition
 - Imperfect information
 - Externalities
 - Incomplete markets
 - *Reliable* electricity is a public good
- Alleviate some of these market failures, making power markets more competitive and improving social welfare.

Example 1: Price signals from the utility, retailer, BG, or aggregator

- Prices formed based on outcome of wholesale markets, which settle based on past/forecasted demand (no demand-side bidding)
- Price could be updated hourly to practically instantaneously

Example 1: Price signals from the utility, retailer, BG, or aggregator

- Engineer's perspective...
 - Pros
 - Individual modeling, control, & optimization
 - No baselines!
 - Cons
 - Uncertain customer behavior combined with long ramp times (minutes to hours) could lead to system inadequacies
 - Delays between price setting and price response resulting in possible volatility & instabilities

- **Economist's** perspective...
 - Pros
 - "Full-knowledge" optimization of consumption/investments
 - Customer autonomy in real-time
 - Cons
 - Financial risk to the customer; incomplete markets must be addressed
 - With location prices, perceptions of fairness
 - Uncertain behavior may lead to volatility, instabilities, etc.

Example 2: Price/Quantity bidding by individual customers into markets run by the ISO or MO

- Individual customers submit price/quantity bids into markets
- Bids are co-optimized against generator bids via an OPF
- The timescale of the markets could be days to practically instantaneously
- We do not consider aggregation here, because we are concerned with *customer* interaction with the system.

Example 2: Price/Quantity bidding by individual customers into markets run by the ISO or MO

- Engineer's perspective...
 - Pros
 - Individual modeling, control, & optimization
 - No baselines
 - Cons
 - Individual market bidding
 - Market optimization via an OPF non-tractable

- Economist's perspective...
 - Pros
 - "Full-knowledge" optimization of consumption/investments
 - Privacy
 - Customer autonomy in real-time
 - Cons
 - Financial risk to the customer; incomplete markets must be addressed
 - With fast-DR → high transaction costs!

Example 3: Direct load control via an aggregator providing some market based service to the ISO or TSO

- Customers enter contracts with centralized or decentralized aggregators (i.e. load coalitions)
- Direct control signals could be set point changes, power trajectories, switching commands, or even prices, so long as the response is known a-priori

Example 3: Direct load control via an aggregator providing some market based service to the ISO or TSO

- Engineer's perspective...
 - Pros
 - Controllability, observability, and stability can be checked a-priori
 - Benefits via coordination of diverse (possibly hybrid) resources
 - Cons
 - Baselines may be needed
 - Aggregated modeling, control, and optimization (either computationally complex or simplified resulting in nonoptimal behavior)

- Economist's perspective...
 - Pros
 - Lower financial risk for all players
 - Simple for the customer what's the value of simplicity?
 - Cons
 - No real-time customer autonomy
 - Privacy issues due to two-way communication

Demand Response: An European perspective

Small Customers:

- Not many choices.....
- Liberalization brought freedom to choose retailer
- Retailers offer electricity contract with "green portfolio"
- Two part tariff + Ripple control

Large Customers:

Several institutions:

e.g. "VIK – Verband der industriellen Energie- und Kraftwirtschaft e.V. "(~members cover 80% of industrial energy consumption in Germany)

Electric arc furnace (~80MW) versus 40 000 washing machines (~2kW)

What can be done?

 Due to inherent power system limitations (ramp rates, little storage, etc.), we recommend direct load control for fast, reliable DR, but.....

We have to consider

- Market products
- Contract design: privacy vs. efficiency
- Role of competition: retail and wholesale level

Market Products

Example:

Continental Europe Setup for frequency control

- Primary Control (Frequency Containment)
- Seconday Control Frequency Restoration)
- Tertiary Control (Manually Activated)
- Quickness of response versus energy content

Market Products

Secondary frequency control (AGC) in Switzerland:

- Always activated:
 - Compensate for continously arising small imbalances
 - Compensate for unit outages until the activation of tertiary control
- PI controller regulates the Area Control Error to zero
- Market based procurement symmetric 400 MW
- Same Signal independent of possibilities of generation units

PJM regulation signal

- Slow signal (blue) → ramp-limited units
- Fast signal (green) → fast moving units

Market Products

Split AGC - Signal via digital Filters:

- Real-time implementation → only causal filters
- Trade off between delay produced by higher filter order and frequency rolloff
- Filters examined
 - Lowpass
 - Highpass
 - Exponential weighted moving average (1st order)

Market Products

Ramp Rate / Energy Requirements

- the lower the ramprequirement of the smooth signal
- the higher the energy storage requirement of the volatile signal

Period	Lowpass	Highpass	EWMA
1 h	4	60	103
$30 \min$	5	72	117
$15 \min$	10	87	134
10 min	15	96	141
$5 \min$	27	111	154
$1 \min$	106	162	191
Optimizer		138	
Initial AGC		233	

Number-of-changes in direction within 1 hour:

- Lower frequencies → smoother signal
- Slow-changing less changes than the initial

Contract Design – The role of intermediaries

«Central»

 $\min_{x \in X, y \in Y} F(x, y)$ subject to

 $H_i(x, y) \le 0, fori \in 1, 2, ..., I$

F...Cost minimization of dispatch H_i ...Constraints related to dispatch and consumer contracts «Central» with third party aggregator

$$\min_{x \in X, y \in Y} F(x, y)$$

subject to

 $G_i(x, y) \le 0, \text{ for } i \in 1, 2, ..., I$ $y \in \underset{z \in Y}{argmin} \{ f(x, z) : g_j(x, z) \le 0, j \in \{1, 2, ..., J\} \}$

x,y . . . Decision vector of aggregator, dispatch F . . . Profit maximization of aggregator

f . . . Cost minimization of dispatch

 $G_i \dots$ Constraints related to consumer contracts (Individual Rationality, Incentive Compatibility)

 g_j ... Constraints related dispatch constraints (generator limits, grid, etc.)

«Decentral» with consumer cooperative

Contract Design – Example: Third Party Aggregator

Upper level problem: Maximize aggregator profit

$$\begin{split} \max_{\boldsymbol{\vartheta_2}} f(\boldsymbol{\vartheta_2}) &= \sum_{a=1}^{N_A} \sum_{j=1}^{N_L} \left(\sum_{t=1}^{N_t} p^{j,a} \left(\zeta_{\text{Cap},\text{Up}}^{t} D_{\text{Cap},\text{Up}}^{j,t,a} + \zeta_{\text{Cap},\text{Dn}}^{t} D_{\text{Cap},\text{Dn}}^{j,t,a} - \kappa_{\text{Cap},\text{Dn}}^{j,t,a} \right) \right) + \sum_{s=1}^{N_S} \omega_s \left\{ \sum_{a=1}^{N_A} \sum_{j=1}^{N_L} \left(\sum_{\tau}^{N_\tau} p^{j,a} (\zeta_{\text{En},\text{Up}}^{\tau,s} D_{\text{En},\text{Up}}^{j,\tau,a,s} + \gamma_{\text{Cap},\text{Dn}}^{j,\tau,a,s} + \gamma_{\text{Cap},\text{Dn}}^{j,\tau,a,s} - \kappa_{\text{En},\text{Dn}}^{j,t,a,s} - \kappa_{\text{En},\text{Dn}}^{j,t,a,s} - \kappa_{\text{En},\text{Dn}}^{j,t,k,a,s} \right) \right\} \end{split}$$

$$(G \cdots G)$$

$$(G \cdots G)$$

$$(As-Dispatch)$$

$$(A$$

subject to:

- Storage and other limitations
- Individual rationality of payments
- Incentive compatibility of payments

Contract Design – Example: Third Party Aggregator

Lower level problem: minimize costs of dispatch

$$\begin{split} \min_{\boldsymbol{\vartheta_3}} .f(\boldsymbol{\vartheta_3}) &= \sum_{t}^{N_t} \sum_{i}^{N_G} \left(MC_{\text{Cap},\text{Up}}^{i,t} G_{\text{Cap},\text{Up}}^{i,t} + MC_{\text{Cap},\text{Dn}}^{i,t} G_{\text{Cap},\text{Dn}}^{i,t} \right) + \\ \sum_{a}^{N_A} \sum_{j}^{N_L} p^{j,a} \left(\alpha_{\text{Cap},\text{Up}}^{j,t,a} D_{\text{Cap},\text{Up}}^{j,t,a} + \beta_{\text{Cap},\text{Dn}}^{j,t,a} D_{\text{Cap},\text{Dn}}^{j,t,a} \right) + \sum_{s=1}^{N_S} \omega_s \left\{ \sum_{\tau}^{N_\tau} \left(\sum_{i=1}^{N_G} \left(MC_{\text{En},\text{Up}}^{i,\tau,a} D_{\text{En},\text{Dn}}^{j,\tau,a} \right) + \sum_{a}^{N_A} \sum_{j}^{N_L} p^{j,a} (\gamma_{\text{En},\text{Up}}^{j,\tau,a,s} D_{\text{En},\text{Up}}^{j,\tau,a,s} + \delta_{\text{En},\text{Dn}}^{j,\tau,a,s} D_{\text{En},\text{Dn}}^{j,\tau,a,s} \right) \right\} \end{split}$$

subject to:

• Limits generation

Contract Design – Example: Third Party Aggregator

Lower level problem: minimize costs of dispatch

Limits generation

Lower level problem can be transformed into KKT conditions and integrated in upper level problem (i.e. Conejo (2009), Bart (1998))

Contract Design – Example: Third Party Aggregator

- Incentive compatibility results in significant reduction of total exploitation
- inaccurate Information (i.e. resolution of metering) influences exploitation

The role of competition

- Wholesale Level: Do wholesale auction provide enough revenue? → active DR
- Retail Level: Role of competition unclear \rightarrow passive DR models
- Prisoners Dilemma and Public Goods
- Complexity of retail market designs (billing, reliability issues) indicate their success → Combination of price signals and contracts? DR fatigue.....

Agenda

Introduction to Power Systems / Power Markets

Current Challenges

On Achieving Allocative Efficiency in Power Markets

Demand Response – Engineering vs. Economics

Conclusion

Conclusion

- Power Systems Research regained significant importance
- Market Designs for integration of renewable should follow first principles:
 - Productive Efficiency
 - Allocative Efficiency
- Presented Examples:
 - Cost Allocation of Ancillary Services to improve renewable energy support
 - Incorporation of demand side needs careful implementation with regards to information exchange and business cases

Can be Contradicting Issues!

- Not Treated in this presentation:
 - Revenue Sufficiency for conventional generators
 - Other aspects of governmental/regulatory intervention

References

- A. Ulbig, Y. Makarov, Update on Recent European Experiences with Grid Integration of Wind and Solar Power, WECC Variable Generation Sub-Committee, 2012
- M. Hildmann, A.Ulbig, G. Andersson, Revisiting the Merit-Order Effect of Renewable Energy Sources, Working paper version date 30 June 2013., arXiv:1307.0444
- V. Lenzi, A. Ulbig and G. Andersson, Impacts of Forecast Accuracy on Grid Integration of Renewable Energy Sources, Presented at the IEEE Powertech Conference, Grenoble, France, 2013.
- M. Hildmann, A.Ulbig and G.Andersson, Electricity Grid In-feed from Renewable Sources: A Risk for Pumped-Storage Hydro Plants?, European Energy Markets (EEM) 2011, Zagreb, Croatia, May 2011..
- N. Associates, L. B. N. Laboratory, and P. N. N. Laboratory, Benefits of demand response in electricity markets and recommendations for achieving them," Department of Energy Report to the US Congress, Tech. Rep., 2006. [Online]. Available: <u>http://www.oe.energy</u>. gov/DocumentsandMedia/congress1252d.pdf
- T. Haring and G. Andersson, Cost allocation in Ancillary Service Markets, Proceedings Hawaii International Conference on System Sciences 2014
- T. Haring, D.S. Kirschen and G. Andersson, Efficient Allocation of Balancing and Ramping Costs, accepted Power Systems Computation Conference, Wroclaw, Poland, 2014
- J.L. Mathieu, T. Haring, J. O. Ledyard, and G. Andersson, Residential Demand Response Program Design: Engineering and Economic Perspective, Proceedings European Energy Market Conference (EEM 2013)
- T. Haring, J.L. Mathieu and G. Andersson, Demand Response for Ancillary Services via multi-agent Contract Design, Proceedings European Energy Market Conference (EEM 2013)
- J.L. Mathieu, T. Haring, and G. Andersson, Harnessing Residential Loads for Demand Response: Engineering and Economic Considerations, Proceedings of the Interdisciplinary Workshop on Smart Grid Design & Implementation hosted by the University of Florida Laboratory for Cognition & Control in Complex Systems, Gainesville, FL, 7-8 Dec 7-8, 2012
- C.Ruiz and A. Conejo, Pool strategy of a producer with endogeneous formation of locational marginal prices, IEEE Transaction on Power Systems, vol. 24, no. 4, 2009.
- J.F.Bard, Practical bilevel optimization: Algorithms and applications, Springer, 1998.

Thank you for your attention!

Tobias Haring ETH-Zürich, Physikstrasse 3, CH-8092 Zürich tharing@eeh.ee.ethz.ch

