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What is a power system? 
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• Power System = Multi-Stage-Decision Making Process
• Economic interests vs. technical constraints
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Source: Ulbig (2012)

Power Systems in Comparison – Key Figures
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Power Systems in Comparison  - Institutions 
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The Grid….

• Markets are
interconnected

• Kirchhoff’s Laws are
working on their own…. 
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Renewable Energy Injection: An European perspective
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Renewable Energy Injection: An European perspective

EWEA Report 2011- “ Pure Power: EU Wind Energy Targets for 2020 and 2030”
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Intermittent RES-infeed requires more
power system flexibility/operational 
reserves: 

• Pumped-Hydro, but…..

• Another solution: distributed
storage and demand response, but 
….

Source: Hildmann (2011)

Renewable Energy Injection: An European perspective
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• Forced curtailment of wind power in-feed due to grid constraints (and other 
contingencies) on MV level  has risen with higher deployment of wind turbines

• WG are paid for the energy curtailed 

Remote intermittent RES-infeed requires transmission capacity: 

Renewable Energy Injection: An European perspective
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 IEEE Spectrum, Sept 09, 2013: German Energy Crisis

 Bloomberg, Oct 11, 2013: Europe Risks Energy Crisis From 
Green Subsidies

 Bloomberg, Oct 13, 2013: Clean Energy Investment Headed 
for Second Annual Decline

Response in the media: 

Renewable Energy Injection: An European perspective
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 In-Feed tariffs and Grid tariffs but…
 make intermittent units and demand responsible for their

schedule
 Cost allocation of reserves based on socialization gives no 

incentives to reduce balancing requirements
 Reliability at a price

 Demand Response can provide backup capacity for frequency
regulation but….

29.05.2014Tobias Haring 14

How to improve desirable goals of sustaining electricity markets?

Key point: Efficiency in Cost Allocation (first part of the talk)

Key point: Efficiency in Production (second part of the talk)
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What can be done? 

Market based Incentive mechanisms

„Symphony“ vs. „Jazz“

“Develop market mechanisms which are proper to reduce costs and allocate the costs of
different types of reserves?”

• Event-based reserves: Reserves needed with low probability (i.e. contingency)
• Non-Event based reserves: High probability of utilization (i.e. load following,

ramping, etc.)
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1. Stage: 

 Unit commitment for Lost -
Opportunity Costs Calculation in Co-
Opt Problem

 Unit Commitment  Includes Start-
Up Costs and Costs of Operation

 No Reserve Scheduling so far…..

29.05.2014Tobias Haring 17

Cost Allocation Algorithm in a Centralized Market Setup (ISO)

Unit Commitment
P

Q

D

S

Input: Supply and Demand 
Traded Energy

Output: 
• ON/OFF Decision
• Dispatch Decision
• Ramping Rates
• Locational Marginal 

Pricing
…

Mixed Integer Linear Program
Energy
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Co-optimization

P

Q

D

S

P

Q

D

S

P

Q

D

S

P

S

Event-based
reserves

Abatement of fluctuations

Q

Non-event based reserves

• Event-based reserves: Low probability of utilization (i.e. contingency)
• Non-Event based reserves: High probability of utilization (i.e. load following, ramping, etc.)

Principles: 
• Cost Causality
• Market = decentralized decisions

Cost Allocation Algorithm in a Centralized Market Setup (ISO)

2. Stage: 

 Co-Optimization for efficient 
clearing of energy and reserves
 Demand for event-based reserves
 Demand for non-event-based 

reserves
 Marginal costs of abating the 

need for non-event reserves

Energy

Non-event 
based

reserves

Output: 
• Scheduled energy
• Scheduled reserves
• ON/OFF Decisions
…
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Cost allocation of event-based reserves:

 Consider Reserves as public goods: 
 Non rivalry
 Non excludability

 Event-based reserve demand per node
 i.e. interruptible load contracts  + direct load control
 “Vertical addition” of demand curves  enables cost 

sharing  “Lindahl equilibrium”
 Formal: Samuelson condition

„Lindahl“

„Competitive“

S

S
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Power System: 
 Non-event based reserves/actions: 

 Regulation,  ramping, etc.  = negative externalities

 Pareto Efficient allocation of costs
 System costs: i.e. lost opportunity costs, reserve procurement, redispatch cost, ….
 Abatement costs: i.e. storage reservation, transaction costs, …..

Illustrative Example:
− River pollution
− 2 parties with

contradicting goals

Amount of emissions, Q

Marginal benefit for
industry to pollute

Marginal costs of
pollution for fishery

Optimal pollution
level

QOptimal

Cost allocation of non-event based reserves

Penalty/Subsidy
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Cost allocation of non-event based reserves

 Sharing penalty/subsidy of avoiding reserve requirements 
 Revelation of abatement costs  incentive mechanism necessary

Pricing of externalities

• Sum of cost curves of
abatement

• In non-perfect market: 
incentive to cheat

Total injection/demand:

deterministic
stochastic
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Cost allocation of non-event based reserves

 Sharing penalty/subsidy of avoiding reserve requirements 
 Revelation of abatement costs  incentive mechanism necessary

Pricing of externalities

• Sum of cost curves of
abatement

• In non-perfect market: 
incentive to cheat

Incentive compatible pricing of externalities
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 Lowering marginal abatement
costs of renewable in-feed more
efficient (in this simulation)

 Wealth is limited! 

(in our conceptual simulations: IEEE 24 RTS )

Wind farmsLoads

Assessment of policy: Where (load or wind-farm) does investment in elasticity give
the highest leverage, i.e. reduced reserved capacity?  

Low 
Elasticity

Med. 
Elasticity

High
Elasticity

….of Abatement Cost Curve
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 Impact in balancing benchmark
compared to ramping
benchmark significant

In our simulation example:
 Wind farmbalancing
 Loads ramping

Assessment of policy: What technology
helps in terms of ramping/avoiding
balancing costs?  

Perc. of ave. Proc. reserves

Perc. of ave. Ramping Costs

Elasticity of Wind-farm cost curves

Elasticity of Wind-farm cost curves

Elasticity of Load cost curves

Elasticity of Load cost curves

(in our conceptual simulations: IEEE 9 Bus )
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Conclusions

Cost allocation of ancillary services
Pros: 

 reduces significantly costs through reduced centralized procurement
 allows assessment of policies which ought to support demand response or renewable 

energy in-feed 
 reduces welfare losses through the exploitation of scarcity conditions by the generators

Cons: 
 Mispresentation of  preferences is inherent
 Preference revelation mechanims: 
 Groves-Clarke has certain drawbacks
 Preference revelation mechanims: probably complicated and computational effort may requires 

approximations

Principles may have problems on operational level but are useful on planning and 
regulatory level (alternative iterative auction designs for policy recommendations)



|| 29.05.2014Tobias Haring 26

Agenda

Introduction to Power Systems / Power Markets

Current Challenges

On Achieving Allocative Efficiency in Power Markets

Demand Response – Engineering vs. Economics

Conclusion



||

The Engineer vs. The Economist?

 So, what exactly is DR?
 A mechanism to improve electricity markets?
 A new control variable that can enhance power system reliability and 

security?

Department of Energy (2006): 
Demand response (DR) refers to the willingness of the consumer to 

respond to prices of electricity, or to receive incentive payments in 
times where grid reliability is jeopardized

 How should we implement residential DR programs?
 Dynamic electricity prices?
 Direct load control?

27Tobias Haring 29.05.2014
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Does our view of DR affect our preference for DR program design?

 The engineer’s view
 The power system is hard to 

accurately model and control 
because it is complex:
 Huge!
 Nonlinear
 Uncoordinated controls
 Must operate given stochastic 

loads, intermittent generation, 
and contingencies

 A new control knob to improve 
both power system planning 
and operation. 

28Tobias Haring

 The economist’s view
 Power markets suffer from 

several market failures:
 Imperfect competition
 Imperfect information
 Externalities
 Incomplete markets
 Reliable electricity is a public 

good

 Alleviate some of these market 
failures, making power markets 
more competitive and 
improving social welfare.

29.05.2014
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Example 1: Price signals from the utility, retailer, BG, or aggregator

 Prices formed based on outcome of wholesale markets, which settle
based on past/forecasted demand (no demand-side bidding)

 Price could be updated hourly to practically instantaneously

29Tobias Haring

load

customer

utility, retailer, 
BG, or 

aggregator
prices

Price Signals = unreliable
response in real time

29.05.2014
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 Economist’s perspective…
 Pros
 “Full-knowledge” optimization of 

consumption/investments
 Customer autonomy in real-time

 Cons
 Financial risk to the customer; 

incomplete markets must be 
addressed

 With location prices, perceptions of 
fairness

 Uncertain behavior may lead to 
volatility, instabilities, etc.

30Tobias Haring

 Engineer’s perspective…
 Pros
 Individual modeling, control, & 

optimization
 No baselines!

 Cons
 Uncertain customer behavior 

combined with long ramp times 
(minutes to hours) could lead to 
system inadequacies
 Delays between price setting 

and price response resulting in 
possible volatility & instabilities

Example 1: Price signals from the utility, retailer, BG, or aggregator

29.05.2014
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Example 2: Price/Quantity bidding by individual customers into 
markets run by the ISO or MO

 Individual customers submit price/quantity bids into markets
 Bids are co-optimized against generator bids via an OPF
 The timescale of the markets could be days to practically 

instantaneously
 We do not consider aggregation here, because we are concerned with 

customer interaction with the system.

31Tobias Haring

load

customer

ISO/MO
price/quantity    

bidding

Scalability?

29.05.2014
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 Economist’s perspective…
 Pros
 “Full-knowledge” optimization 

of consumption/investments
 Privacy
 Customer autonomy in real-time

 Cons
 Financial risk to the customer; 

incomplete markets must be 
addressed

 With fast-DR  high transaction 
costs!

32Tobias Haring

 Engineer’s perspective…
 Pros
 Individual modeling, control, & 

optimization
 No baselines

 Cons
 Individual market bidding 
 Market optimization via an OPF 

non-tractable

Example 2: Price/Quantity bidding by individual customers into 
markets run by the ISO or MO

29.05.2014
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Example 3: Direct load control via an aggregator providing some 
market based service to the ISO or TSO

 Customers enter contracts with centralized or decentralized 
aggregators (i.e. load coalitions)

 Direct control signals could be set point changes, power trajectories, 
switching commands, or even prices, so long as the response is known 
a-priori

33Tobias Haring

load
customer

aggregator

contract

ISO/TSO

direct control signals

Predefined DR for
Ancillary Services 

29.05.2014
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 Economist’s perspective…
 Pros
 Lower financial risk for all players
 Simple for the customer – what’s 

the value of simplicity?

 Cons
 No real-time customer autonomy
 Privacy issues due to two-way 

communication

34Tobias Haring

 Engineer’s perspective…
 Pros
 Controllability, observability, and

stability can be checked a-priori
 Benefits via coordination of

diverse (possibly hybrid)
resources

 Cons
 Baselines may be needed
 Aggregated modeling, control, 

and optimization (either 
computationally complex or 
simplified resulting in non-
optimal behavior)

Example 3: Direct load control via an aggregator providing some 
market based service to the ISO or TSO

29.05.2014
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Small Customers:
 Not many choices……
 Liberalization brought freedom to choose retailer
 Retailers offer electricity contract with „green portfolio“ 
 Two part tariff + Ripple control

Large Customers: 
 Several institutions: 
e.g. „VIK – Verband der industriellen Energie- und Kraftwirtschaft e. V. „(~members
cover 80% of industrial energy consumption in Germany)
 Electric arc furnace (~80MW) versus 40 000 washing machines (~2kW)

Demand Response: An European perspective
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What can be done? 

 Due to inherent power system limitations (ramp rates, little 
storage, etc.), we recommend direct load control for fast, 
reliable DR, but…... 

We have to consider ….

 Market products
 Contract design: privacy vs. efficiency
 Role of competition: retail and wholesale level
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Example: 
Continental Europe Setup for frequency control

 Primary Control (Frequency Containment)
 Seconday Control Frequency Restoration) 
 Tertiary Control (Manually Activated) 

 Quickness of response versus energy content

Market Products
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Secondary frequency control (AGC) in Switzerland:
 Always activated: 
 Compensate for continously arising small imbalances
 Compensate for unit outages until the activation of tertiary control

 PI controller regulates the Area Control Error to zero
 Market based procurement – symmetric 400 MW
 Same Signal independent of possibilities of generation units

PJM regulation signal
 Slow signal (blue)  ramp-limited units
 Fast signal (green)  fast moving units

Market Products
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Market Products

 Split AGC - Signal via digital Filters: 
 Real-time implementation only causal filters
 Trade off between delay produced by higher filter order and

frequency rolloff

 Filters examined
 Lowpass
 Highpass
 Exponential weighted moving average (1st order)
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Ramp Rate / Energy Requirements
• the lower the ramp-

requirement of the smooth 
signal

• the higher the energy storage
requirement of the volatile 
signal

Number-of-changes in direction within 1 hour:
• Lower frequenciessmoother signal
• Slow-changing less changes than the initial
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Aggregator Dispatch

Load 1

Load N

Reconsider Contract Proposal

«Central» «Central»
with third party aggregator

«Decentral»
with consumer cooperative

Contract Design – The role of intermediaries
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 Upper level problem: Maximize aggregator profit

29.05.2014Tobias Haring 42

subject to:
• Storage and other limitations
• Individual rationality of payments
• Incentive compatibility of payments

Contract Design – Example: Third Party Aggregator
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 Lower level problem: minimize costs of dispatch

29.05.2014Tobias Haring 43

subject to:
• Limits generation

Contract Design – Example: Third Party Aggregator



||

 Lower level problem: minimize costs of dispatch

29.05.2014Tobias Haring 44

subject to:
• Limits generation

Price bids of generators

Lower level problem can be transformed into KKT 
conditions and integrated in upper level problem
(i.e. Conejo (2009), Bart (1998)) 

Contract Design – Example: Third Party Aggregator
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 Incentive compatibility results in 
significant reduction of total 
exploitation

 inaccurate Information (i.e. resolution of
metering) influences exploitation

29.05.2014 45Tobias Haring

Information Accuracy

Information Accuracy

DR exploitation without incentive
compatibility in % of Benchmark

DR exploitation with incentive
compatibility in % of Benchmark

Contract Design – Example: Third Party Aggregator

Different Contracted Load Types

Different Contracted Load Types
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 Wholesale Level: Do wholesale auction provide enough 
revenue?  active DR

 Retail Level: Role of competition unclear passive DR models

 Prisoners Dilemma and Public Goods

 Complexity of retail market designs (billing, reliability issues) 
indicate their success Combination of price signals and
contracts? DR fatigue…..

46Tobias Haring 29.05.2014

The role of competition
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 Power Systems Research regained significant importance
 Market Designs for integration of renewable should follow first 

principles: 
 Productive Efficiency 
 Allocative Efficiency 

 Presented Examples: 
 Cost Allocation of Ancillary Services to improve renewable energy support
 Incorporation of demand side needs careful implementation with regards to 

information exchange and business cases
 Not Treated in this presentation: 
 Revenue Sufficiency for conventional generators
 Other aspects of governmental/regulatory intervention

48Tobias Haring 29.05.2014

Conclusion

Can be Contradicting Issues!
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