Electricity production from high-enthalpy geothermal systems

Samuel Scott (D-ERDW)

Fluids and Mineral Deposits Group

Overview

- Introduction
 - History/societal context
 - Types of geothermal resources
 - Geothermal power cycles
 - Fluid reservoirs
- Numerical modeling of fluid flow/heat transfer
 - Large-scale structure
 - 'Supercritical' fluid resources
- Conclusions

Geothermal Resources for Electricity Production

- Natural, high-enthalpy systems
 - T = 250+°C, 10-100s MW_e
 - Magma-driven, heat replenished

- EGS-type (not discussed here)
 - $T \le 200^{\circ}C, 1-10 MW_{e}$
 - Low-enthalpy; mining stored heat

Fluids and Mineral Deposits Group

History of geothermal electricity production

- Later development spurred on by oil crises
- Present installed capacity: 12,013 MW_e

Lardarello, Italy (1904) <- Prince Piero Ginori Conti with his 15 kW geothermal steam engine

Figure 1: Global Installed Capacity (MW) of Operating Geothermal Power Plants

Note: PCA (Planned Capacity Additions), Pilot plants and geothermal plants built in the first half of the 20th century and then decommissioned are not included. Source: Author

Geothermal Energy Association, 2014

Fluids and Mineral Deposits Group

Global distribution of geothermal resources

• High-enthalpy geothermal resources found in volcanic regions

	Number of active	Identified resources	Installed capacity		
	volcanoes	(MW_e)	2010 (MW _e)		
	and 33	5,800	575		
ા 🖓 🖓 🖓 🖓	SA 133	23,000	3,098		
Indor	nesia 126	16,000	1,197		
Phillip	pines 53	6,000	1,904		
Jap 📜 Jap	oan 100	20,000	535		
Mex Mex	kico 35	6,000	958		
New Z	ealand 19	3,650	762		
່ Italy (Tu	uscany) 3	2,000	843		
	Bertani, Geothermics, 2012				

Advantages and disadvantages

Advantages:

- Renewable
- Low CO₂ emissions
- Simple technology
- Baseload power
- Zero fuel cost
- Low LCE (~\$0.05/kWh)
- Local control of resource

Disadvantages:

- Geographically restricted
- High upfront investment
- Long development times
- Pipe scaling/corrosion
- Resource risk
- Relatively low profit margins

The importance of the capacity factor (L)

 $L = \frac{\text{actual electricity produced during given time}}{\text{theoretical maximum at full power operation}} \begin{array}{l} \textbf{0.15-0.3 for wind} \\ \textbf{0.9-0.95 for geothermal} \end{array}$

Energy Production (MWh_e/year) = Installed Capacity (MW_e) * 365 days/year * 24 hours/day * L

Total electricity production between 1981-2007 (U.S.A.)

Geothermal: ~480 million MWh_e, Wind: ~220 million MWh_e

Source: Geothermal Energy Association, 2014; American Wind Energy Association, 2010

Fluids and Mineral Deposits Group

Icelandic geothermal systems

Elders et al., Geothermics, 2011

• 25-30 systems within active volcanic belts

Fluids and Mineral Deposits Group

Fluids and Mineral Deposits Group

Fluids and Mineral Deposits Group

Fluids and Mineral Deposits Group

Single-flash power cycle

DiPippo, Geothermal Power Plants, 2006

Turbines typically rated at 25-55 MW_e

Fluids and Mineral Deposits Group

Double-flash power cycle

DiPippo, Geothermal Power Plants, 2006

Can produce 15-25% more power output for same geothermal fluid conditions

Eidgenössische Technische Hochschule Zürich

Fluids and Mineral Deposits Group

Dry-steam power cycle

PW = Production Well PR = Particle Remover SP = Steam pipe MR = Moisture Remover T/G = Turbine/Generator C = Condensor SE/C = Steam Ejector/condensor CT = Cooling Tower WP = Water Pipe IW = Injection Well

DiPippo, Geothermal Power Plants, 2006

• Simpler and less expensive... But reservoir pressures tend to decline more rapidly

Fluids and Mineral Deposits Group

Basic structure of volcanic geothermal systems

Arnórsson and Stefánsson, 2007

- Commonly boiling in upper 1.5 - 3 km
- Temperature corresponds to boiling point with depth

Fluids and Mineral Deposits Group

Geothermal aquifer fluid compositions

	Hellisheidi, Iceland¹	Olkaria, Kenya²	Mahanadong, Philippines³	Reykjanes, Iceland⁴	Salton Sea, USA⁵	
Aquifer Temp. (°C)	305	250	267	287	330	
рН	7.28	6.7	5.88	5.313	5.1	
SiO ₂	622.6	452	508	613	>588	
Na	92.9	391	1774	9172	54800	
К	19.4	64.5	281	1294	17700	
Ca	0.41	0.51	19.3	1516	28500	
CI	73.9	536	2924	17402	157500	
SO4	2	19.7	49	14.3	53	
F	1.1	48.4	1.33	0.18	15	
CO ₂	362.4	752	717.2	781	1653	
H ₂ S	212	37.0	36.72	26.1	10	

Component concentrations given in mg/kg

1: Scott et al., 2014, 2: Karingithi et al., 2010, 3: Angcoy, 2010, 4: Giroud et al., 2008, 5: Williams and McKibben, 1989

Fluids and Mineral Deposits Group

Higher reservoir temperatures allow higher energy yield

Availability (exergy) = $h - T_0 S$ (dead state: $T_0 = 293$ K, 0.1 MPa)

Fluids and Mineral Deposits Group

Types of high-enthalpy geothermal systems

- Liquid-dominated
 - Liquid is mobile
 - Ex. New Zealand, Iceland
- Vapor-dominated
 - Vapor is mobile phase;
 liquid adheres to pore walls
 - Ex. Geysers, USA; Lardarello, Italy
- Supercritical

Grant and Bixley, 2007; Arnorsson et al., *Rev. in Geochem. Min.*, 2007

Fluids and Mineral Deposits Group

Iceland Deep Drilling Project (IDDP)

- Initial aim to drill to sufficient temperatures (>370 °C) and depths (>4.5 km) to tap into a reservoir of supercritical fluid
- Drilled into a ~900°C magma
 body at 2.2 km depth in June
 2009 at Krafla

Fluids and Mineral Deposits Group

Motivation for numerical modeling:

- Geothermal is often seen as risky
 - Drilling is very expensive yet essential for 'proving' a resource
- Geological/geophysical/geochemical characterization of the sub-surface is difficult
- Numerical modeling builds quantitative understanding of the physics governing these systems
- Only recently have numerical models had sufficient "physical realism" to apply to natural examples
- Many fundamental questions remain to be answered...

Complex Systems Modeling Platform (CSMP++)

- Control volume-finite element
 - FE: diffusion-type equations
 - CV: advection-type equations
- Goal: accurately describe the physics/thermodynamics
- Additional constraint provided by geology (model set-up)

Porphyry Copper Deposits

Fluids and Mineral Deposits Group

Governing equations

• Two-phase Darcy's law

$$v_i = -k \frac{k_{ri}}{\mu_i} (\nabla p - \rho_i g) \qquad i = \{v, l\}$$

- Mass conservation
- Energy conservation

$$\frac{\delta(\varphi(S_l\rho_l + S_v\rho_v))}{\delta t} = -\nabla \cdot (v_l\rho_l) - \nabla \cdot (v_v\rho_v) + Q_{H2O}$$

$$\frac{\delta((1-\varphi)\rho_r h_r + \varphi(S_l\rho_l h_l + S_v\rho_v h_v))}{\delta t} = -\nabla \cdot (K\nabla T) - \nabla \cdot (v_l\rho_l h_l) - \nabla \cdot (v_v\rho_v h_v) + Q_e$$

Pressure diffusion

$$\nabla \cdot [k(\frac{k_{rl}\rho_{l}}{\mu_{l}} + \frac{k_{rv}\rho_{v}}{\mu_{v}})\nabla p] - k(\frac{k_{rl}\rho_{l}^{2}}{\mu_{l}} + \frac{k_{rv}\rho_{v}^{2}}{\mu_{v}})g + Q_{\rm H2O} + Q_{\rm p}$$

Weis et al., Geofluids, 2014

Fluids and Mineral Deposits Group

 $\rho_f [\phi \beta_f + (1 - \phi) \beta_r] \frac{\delta p}{\delta t} =$

Computational method

- Strongly coupled equations split up using sequential approach
- Upwinding of fluid properties
- Mixture of implicit, semi-implicit, and explicit discretizations

Output

Model initialization Problem definition

End time stepping

Weis et al., Geofluids, 2014

Fluids and Mineral Deposits Group

Typical model set-up

Fluids and Mineral Deposits Group

Temperature-dependent permeability

- Mimics the brittle-ductile transition in rocks
- Change from advection to conduction-dominated heat transport

Fluids and Mineral Deposits Group

Example results – Transient evolution

Fluids and Mineral Deposits Group

 Large-scale differences in thermal structure result from 'small' changes in permeability and intrusion depth

Scott et al., 2014

Fluids and Mineral Deposits Group

Example results – T_{BDT} = 360 °C, permeability (k_0) = 10⁻¹⁵ m²

• 'Potentially exploitable supercritical resources' defined as:

 $- T > 373.9 \text{ °C}, h > 2.086 \text{ MJ/kg}, k > 10^{-16} \text{ m}^2$

• Low T_{BDT} inhibits formation of sizeable resources

Scott et al., in review

Fluids and Mineral Deposits Group

Example results – $T_{BDT} = 450 \text{ °C}, k_0 = 10^{-15} \text{ m}^2$

- Basalt: higher brittle-ductile transition temperature
- Sizeable resources form near intrusion

Scott et al., in review

Fluids and Mineral Deposits Group

Example results – $T_{BDT} = 450 \text{ °C}, k_0 = 10^{-14} \text{ m}^2$

• More rapid fluid circulation means fluid heated to lower T

Scott et al., in review

Fluids and Mineral Deposits Group

The role of permeability on fluid mixing dynamics

Conventional geothermal resources result from mixing of ascending supercritical and cooler circulating waters

Scott et al., in review

Fluids and Mineral Deposits Group

Summary

 Supercritical resources favored by:

- Permeability near 10⁻¹⁵ m²
- Brittle-ductile transition temperature ≥ 450 °C
- Shallower depth of intrusion

 IDDP: Measured reservoir conditions match predicted values assuming appropriate values for the geologic controls

Scott et al., in review

Fluids and Mineral Deposits Group

The role of fluid salinity (work in progress)

Increasing salt content shifts comparable resources to greater depths/higher temperatures

Eidgenössische Technische Hochschule Zürich

Fluids and Mineral Deposits Group

Conclusions

- High-enthalpy geothermal: the neglected cousin of the renewable energies who comes from an exotic country
 - Geology is of decisive importance
- Future directions:
 - Low-T binary cycles
 - Ultra-high T 'supercritical' geothermal (IDDP)
- Numerical modeling: improve conceptual understanding, enhance resource predictability, reduce risk
- Early results suggest supercritical fluids may be a common and important feature of high-enthalpy systems

Thanks for listening... Questions? Comments?

Fluids and Mineral Deposits Group

Fluid flow velocities depend on Darcy's law

$$v_i = -k \frac{k_{ri}}{\mu_i} (\nabla P - \rho_i g \nabla z)$$

- i = liquid, vapor v = Darcy flux (m/s) $k = \text{rock permeability (m^2)}$ $k_r = \text{relative permeability (-)}$ $\mu = \text{viscosity (Pa s)}$ P = fluid pressure (Pa) $\rho = \text{fluid density (kg m^3)}$
- $g = \text{gravitational acc.} (9.8 \text{ m/s}^2)$
- z = vertical coordinate (m)
- Numerous complicating factors:
 - Non-linear changes in fluid properties with pressure and temperature
 - 'Relative' permeabilities of phases depend on volumetric saturation
 - Porous medium approach usually implies static rock

Typical model set-up

Fluids and Mineral Deposits Group