ETH zürich

ESC Project: INMES "Integrated model of the energy system"

Frontiers in Energy Research, March, 2015 Dr. Pedro Crespo Del Granado Energy Science Center, ETH Zürich

Presentation outline

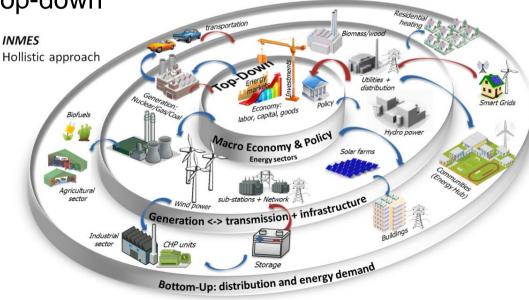
1. Introduction: Modeling energy systems

- Background and motivation
- INMES: Integrated model of the energy system

2. The value of end-user energy storage in Smart Grids

- The value of energy storage in residential buildings
- Community energy storage and wind uncertainty

3. Final remarks

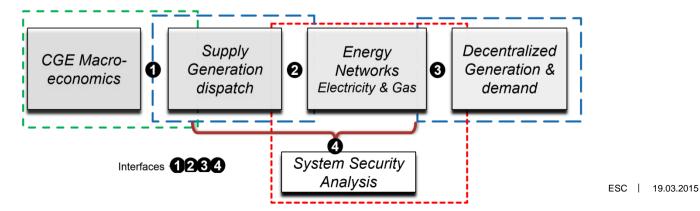

Summary, INMES expected contribution

What is INMES?

INMES is an analytical tool that encompasses a holistic approach on modelling energy systems under a single framework to analyse energy planning strategies from the regional to the national level. INMES considers a variety of energy and economic models that in combination can account for exogenous factors that in otherwise in the stand-alone models are overlooked. INMES combines top-down

and bottom-up approaches to respectively account for interactions in energy demand-supply and macro energy-economic factors.

Research questions & objectives


INMES goal is to formulate a holistic modelling framework of the energy system, to then detail its platform implementation (software). The objective is to answer:

- How to model the relationship among policy making, economic drivers and energy technologies under a unifying framework?
- What are the challenges to create a model that encompasses all features of the energy system?
- What is the synergistic added-value of a holistic approach compared to the independent use of existing models?

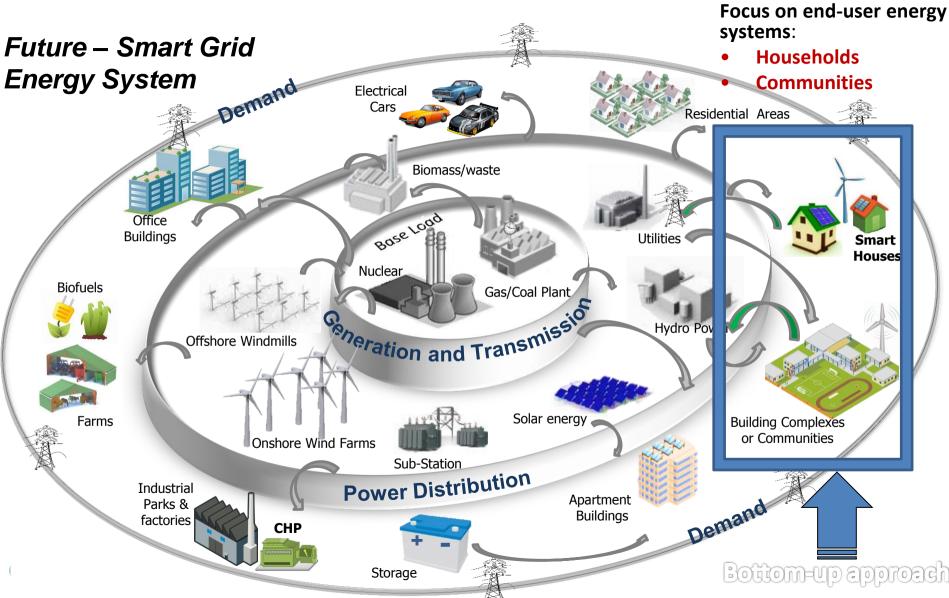
Modeling INMES: a conceptual framework

- Find a unifying compromise among different model methodologies that encompass all the components of the energy system.
- Define main core models and key energy sectors
- Discuss the modeling challenges and the value of interfaces
- Indentify distinctive capabilities (i.e. Modular approach)



5

Energy systems modeling, an example


The value of energy storage with intermittent renewables: an end user perspective in smart grids

Key questions

- How will increased renewables penetration affect the electricity balancing market and the opportunity for energy storage in this market?
- What are the economic implications of end-user storage and demand side measures for energy markets and the grid?
- What is the value of energy storage for the end-user and the grid? Value of Flexibility!

Research questions and approach

- What is the value of energy storage for the end-user in a smart grid?
 - The value from hedging local renewable supply and demand variations (value of flexibility)
 - The impact of demand response (load-shifting)
 - The effect of the portfolio of hybrid (mix) distributed generation (DG) to the value of energy storage

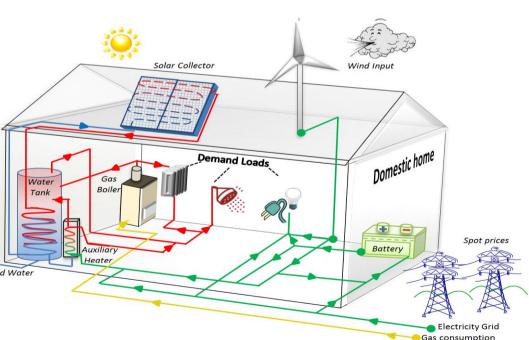
TECHNICAL ANALYS

OPERATIONS

FCONOMIC

ASSESSMENT

 How important is considering wind uncertainty to the valuation of end-user electricity storage?


Assumptions and limitations

- Two-way communication exists: smart meter.
- Electricity spot prices (UK RPD data) as proxies for energy cost.
 - Assumed to be known (deterministic in nature).
- The models provide an assessment on the value of energy storage; not an operational model.
- Transmission and operational costs not included.
- Commercial maturity and detailed engineering aspects of storage units not considered.
- The end-user energy system does not deliver (only buys from the grid).

A smart house model and energy storage

- ✓ We assume Smart metering is available
- Renewable generation and demand load variations are hedged and connected through energy storage over the optimization periods.

Model Objective:

Minimize cost of grid consumption

Model Constraints:

✓Units' Capacity & Efficiency✓Demand

- ✓ Supply Availability from Renewables
- Storage Intertemporality

Model implementation: The tool + Case study

Cancel - Close

-Hourly energy consumption data gathered from homes in Milton Keynes Park (North West London) -2010-2011 Wholesale spot prices

Gas Boiler

Water Tank & Solar

Solar Thermal Panels Properties...

Select ALL components

Properties...

Properties

OK. Components Selected

•2.8kW Battery

House:

•300l Water Tank

15kW Gas Boiler

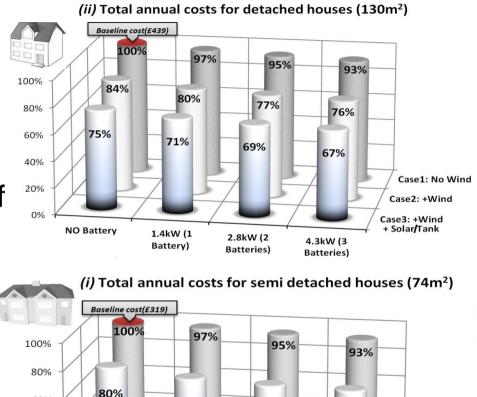
1.35kW Small Win

•8 m² Solar Collector

Units considered in a

4 bedroom - Detached Houses of 130m²
Annual electricity average demand: 3.4MWh
Annual gas heating average demand: 14.4MWh

•3 bedroom - Semi Detached Houses of 74m²
•Annual electricity average demand: 2.7MWh
•Annual gas heating average demand: 9.7MWh


Energy Science Center

		With Battery Storage		
Case 1: Without Wind Turbine	NO Battery	1 Battery (1.4kW)	2 Batteries(2.8kW)	3 Batteries(4.3kW)
% of demand met by the battery	-	10.5%	19.1%	26.6%
% of demand met by the Grid	100.0%	89.5%	80.9%	73.4%
Total Grid Electricity Consumption (MWh)	3.64	3.75	3.84	3.92
Battery loses (MWh)	-	0.11	0.20	0.28
Total Heat Demand met by Boiler (MWh)	12.77	12.77	12.77	12.77
Cost Savings and % electricity savings	-	6%(-£13)	11%(-£22)	14%(-£29)
Case 2: WithWind Turbine	NO Battery	1 Battery (1.4kW)	2 Batteries(2.8kW)	3 Batteries(4.3kW)
% of demand met by the battery	0.0%	11.5%	19.7%	26.1%
% demand met by Wind	31.1%	30.7%	30.5%	30.2%
% demand met by the Grid	68.9%	57.8%	49.8%	43.8%
Total Grid Electricity Consumption (MWh)	2.51	2.39	2.35	2.35
Battery loses (MWh)	-	0.12	0.22	0.29
Total grid to the battery (MWh)	-	0.29	0.53	0.75
Total wind to the battery (MWh)	-	0.27	0.43	0.54
Total Heat Demand met by Boiler	98.3%	98.5%	98.4%	98.3%
Total demand met by ah	1.7%	1.7%	1.8%	1.9%
% of wind generation used	69.1%	82.2%	90.4%	96.2%
% electricity cost savings with wind	33%(-£70)	42%(-£89)	48%(-£101)	51%(-£107)
Case 3: With Wind Turbine + Solar/Tank	NO Battery	1.4kW (1 Battery)	2.8kW (2 Batteries)	4.3kW (3 Batteries)
Total Grid Electricity Consumption (MWh)	2.51	2.39	2.35	2.35
% of heat demand met by ah	3.7%	2.7%	2.1%	1.8%
% of heat demand met by the Tank	62.7%	63.6%	64.3%	64.5%
% of heat demand met by Boiler	33.6%	33.6%	33.7%	33.6%
Total Boiler input to tank (MWh)	5.97	6.10	6.16	6.21
Total Solar input to tank (MWh)	2.38	2.38	2.38	2.38
% of wind generation used (MWh)	84.6%	89.3%	91.7%	92.8%
% Electricity cost savings with wind	32%	41%	47%	50%
% Gas cost savings with Solar-Tank	18%(-£34)	17%(-£32)	16%(-£30)	16%(- f 30)

Key results:

Center

- Implementation of energy storage: 6% to 14% savings of electricity costs
- Implementation of Small wind turbine:
 - 48% savings of electricity costs
 - Value of storage increases
 9% to 18%

71%

2.8kW (2

Batteries)

70%

4.3kW (3

Batteries)

Case1 No Wind

Case2 +Wind

74%

1.4kW (1

Battery)

60%

40%

20%

0%

NO Battery

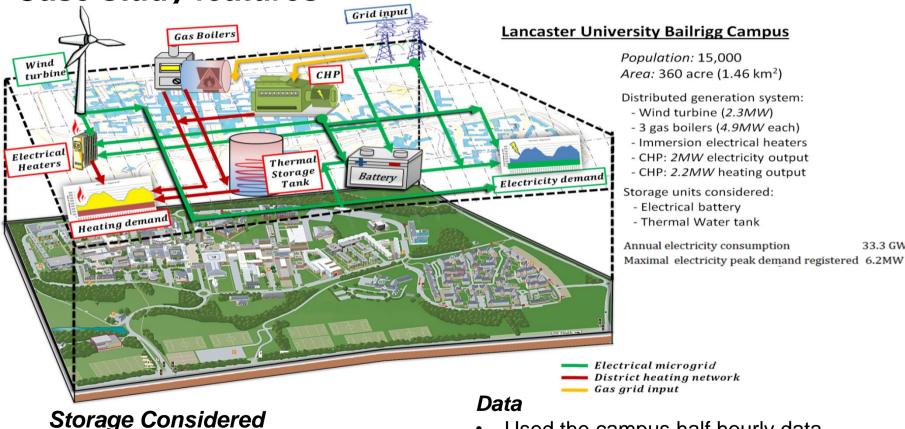
Storage

The value of community energy storage with hybrid distributed generation under demand response

Community energy storage in hybrid DG

- Point of view: A large end-user (industrial site, office building complex, university campus).
 - Security of supply and reduce CO2 emissions
- Effect of demand response programs (smart grid).
- More complex energy mix (hybrid DG system): Local heating requiremes are more important
 - Specially flexibility in CHP operations and wind surplus
 - Heating and electricity systems interactions
- Analyze the interactions of heat and electricity storage units in the regulation of the energy system supply-demand balance.

A case study implementation


University campus distributed generation mix:

Energy **S**cience

Center

Case study features

Vanadium redox battery (VRB),

Capacity: 2, 4, 8MW, roundtrip

efficienfy:0.75

- Used the campus half hourly data electricity consumption in 2010
- National Grid sport market prices in 2010

33.3 GW

Historical wind data 2006-2010

Center

8 AM

10 AM

12 PN

4 PM 6 PM 8 PM 10 PM 12 AM 12 AM 4 AM 6 AM 8 AM

2 PM

Storage role example (a) Supply-Demand results and prices **CHP** input Grid to Demand day1(Thursday) day2(Friday) day3(Saturday) 3.0 Wind to Demand **Battery Discharge** Electricity prices 2.5 Demand Load (MWh) 2.0 1.5 1.0 0.5 0.0 2 PM 4 PM 8 PM 8 PM 10 PM 12 AM 4 AM 8 AM 8 AM 8 AM 112 PM 112 PM 12 PM 8 AM 8 AM 8 AM 8 AM 10 PM 12 AM 2 AM 4 AM 6 AM 0 AM 12 PM 2 PM 2 AM 4 AM 8 AM 8 AM 4 PM 6 PM 8 PM IO PM Z AM O AM L2 PM 6 AM Stored energy (b) Battery storage charge/discharge Grid to battery Wind to battery day1(Thursday) day2(Friday) day3(Saturday) Battery Discharge 4.0 3.5 (MWM) ⁽¹⁾S 1 2.0 ge 1.5 ğ 1.0 0.5 0.0 8 AM LO AM 12 PM (c) Wind generation output Wind to Demand day1(Thursday) dav2(Fridav) day3(Saturday) 1.2 Wind to battery neration (MWh) 8.0 Wind Wasted Sen 0.6 ailable 0.4 0.2 Energy **S**cience 0.0

2 PM 4 PM 6 PM 8 PM 10 PM 12 AM 2 AM 4 AM 6 AM **8 AM** 10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM 12 AM 2 AM 4 AM 6 AM

12 PM

70

65

(4MW/3)

50 prices

30

key insights from the case study

- High benefits for the heating system
 - Storage is more valuable for the heating system
 - Improve efficiency on boilers and CHP operations
- Demand response (DR) crucial to the value of electricity storage:
 - Cost savings, without DR: 2%, with DR: 7 to 15%
 - Cost savings under STOR mechanisms: 5%
 - Gas cost savings: Current DG: 2%, larger DG: 15%
- In a hybrid DG context, both storage devices are key complements to wind and the CHP.

Modeling wind uncertainty?

Wind uncertainty and energy storage

- Can the value of electricity storage be well estimated with a deterministic model?
 - A strategic model on the decision to install a battery
- Wind is modeled stochastically as some of the value of a storage unit comes from meeting the random wind
- Decision on the battery charge/discharge given wind realizations (event tree modeling)
 Applied to a generic large end-user

Optimization model

Input

Time varying data: Wind scenarios Demand Wholesale Spot Prices

> Storage Unit Parameters: Charge rate Discharge rate Efficiencies capacity

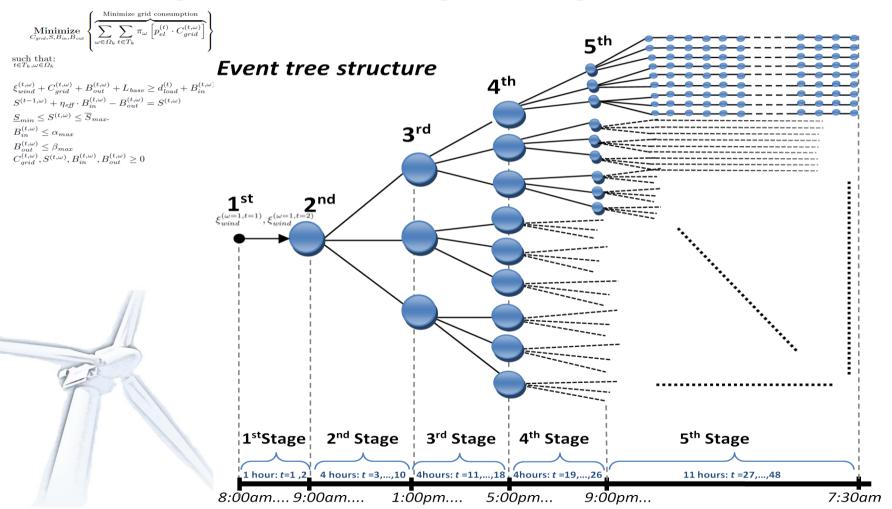
A day divided in 48 periods:

Model Objective:

Minimize cost of grid consumption

Model Constraints:

 Storage Capacity & Efficiency
 Demand – supply balance
 Wind generation uncertainty
 Storage balance (Intertemporality)


Output

Battery Charging/Discharging decisions

Cost reductions from wind smoothing and energy arbitrage

Multi-stage stochastic programming approach

nergy

Science

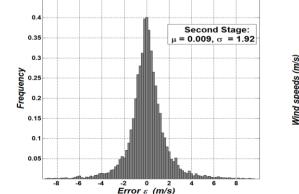
Center

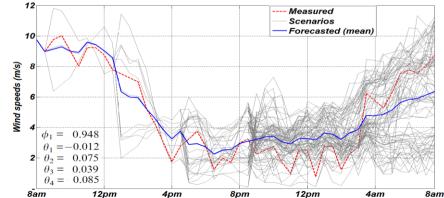
Scenario generation of wind uncertainty

ARMA model generates scenarios to represent the stochastic process(wind)

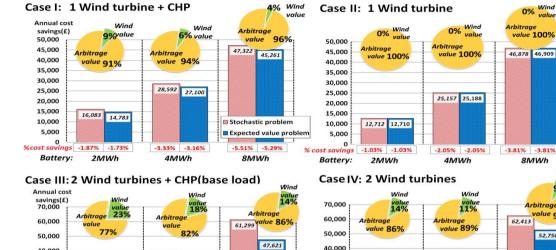
An autoregressive moving average (ARMA) process applied to wind speeds $(v_{speed}^{(t)})$ is mathematically expressed as:

 $v_{speed}^{(t)} = \phi_1 \cdot v_{speed}^{(t-1)} + \ldots + \phi_p \cdot v_{speed}^{(t-p)} + \varepsilon^{(t)} + \theta_1 \cdot \varepsilon^{(t-1)} + \ldots + \theta_q \cdot \varepsilon^{(t-q)}$

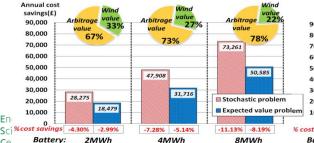

This time series relies on the *p* auto-regressive (AR) parameters $\phi_1, \phi_2...\phi_p$, the *q* moving averages (MA) $\theta_1, \theta_2...\theta_q$ and the error terms $\varepsilon^{(t)}$.


Probability discretization into subsets : low, medium, high wind realizations

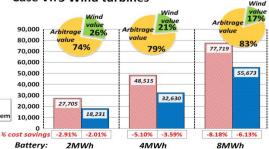
(a) Wind speeds error forecast distribution


0.45

(b) Scenario generation from an ARMA(1,4) model



Results: Value of energy storage and uncertainty 0% Wind


40,000 39.669 30,000 29.389 20.000 23.691 Stochastic problem 16,869 10,000 Expected value problem 0 -5.45% -4.16% %cost savinas -3.26% -2.39% -8.42% -6.74% Battery: 2MWh 4MWh 8MWh

Case V: 3 Wind turbines + CHP(base load)

Case VI: 3 Wind turbines

- Uncertainty becomes relevant in large DG capacity cases
- Deterministic case underestimates the value of the battery up to 50% compared to the stochastic case.

Value of modeling uncertainty: summary

- Model analysis,
 - Supply surpasses demand: Uncertainty becomes relevant in large DG capacity cases.
 - Otherwise, uncertainty is less important (Demand>supply).
- Deterministic case underestimates the value of the battery
 - By around 30% (2-wind case) compared to the stochastic case.
 - The expected case (deterministic) underestimates the value of energy storage due to its limitations of not identifying strategic options.

Final Remarks

Final remarks and perspectives

- Modeling the 'whole' scope of the energy system is key to address long-term challenges. For example, understanding the new (or evolving) flexibility of the system is key to support policy incentives and regulation.
- For our example, storage produces interesting cost savings for end-users (around 10-15%, a moderate estimate)
 - Note that peak shaving leads to more efficient units being used for production.
- INMES framework brings research opportunities on valuating this new emerging mix generation group of technologies (whose effectiveness remains somewhat unproven economically and physically.)

ETH zürich

Thank you for listening

Contact : pedro@esc.ethz.ch

Papers,

The impact of wind uncertainty on the strategic valuation of distributed electricity storage" 2014, *Computational Management Science*, to appear.

The value of electricity storage in domestic homes: A smart grid perspective. 06/2014 in: *Energy Systems*. 5, 2, p. pp 211-232

Synergy of smart grids and hybrid distributed generation on the value of energy storage, submitted, 2015

Contact : pedro@esc.ethz.ch

