### EHzürich



### Transition Metal Oxides as Candidates for Photoelectrochemical Water Splitting – Fundamental and Technological Challenges

Mario Bärtsch

Supervisor: Prof. Dr. Markus Niederberger

Laboratory for Multifunctional Materials, ETH Zurich

![](_page_0_Picture_6.jpeg)

![](_page_0_Picture_7.jpeg)

### The Multimat Group

**Development of efficient** liquid-phase synthesis routes to inorganic materials »

- Nonaqueous sol-gel chemistry
- Nonhydrolytic thio sol-gel chemistry
- Microwave and solvothermal processing
- Liquid-phase synthesis of bulk metals

![](_page_1_Picture_7.jpeg)

#### Particle assembly and processing »

- · Surface functionalization of particles
- Particle dispersions
- Thin film preparation by dip- and spin-coating
- Multicomponent powders and aerogels

![](_page_1_Picture_14.jpeg)

### DMATI **Department of Materials**

Study of chemical formation and crystallization mechanisms »

- Correlation of organic and inorganic chemistry
- Nonclassical crystallization pathways
- Oriented attachment
- In-situ reaction monitoring

#### Inorganic-organic hybrid materials and composites »

- Nanoparticle-polymer composites
- Oxide-based hybrid materials
- Magneto- and electrochromic materials

![](_page_1_Picture_26.jpeg)

#### Applications »

- Visible-light driven photocatalysts
- Transparent conducting oxides
- Lithium ion batteries
- Chemoresistive CO<sub>2</sub> gas sensors
- Photoelectrochemical water. splitting

![](_page_1_Picture_33.jpeg)

![](_page_1_Picture_34.jpeg)

**WILEY-VCH** 

- Motivation
- Introduction
- Theoretical Background
- Current Research
- Fundamental Challenges
- Technological Challenges
- Outlook
- Acknowledgement

![](_page_2_Picture_10.jpeg)

![](_page_2_Picture_11.jpeg)

### **Motivation**

Why photocatalytic water splitting?

**E** *H zürich* 

$$H_2O \rightarrow \frac{1}{2}O_2(g) + H_2; \Delta G = +237 \text{ kJ mol}^{-1}$$

- The energy of the sunlight reaching the surface of the earth is 4 orders of magnitudes higher than the actual need
- Storage of energy in the form of H<sub>2</sub>
- $H_2$  has the highest specific energy (143 MJ/kg)
- Abundance of sunlight and water

![](_page_3_Picture_7.jpeg)

### EHzürich

### **Motivation**

Goal

### Aim

- The use of abundant, cheap and non-toxic semiconductors
- Enhancing the visible light response...
- Optimized morphology to compensate intrinsic properties of some semiconductors used for photocatalytic water splitting

![](_page_4_Figure_6.jpeg)

#### **Building blocks:**

- TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, WO<sub>3</sub>, CuO, ZnO etc. Nanoparticles

DMATL Department of Materials

![](_page_4_Picture_10.jpeg)

Solar to hydrogen efficiency (n<sub>STH</sub>[%] ) of 5%

![](_page_4_Figure_12.jpeg)

 Lab scale hydrogen production production rate more than 20 lm<sup>-2</sup>h<sup>-1</sup>

![](_page_4_Figure_14.jpeg)

### **ETH** zürich

### Introduction

### Solar spectrum

**Department of Materials** 

![](_page_5_Figure_3.jpeg)

PEC effect first described by Fujishima & Honda on TiO<sub>2</sub> single crystals (*Nature* **1978**, 238, 37-38)

![](_page_6_Figure_3.jpeg)

K. Maeda, J. Photoch. Photobio. C: Photochemistry Reviews, 12 (2011), 237-268

DMATL Department of Materials

![](_page_6_Picture_6.jpeg)

### Introduction

![](_page_7_Figure_2.jpeg)

**DMATL** Department of Materials

source: Thomas Fischer, Uni Köln

### back to photoelectrochemical hydrogen production

![](_page_8_Figure_3.jpeg)

#### **ETH** zürich

### Introduction

### Synthesis Procedure and Film processing

![](_page_9_Figure_3.jpeg)

### EHzürich

### n-type semiconductors like Fe<sub>2</sub>O<sub>3</sub>, WO<sub>3</sub>, TiO<sub>2</sub>, ZnO etc.

### Why Nanostructuring?

- Shortened carrier collection pathways
- Improved light distribution
- Surface area enhanced charge transfer
- (Quantum size confinement)

![](_page_10_Figure_8.jpeg)

### Drawbacks

- Increased recombination
- Lower absorbed photon flux
- (Reduced space charge layer thickness)
- (Slow interparticle charge transport)

| 11

![](_page_10_Figure_14.jpeg)

![](_page_10_Picture_15.jpeg)

![](_page_10_Picture_16.jpeg)

### Non-aqueous sol-gel chemistry

![](_page_11_Figure_3.jpeg)

In general:

- Good control over morphology and size

BUT: Nanoparticles are sometimes difficult to redisperse and sometimes appear to be polydisperse

### → Surfactant treatment prior to synthesis or postsynthetically

![](_page_11_Picture_8.jpeg)

![](_page_11_Picture_9.jpeg)

## Aims

- Visible light absorption
- Charge carrier
  transport
- Onset
  Potential
- Catalytic efficiency
- Stability

### Bulk properties

![](_page_12_Picture_9.jpeg)

### Interface properties

![](_page_12_Picture_11.jpeg)

![](_page_12_Picture_12.jpeg)

### Measures

- New Materials
- Optimized
  Morphology
- Doping
- Composite & Multilayered systems
- Tandem Cells

### ...regarding *a few* simple metal oxides **n-type** photoanodes

|                               | TiO <sub>2</sub> | Fe <sub>2</sub> O <sub>3</sub> | WO <sub>3</sub>     | BiVO <sub>4</sub> |
|-------------------------------|------------------|--------------------------------|---------------------|-------------------|
| Vis-light absorption          | none             | good                           | medium              | medium            |
| e- conductivity               | medium           | poor                           | good                | poor              |
| h <sup>+</sup> conductivity   | poor             | poor                           | medium              | poor              |
| Charge carrier<br>lifetime    | Rather<br>poor   | poor                           | good                | poor              |
| H <sub>2</sub> O ox. kinetics | poor             | poor                           | Surface passivation | poor              |

![](_page_13_Picture_4.jpeg)

### The photoelectrochemical performance of Ti doped hematite

### Method

Pulsed laser deposition Hydrothermal method Deposition annealing process **Sol-gel** 

Atomic layer deposition Atmospheric pressure CVD Electrodeposition; post-growth doping Spray pyrolysis deposition Photocurrent [mA/cm<sup>2</sup> @ V vs. RHE]

0.5 mA/cm<sup>2</sup> @1.4 V 1.91 mA/cm<sup>2</sup>@ 1.23 V 2.8 mA/cm<sup>2</sup>@ 1.23 V **0.1 mA/cm<sup>2</sup>@ 1.25 V** 0.8 mA/cm<sup>2</sup>@ 1.8 V 1.0 mA/cm<sup>2</sup>@ 1.6 V

1.4 mA/cm<sup>2</sup>@ 1.23 V 1.98 mA/cm<sup>2</sup>@ 1.54 V

Atmospheric pressure CVD ~2 mA/cm<sup>2</sup>@ 1.23 V (strong preferential orientation of the [110] axis)

![](_page_14_Picture_11.jpeg)

#### **ETH** zürich

### **Current Research**

![](_page_15_Figure_2.jpeg)

**DMATL** Department of Materials

![](_page_15_Picture_4.jpeg)

D. Monllor-Satoca and M. Bärtsch et al., **2015**, submitted

#### **E** *H* zürich

**Department of Materials** 

### **Current Research**

### Iron oxide based photocatalyst

![](_page_16_Figure_3.jpeg)

### **Current Research**

### Structurally modified TiO<sub>2</sub> photoanode

![](_page_17_Figure_3.jpeg)

The photocurrent density of the hyper-branched photoanode is similar compared to the reference

TiO<sub>2</sub> network structure formed after heating the particles in aq. Solution at 90 °C

![](_page_17_Picture_6.jpeg)

![](_page_17_Picture_9.jpeg)

#### **Current Research**

### Tungsten oxide based photocatalyst

![](_page_18_Figure_3.jpeg)

### EHzürich

### **Current Research**

### **BiVO<sub>4</sub>** Photoanode

![](_page_19_Figure_3.jpeg)

![](_page_20_Figure_2.jpeg)

### Liquid phase processing

- + Scalability
- + Electrolyte Interface
- Interface to current collector
- Grain boundaries

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

![](_page_20_Picture_10.jpeg)

S. Warren et al., Nature Mat., **2013**, 12, 842 source: Thomas Fischer, Uni Köln

electrolyte

Current collector

+ Adhesion to current collector

- Reduced electrolyte interface

Gas phase processing

+ bulk quality

- Scalability

- cost

### **Fundamental Challenges**

![](_page_21_Figure_2.jpeg)

### **Materials Processing**

### Lab scale

![](_page_22_Picture_4.jpeg)

mg - g/day

# PEC System

Capacity: 1-2 kg H<sub>2</sub>/h

Area: 1000 m<sup>2</sup>

### Photoanode

- thickness: 1-10 μm
- average density: 4 g cm<sup>-3</sup>
- → 4.5 45 kg photocatalyst

g - kg/day

Department of Materials

DMAT

source: Thomas Fischer, Uni Köln

Fab scale

kg - t/day

![](_page_23_Picture_0.jpeg)

General Trend Regarding the Hematite Photoanode

![](_page_23_Figure_3.jpeg)

### Hydrogen Capital Cost / Kg

Van de Krol, R., Grätzel, M.: Photoelectrochemical Hydrogen Production, Springer, New York, (2012)

![](_page_23_Picture_6.jpeg)

### **Technological Challenges**

![](_page_24_Figure_2.jpeg)

- More efficient materials are needed, and a target of 8 mA/cm<sup>2</sup> is set to reach >10% efficiency
- Bias requirements must be reduced with minimal resistive voltage drops
- Durability must be increased to 15-20 years
- System costs must be reduced, and a price not exceeding \$ 160/m<sup>2</sup>

![](_page_25_Picture_6.jpeg)

### **E** *H zürich*

### Acknowledgment

### Acknowledgement

Prof. Dr. Markus Niederberger Multimat group SOLAROGENIX Project Partners

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

IWM

SACHTLEBEN

SIEMENS

![](_page_26_Picture_12.jpeg)

![](_page_26_Picture_13.jpeg)

TAMPERE UNIVERSITY OF TECHNOLOGY

# Thanks for your attention!!!

![](_page_27_Picture_2.jpeg)