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Project overview

Financed by CCEM, Swisselectric Research

Phase 1: Distribution grid aspects (2014-15)

Phase 2: Transmission grid aspects (2016-17)

Project partners

ETH Zurich (Research Center for Energy Networks, FEN)

Paul-Scherrer-Institut (Technology-Assessment-Group, TAG)

Paul-Scherrer-Institut (Energy-Economics-Group, EEG)

Hochschule Luzern (HSLU)

CKW, Axpo

Overall goal: Develop a general planning and strategy tool for
distribution grids .
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Grid operation today

Situation today
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Grid operation future

Situation today
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Challenges for the distribution grid operator

Situation today

Especially uncertainty regarding:

the development of future network structure.

the development of future production capacity and demand profiles.

new regulatory framework (Swiss and Europe wide).

As a result uncertainty regarding future operating procedures and
investment decisions.

Integration of RES in the Swiss electricity grid ‖ A. Fuchs ‖ March 15, 2016 7 / 48



Goals of the project

Situation today

Systematic investigation of existing approaches regarding their
applicability for the Swiss distribution grids.

Quantification of costs, risks and chances of each approach.

Determine conclusions and recommendations for the Swiss
distribution and transmission grid operators.

Main result is a road map for a concrete network example and a general
software tool for the investigation of other networks.
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Grid operation and planning ‖ Optimal grid operation
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Grid components

Grid operation and planning ‖ Optimal grid operation
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Figure: Load profile (left, blue), PV profile (left , green), Price profile at the trafo (right)
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Classical distribution grid

Grid operation and planning ‖ Optimal grid operation

Aggregated loads at the trafo

Load and price profile are given

Controllable quantities: none
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Classical distribution grid - example

Grid operation and planning ‖ Optimal grid operation

Load and losses compensated by the trafo
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Figure: Load profile (red) and trafo power (blue).
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Classical distribution grid with PV

Grid operation and planning ‖ Optimal grid operation

Aggregated loads at the trafo

Profiles of Load, PV and price are given

Controllable quantities: none

Integration of RES in the Swiss electricity grid ‖ A. Fuchs ‖ March 15, 2016 14 / 48



Classical distribution grid with PV - example

Grid operation and planning ‖ Optimal grid operation

Load and losses compensated by the trafo and the PV source
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Figure: Load profile (red) and trafo power (blue), PV-Power (black).
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Distribution grid with controllable PV

Grid operation and planning ‖ Optimal grid operation

Aggregated loads at the trafo

Profiles of Load, PV and price are given

Controllable quantities: PV curtailment
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Distribution grid with controllable PV - example

Grid operation and planning ‖ Optimal grid operation

Load and losses compensated by the trafo and the PV source

PV peak power brings network to its limits (thermal or voltage).
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Figure: Load profile (red) and trafo power (blue), PV-Power (black), available PV power (black
dashed).
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Distribution grid with controllable PV and batteries

Grid operation and planning ‖ Optimal grid operation

Aggregated loads at the trafo

Profiles of Load, PV and price are given

Controllable quantities: PV curtailment, battery power
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Distribution grid with controllable PV and batteries -
example

Grid operation and planning ‖ Optimal grid operation

Load and losses compensated by the trafo and the PV source
PV peak power brings network to its limits (thermal or voltage).
Battery allows increased usage of PV and cheap electricity from the
feeder.
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Figure: Load profile (red) and trafo power (blue), PV-Power (black), available PV power (black
dashed), battery power (green).
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Distribution grid with controllable PV and batteries -
example

Grid operation and planning ‖ Optimal grid operation

Planning algorithm considers state-of-charge, power limits, efficiency
of the batteries.
Planning algorithm can be repeated hourly to include new predictions
(weather, price, demand, ...).
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Figure: Battery state-of-charge (blue) and charge limits (blue dashed).
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Comparison of energy costs

Grid operation and planning ‖ Optimal grid operation
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Figure: Cumulative energy costs no PV (red), with PV (blue), with controlled PV (black), with
controlled PV and storage (green).

Integration of RES in the Swiss electricity grid ‖ A. Fuchs ‖ March 15, 2016 21 / 48



Grid operation - Mathematical problem formulation

Grid operation and planning ‖ Optimal grid operation

J ∗ =
(

min
u1,...,uN

N∑
i=1

li(xi , ui)
)

s.t. ∀i = 1, ..., N : g(xi , ui) ≤ 0, h(xi , ui) = 0,

Nonlinear multi-period AC power flow problem as extension to the
software Matpower (no DC power flow approximation necessary)

Efficient Parallelization possible with MATPOWER / IPOPT /
PARDISO (http://www.pardiso-project.org)

Further improvement of the solution speed possible by exploiting the
problem structure
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Overview

Grid operation and planning ‖ Optimal grid planning

Investigation of CKW distribution grids near Luzern.

Assumption: High increase of PV injection in the distribution grid

Figure: Distribution grid example Trafos (black and blue), 20 kV lines (red), 400 V lines (green).

Integration of RES in the Swiss electricity grid ‖ A. Fuchs ‖ March 15, 2016 24 / 48



Solution approaches for PV integration

Grid operation and planning ‖ Optimal grid planning

Several academic methods and general approaches with reference
systems available:

Grid extension, operation and business as usual

Usage of storage elements

Load management, smart metering

Production management and control
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Grid planning - Mathematical problem formulation

Grid operation and planning ‖ Optimal grid planning

J ∗ = min
p

(
min

u1,...,uN

N∑
i=1

li(xi , ui , p)
)

(1)

s.t. ∀i = 1, ..., N : g(xi , ui , p) ≤ 0, h(xi , ui , p) = 0, (2)

Planning parameter p includes grid extension, degree of PV
curtailment and size/location of the storage units

Can be included in the basic multi-period OPF problem formulation

Is solved for a scenario of family of scenarios
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PV-injection without storage

Results ‖ Result structure
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Figure: Distribution grid example Sursee: Maximum grid capacity (black), maximum PV-Injection
without PV-curtailment (blue), increased PV-injection with PV-curtailment (green), strongly
increased PV-injection with PV-control (red), available PV-capacity (dashed).
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PV-injection without storage

Results ‖ Result structure
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Figure: Distribution grid example Sursee: Maximum PV injection without storage (blue),
increased PV-injection with storage for 30 minutes PV (green), with storage for 60 minutes PV
(red), available PV-capacity (dashed).
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Placement and sizing of storage units

Results ‖ Result structure
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Figure: Distribution of the storage sizes at different nodes of the grid for a total storage capacity
of Etotal = 33MWh.

→ Storages are placed in the entire grid.
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Placement and sizing of storage units

Results ‖ Result structure

0 5 10 15 20 25 30 35
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

MWh

co
rr

el
at

io
n

Figure: Correlation between optimal storage distribution and installed PV capacity PPV,rated at
every node, as a function of the total storage capacity Etotal.

→ Storages are sized according to the size of nearby PV units.
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Comparison of PV curtailment, storage and network
extension

Results ‖ Result structure
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Figure: Ratio of curtailed PV power as function of the total storage capacity Etotal for different
degrees of grid expansion KG .

→ Grid extension results in strong reduction of PV curtailment.
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Decision surface for PV integration strategies

Results ‖ Result structure
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Figure: Daily operational grid costs for different strategy combinations. Individual simulations
(blue stars) and approximation by a decision surface. Assumed cost parameters are the average
electricity cost of c̄ = 55CHF/MWh, grid degradation costs of pG = 55CHF/(km · day) and
storage degradation costs of pS = 70CHF/(MWh · day) .
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Comparison of PV integration strategies

Results ‖ Result structure

Trade-off between storage costs pS, grid degradation costs pG and
electricity costs c̄.
Minimum sum of all three costs is always an extreme point of the
decision surface (corresponds to a single pure strategy).

Linear criterion for the optimality of each strategy:
pS < 1.29pG and pS < 1.16c̄: Use only storage units.
pG < 0.77pS and pG < 0.90c̄: Use only grid extension.
c̄ < 1.12pG and c̄ < 0.86PS: Use only PV curtailment.

Without the linear approximation the minimum total cost is also reached
at a combination of different strategies.
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Simulation example for fixed cost parameters

Results ‖ Result interpretation
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Two-day simulation example
of the CKW grid Ettiswil with
an increased PV production
and high demand: Power
demand and import (top).
Cumulative electricity and
operational costs (bottom).
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Fixed simulation parameter

Results ‖ Result interpretation

Parameter are fixed before the simulation.

Simulation of the Sursee region (summer and winter day, 48 hours)

PV integration potential of today’s grid is determined and increased

Load profile of the households are maximized and simulated with
coincident factor (25% base load and random distribution )
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Variable simulation parameter

Results ‖ Result interpretation

Only a range of simulation parameters has to be selected.

Electricity price (20 - 80 CHF/MWh)

Battery cost model: J = bĒ(SOC − a)2 + cP + dĒ
storage size Ē
State-of-charge SOC
Load power P

Parameter {a, b, c, d} can be fitted to multiple battery models and
technologies.

Grid extension is a constant increase of the trafos, lines and cables .

PV curtailment is not remunerated, but enters the planning decision
through opportunity costs.
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Full operational costs

Results ‖ Result interpretation
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Figure: Optimal grid planning with variable battery parameters. High demand (solid lines) and
low demand (dashed lines). Low electricity price (left) and high electricity price (right). No grid
extension.
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Sizing of installed storage units

Results ‖ Result interpretation
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Figure: Optimal grid planning with variable battery parameters. High demand (solid lines) and
low demand (dashed lines). Low electricity price (left) and high electricity price (right). No grid
extension.
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Curtailed PV power

Results ‖ Result interpretation
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Figure: Optimal grid planning with variable battery parameters. High demand (solid lines) and
low demand (dashed lines). Low electricity price (left) and high electricity price (right). No grid
extension.
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Results

Results ‖ Result interpretation

Simulation results form a decision surface, depending on multiple
simulation parameter.

Based on the decision surface, the grid owner can quickly make
planning decisions for selected parameter values.
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are determined by the
optimization.

Control of the controllable
quantities are part of the
optimization.
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Selected observations

Results ‖ Result interpretation

Storage technologies are only interesting for further decrease of
storage costs or higher electricity costs.

Evaluation of the grid extension depends on the costs of the
individual grid components.

High potential for controlled loads and PV components (currently
simulated without additional costs).
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Summary

Summary

Unified problem formulation for the grid operation and planning.

Optimal usage of available assets to compute a Pareto decision
surface

AC power flow extension for planning and multi period scenarios .

Large multi-period simulations of AC power flow problems (1000
nodes, 1000 time steps) become tractable with dedicated solvers.

Integration of RES in the Swiss electricity grid ‖ A. Fuchs ‖ March 15, 2016 46 / 48



Ongoing work

Summary

Quantitative:

Comparison of economic and CO2 objective

Qualitative:

Robust plan with scenario uncertainty

Long term transfer of the methods to general distribution and
transmission grids
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Thank you for your attention

Summary

FEN - Research Center for Energy Networks

ETH Zentrum SOI C 1
CH-8092 Zurich

Dr. Alexander Fuchs
Sonneggstrasse 28
Tel: +41 44 632 28 60
Fax: +41 44 632 13 30
E-mail: fuchs@fen.ethz.ch
Web: www.fen.ethz.ch

Support through the Competence Center for Energy and Mobility
Project ISCHESS: Integration of stochastic renewables in the Swiss electricity supply system .
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