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There is a need to find alternatives to fossil fuels and nuclear power for different

reasons:

• global warming (reduce CO2 and other greenhouse gases emissions)

• fossil resources depletion & rising costs of oil and gas
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There is a need to find alternatives to fossil fuels and nuclear power for different

reasons:

• Kyoto protocol (2005) places stringent restrictions on the CO2 emission →

disadvantages coal and promotes nuclear, wind, solar and geothermal

• Fukushima accident (2011) and decision of the Swiss Federal Council to phase-out

the nuclear power plants (without strict deadlines besides for Mühleberg [1])
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Switzerland has 5 nuclear power plants and an installed capacity of 3278 MWe.



Motivation (3/3)

Institute of Process Engineering Thierry Meier meierthi@ethz.ch 2016-04-12 5

Switzerland has 5 nuclear power plants and an installed capacity of 3278 MWe.

In 2014, nuclear power contributed to ∼ 40% of the Swiss electricity production

24,7%

31,7%

37,9%nuclear power

hydro (dams)

hydro (rivers)

2.2% renewables
combustion (not renewable) 1.9%

combustion (renewable) 1.6%



Motivation (3/3)

Institute of Process Engineering Thierry Meier meierthi@ethz.ch 2016-04-12 5

Switzerland has 5 nuclear power plants and an installed capacity of 3278 MWe.

In 2014, nuclear power contributed to ∼ 40% of the Swiss electricity production

Mühleberg will go off-grid by December 20, 2019 subtracting its 373 MWe from the grid

→ how to sustain a stable electrical grid? EU or self production
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1. Formation of the earth, gravitational collapse of dust / gas and latent heat of

formation of the solid core.

2. Decay of radioactive elements in minerals (about 50% of the total surface heat

flux) [2]

about 99 wt. % of the

earth is hotter than

1000 ◦C
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1. Formation of the earth, gravitational collapse of dust / gas and latent heat of

formation of the solid core.

2. Decay of radioactive elements in minerals (about 50% of the total surface heat

flux) [2]

about 99 wt. % of the

earth is hotter than

1000 ◦C → resource is in

principle infinite
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Geothermal energy is located in the underground in the form of hot water

reservoirs and hot dry rocks. Accessing the resource requires drilling
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Drill rig ITAG 23, e.g. St-Gallen:

• Iron structure which supports the top

drive, drill pipes and bottom hole

assembly is called the derrick (45 m

& 590 t hook load capacity)
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• top-drive (∼ 750 kW & torque

75 kN m) rotates the drill string

(∼ 40-70 rpm), moves up and down

the derrick and is driven hydraulically
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• drill pipe usually 31 foot long

(∼ 9 m), different grades, diameter (2”

to 6 5/8”). Using a top drive, joints

are pre-assembled by 3 (triple stand)

and stored vertically in the pipe rack

next to the top drive.
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Bottom hole assembly (e.g. Blanc-Mesnil):

• heavy weight drill pipe (HWDP),

• hydraulic jar,

• measurement while drilling (MWD),

• stabilizer,

• mud motor,

• drill bit,

drill pipe

heavy weight drill pipe (HWDP)

hydraulic jar

heavy weight drill pipe (HWDP)

measurement while drilling (MWD)

stabilizer

downhole motor (DHM)

bearing stabilizer

drill bit 

(PDC,diamond, tricone,..)
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Bottom hole assembly:

• drill bit, tricone steel tooth (e.g.

Blanc-Mesnil) or with tungsten carbide

inserts, soft to very hard formations,

low penetration rate 2-4 m/h,

economical
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Bottom hole assembly:

• drill bit, polycrystalline diamond

compact (PDC), soft formations (e.g.

sediments, shale), high penetration

rate 6-10 m/h, expensive
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Bottom hole assembly:

• drill bit, coring bit (e.g. GUL), soft to

very hard formations, medium

penetration rate 4-6 m/h, to satisfy

geologists.
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Mud (e.g. water & additives,

non-Newtonian, shear-thinning):

• circulation loop: mud tank → mud

pump → derrick → drill pipe → BHA

→ drill bit → back to the mud tank.

• the mud tank level is constantly

monitored to spot circulation loss or

incoming fluid in the well (“kick”)

• stabilize the well, prevent infiltration,

cool and lubricate the bit, transport

the cuttings

mud pump

mud tank

derrick

drill pipe

bottom hole assembly

drill bit
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Mud (e.g. water & additives):

• triplex mud pump (∼ 17 t, 750 kW,

140 SPM and 40 L/s to 160 bar.

Typically, 2 or 3 mud pumps are used

in parallel.
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Casing and cementing:

• different casing sections (conductor,

surface, intermediate and production)

have different purpose (stabilize the

well, prevent fresh water

contamination and produce the

reservoir)
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Casing and cementing:

• different casing sections (conductor,

surface, intermediate and production)

have different purpose (stabilize the

well, prevent fresh water

contamination and produce the

reservoir)

• casing: K-55 grade (two green lines)

and casing collar

• casing shoe with check valve →

guide the casing and float
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Casing and cementing (e.g. casing

program):

• regular diameter wells have a 9 5/8”

production casing

• large diameter wells take about the

same time to drill but cost ∼ 30%

more and are less stable

• large diameter wells are preferred for

projects with down-hole pumps
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Casing and cementing:

• cementing is a time consuming (i.e.

expensive) and critical operation

• once the casing is completely

installed and secured, logs are run to

make sure cement is dried

• finally the well is completed and the

production can start start
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Summary

• for a rate of penetration (ROP) in the range of 5 to

10 m/h only 15% of the rig time is used for drilling and

the remaining 85% is spent for: cementing, tripping,

fishing, logging, coring etc.

• drilling is complex and mostly developed by oil & gas

companies (i.e. for sediments)

• it remains very expensive for geothermal projects which

target hot dry rock reservoirs (EGS) → alternative

drilling technique

https://www.youtube.com/watch?v=i0QvkwXR5AM
https://www.youtube.com/watch?v=i0QvkwXR5AM
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Hydrothermal systems

• circulation possible in the aquifer (e.g.

Paris, Munich, Lardarello (IT),

Iceland)

• stimulation only needed if productivity

index (L/(s MPa)) is too low (Paris,

Iceland).

• most of geothermal systems

worldwide
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Hydrothermal systems - advantages

• heat exchanger is free

• resources in volcanic area have

usually high enthalpy

Hydrothermal systems -

disadvantages

• location dependent

• sometimes difficult to identify the

resource
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Petrothermal systems (EGS)

• doublet needed (two wells)

• artificial underground heat exchanger

• stimulation is important and critical to

obtain the right reservoir parameters

(swept area and productivity)
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Petrothermal systems - advantages

• independent of geographic location,

i.e. available everywhere

• less exploration risks

Petrothermal systems - disadvantages

• expensive wells (i.e. deep) in the

crystalline basement are required

(∼e 15 M for 5 km well)

• stimulation is arbitrary
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Dry steam power plant

• artesian (i.e. pump not needed to

produce the well)

• direct use of the resource (ideal

case)

• higher temperature results in a better

Carnot efficiency (e.g. Tp=270 ◦C &

Ti=50 ◦C, η ≤ 40.5%)

• e.g. Lardarello (IT), Geysers (CA,

USA)
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Dry steam well in Lardarello (IT)

• Tp up to 150-270 ◦C

• well is produced by choking the flow

at the wellhead

• pressure of the production fluid fed to

the plant is usually 0.2-2 MPa

• 221 wells are producing 800 MWe,

about 25% of Tuscany electricity

demand

• standardized 20 MWe power units
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Flash steam power plant

• flash and double flash units

(depending on the brine temperature

180 ≤ Tp ≤ 250 ◦C)

• e.g. El Salvador, Tp = 250 ◦C two

30 MWe single flash units and one

35 MWe double flash unit [3].
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Flash steam power plant in Iceland

• Tp = 225 ◦C

• shallow wells but large geothermal

gradient gradient (over 200 ◦C/km at

some places in Iceland)

• 7 wells feed one generator

• outlet turbine steam pressure kept at

0.01 MPa with a flow of 1700 kg/s of

sea-water at 8 ◦C pumped through

the tubes of the condenser
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• binary cycles (ORC and Kalina)

100 ≤ Tp ≤ 180 ◦C

• low enthalpy resource

• downhole pump (submersible)

usually needed

• e.g. Landau (DE) and

Soultz-sous-forêt (European

research project)

• Ti = 50 ◦C, 0.13 ≤ η ≤ 0.28
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ORC unit in Landau (DE)

• single doublet (depth 3000 m)

• Tp ≈ 160 ◦C, V̇p = 50 − 80 L/s

• co-generation ORC plant (∼ 3 MWe

and heat for about 300 houses)
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ORC unit in Landau (DE)

• single doublet (depth 3000 m)

• Tp ≈ 160 ◦C, V̇p = 50 − 80 L/s

• co-generation ORC plant (∼ 3 MWe

and heat for about 300 houses)
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• low surface footprint (e.g. heating

district in Reykjavik, IS, 130 ◦C,

330 L/s)

• baseload energy source

• co-generation (electricity + heat)

• high feed-in tariff and risk guarantee

(50%) financed from the network

surcharge fund (CH)
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• renewable time scale of geothermal is

much larger than for solar and wind

• thermodynamic mismatch: heat is

transformed to mechanical and then to

electricity. . .

• large investment costs at high risk

• global solution (EGS) is still at its

infancy

• MWe/Me investment is unfavorable

compared to other renewables
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temperature map in Europe extrapolated to 5 km
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Surface heat flux in CH. None of the power plant will be able to operate for a

period longer than 20 years and new wells will have to be drilled.
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Geothermal systems in Switzerland and ongoing projects

1. 1993: Riehen (BS) doublet produces 2.5 MWth for a local heating district system.

The pump delivers 20 L/s of water at 68 ◦C. The water is injected at 25 ◦C back in

the aquifer. Less successful in GE and ZH.
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Geothermal systems in Switzerland and ongoing projects

1. 1993: Riehen (BS) doublet produces 2.5 MWth for a local heating district system.

The pump delivers 20 L/s of water at 68 ◦C. The water is injected at 25 ◦C back in

the aquifer. Less successful in GE and ZH.

2. 2009: 180 ◦C measured at the bottom of the Basel (∼ 5 km deep)

3. 2014: Hydrothermal project in St-Gallen was stopped because of the low reservoir

permeability

4. 2020: EGS project of Geo Energy Suisse in Haute Sornes (JU) is ongoing. Target

is to produce 5 MWe

5. 2020: Lavey-les-bains (VD) 110 ◦C, 40 L/s, ORC power plant 250 kWe ongoing...



Summary (1/2)

Institute of Process Engineering Thierry Meier meierthi@ethz.ch 2016-04-12 33

• access to the resource is expensive (i.e. drilling) and not given i.e. Riehen (BS),

Thonex (GE) and Triemli (ZH)
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possible as soon as the construction of the downhole heat exchanger is controlled.
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• access to the resource is expensive (i.e. drilling) and not given i.e. Riehen (BS),

Thonex (GE) and Triemli (ZH)

• construction of the heat exchanger is still at its infancy (none of the research system

reached the targets, i.e. Qp ≥ 40 L/s & reservoir impedance < 0.2 L/(s MPa))

• with the moderate geothermal gradient (31-35 ◦C/km) and surface heat flux

exceeding (100 mW/m2) over large areas, EGS systems in Switzerland will be

possible as soon as the construction of the downhole heat exchanger is controlled.

• therefore, it is likely that geothermal energy will contribute to the swiss electricity

production by 2050!



Summary (2/2)

Thank you for your attention!

Any question?
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Backups
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Drilling progress chart (Iceland)
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