

HARNESSING THE ENERGY OF VIBRATIONS FRONTIERS IN ENERGY RESEARCH

André Foehr foehra@ethz.ch

MECH

MAT

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

ROADMAP

Introduction

- Motivation
- Current approach
- Limitations
- Our approach

Harvesters

Surrounding structure

NOT AVAILABLE ONLINE

http://www.rajant.com/wp-content/uploads/2014/12/reliability-rajant-mesh-wireless-network.jpg

WHERE?

Medical applications

Sources: http://www.tssphoto.com/2009/11/13/golden-gate-bridge/ http://cosmolearning.org/images_dir/education/photos/606-thumbnail-w700.jpg http://www.travels321.com/glacier/ http://www.wired.com/2015/05/future-wind-turbines-no-blades/

http://newsroom.medtronic.com/phoenix.zhtml?c=251324&p=irol-mediakit&ID=Pacemakers

http://www.thegoodshoppingguide.com/wp-content/uploads/2013/03/Battery-Recycling.jpg

11

2 S

annume

and the second

STIDISUS

LING

LOVEDE

N REAL PROPERTY

TOTOO

E

773'

DURACELL®

ALL DE LE DE

DUPACELL

-----To the second DURACELL

DURACELL

http://clipartcow.com/flames-clip-art-image-23968/

http://cliparts.co/cliparts/dc4/oBa/dc4oBaeei.gif

WHY VIBRATIONS?

Medical applications

Sources: http://www.tssphoto.com/2009/11/13/golden-gate-bridge/ http://cosmolearning.org/images_dir/education/photos/606-thumbnail-w700.jpg http://www.travels321.com/glacier/ http://www.wired.com/2015/05/future-wind-turbines-no-blades/ http://newsroom.medtronic.com/phoenix.zhtml?c=251324&p=irol-mediakit&ID=Pacemakers

AMBIENT VIBRATIONS AS POWER SOURCE!

Accessible ambient vibrations are:

- Wideband,
- Incoherent in phase,
- Noisy, and
- Have low-frequency content.

Source: C. Bohn, A. Cortabarria, V. Härtel, and K. Kowalczyk, Control Engineering Practice, vol. 12, pp. 1029-1039, 2004.

HARVESTING VIBRATIONS

HARVESTING VIBRATIONS

EXISTING SOLUTION: LINEAR ENERGY HARVESTING

Good performance only in a narrow operating range

Harvesting low frequencies requires large devices

Simple to understand and design

See also: A. Erturk, D. J. Inman, "Piezoelectric energy harvesting", 2011.

E.g.: Mide Volture harvesting devices

Source: http://media.digikey.com/Photos/Mide%20Tech%20Photos/V20W.jpg

LINEAR RESONANCE: BANDWIDTH

Q-Factor Bandwidth tradeoff

REALITY

TARGET PROBLEM

Tabletop sized setups

- Wideband harvester
 - Piezoelectric
- Energy localization

HARVESTING DEVICES

ROADMAP: HARVESTING

Objective

Current Approaches

NOT AVAILABLE ONLINE

OBJECTIVES: HARVESTER

Wideband response

CANTILEVER ARRAYS

H. XUE, ET AL., "BROADBAND PIEZOELECTRIC ENERGY HARVESTING DEVICES USING MULTIPLE BIMORPHS WITH DIFFERENT OPERATING FREQUENCIES.", 2008.

DUFFING-OSCILLATORS

A. HAJATI AND S.-G. KIM, "ULTRA-WIDE BANDWIDTH PIEZOELECTRIC ENERGY HARVESTING.", 2011.

R. HARNE AND K. WANG, "A REVIEW OF THE RECENT RESEARCH ON VIBRATION ENERGY HARVESTING VIA BISTABLE SYSTEMS.", 2013.

HARVESTERS: PLANNED WORK

NOT AVAILABLE ONLINE

VIBRATION LOCALIZATION

ROADMAP: LOCALIZATION

Motivation & Aim

Metamaterials

Tunable Metamaterials

NOT AVAILABLE ONLINE

WHAT TO OPTIMIZE

Complete structure

Local structure

Material vs. mechanical design

OBJECTIVES: SURROUNDING MATERIAL

Amplify

Focus energy of vibrations

For changing system properties

Tuneability

NOT AVAILABLE ONLINE

METAMATERIALS

Periodic structures with unexpected properties

LOCALLY RESONANT METAMATERIALS

Z. LIU, ET AL., "LOCALLY RESONANT SONIC MATERIALS.", 2000.

METAMATERIALS: WAVE GUIDING

A. KHELIF, ET AL., "GUIDING AND BENDING OF ACOUSTIC WAVES IN HIGHLY CONFINED PHONONIC CRYSTAL WAVEGUIDES.", 2004.

METAMATERIALS: FOCUSING

D. TORRENT, AND J. SÁNCHEZ-DEHESA, "ACOUSTIC METAMATERIALS FOR NEW TWO-DIMENSIONAL SONIC DEVICES.", 2007.

OUR APPROACH

NOT AVAILABLE ONLINE

TUNABILITY OF METAMATERIALS

HERTZIAN CONTACT

N. BOECHLER, ET AL., "TUNABLE VIBRATIONAL BAND GAPS IN ONE-DIMENSIONAL DIATOMIC GRANULAR CRYSTALS WITH THREE-PARTICLE UNIT CELLS.", 2011.

BUCKLING

P. WANG, ET AL., "HARNESSING BUCKLING TO DESIGN TUNABLE LOCALLY RESONANT ACOUSTIC METAMATERIALS.", 2014.

ELECTROMECHANICAL COUPLING

A. BERGAMINI, ET AL., "PHONONIC CRYSTAL WITH ADAPTIVE CONNECTIVITY.", 2014.

NOT AVAILABLE ONLINE

With Dr. Osama R. Bilal Prof. Chiara Dario

ACKNOWLEDGEMENTS

The Entire Daraio Group

- Osama Bilal
- Marc Serra Garcia
- Joseph Lydon*
- Miguel Moleron

Prof. Christopher Chong, Bowdoin College, Maine, USA

Funding:

- ETH Research Grant ETH-24 15-2
- ETH Postdoctoral Fellowship FEL-26 15-2

QUESTIONS?