Target-oriented imaging and velocity analysis using Marchenko-redatumed data

Constantin Mildner

Frontiers in Energy Research

... imaging and velocity analysis ...

Energy Research

Institute of Geophysics - D-ERDW - EEG

World primary energy consumption

Introduction

Introduction

Fields of application

 \rightarrow Detailed knowledge of the subsurface required

 Seismic data and images

 Marchenko redatuming and imaging

• Velocity analysis using redatumed data

Acquiring seismic data

?

Acquiring seismic data

informatik.hu-berlin.de

Acquiring seismic data

Surface reflection response for one source position

Modeling seismic data

Modeling seismic data with finite differences

Modeling seismic data: data example

Modeling seismic data: image example

Creating images with seismic data: Reverse time migration (RTM)

Creating images with seismic data: Reverse time migration (RTM)

Image created with RTM and 901 shot positions

Image: primary reflections and internal multiples

Image: primary reflections and internal multiples

Image: primary reflections and internal multiples

Image: sources and receivers in the subsurface

•

 Seismic data and images

• Velocity analysis using redatumed data

Marchenko redatuming

and imaging

Marchenko redatuming: a two-step redatuming process

(Wapenaar et al., 2014; Broggini et al., 2014)

- (i) Redatuming of sources (with an iterative Marchenko scheme)
 - required inputs:
 - Surface reflection response (a)
 - Estimate of first arrival (b)
 - results in $G^+(x_{VS}, x, t)$ and $G^-(x_{VS}, x, t)$

Marchenko redatuming: a two-step redatuming process

(i) Redatuming of sources (with an iterative Marchenko scheme)

- required inputs:
 - Surface reflection response (a)
 - Estimate of first arrival (b)
- results in $G^+(x_{VS}, x, t)$ and $G^-(x_{VS}, x, t)$
- (ii) Redatuming of receivers with multi-dimensional deconvolution (MDD)
 - using $G^+(x_{VS}, x, t)$ and $G^-(x_{VS}, x, t)$
 - results in reflection response for a medium with a homogenous overburden

Marchenko redatuming: a two-step redatuming process

- (i) Redatuming of sources (with an iterative Marchenko scheme)
 - required inputs:
 - Surface reflection response (a)
 - Estimate of first arrival (b)
 - results in $G^+(x_{VS}, x, t)$ and $G^-(x_{VS}, x, t)$
- (ii) Redatuming of receivers with multi-dimensional deconvolution (MDD)
 - using $G^+(x_{VS}, x, t)$ and $G^-(x_{VS}, x, t)$
 - results in reflection response for a medium with a homogenous overburden

Marchenko redatuming: imaging with MDD and a 2-D array of virtual sources

component of redatumed reflection response

Marchenko redatuming: imaging with MDD and RTM

Marchenko redatuming and imaging

Images created with RTM using surface data and Marchenko-redatumed data

 Seismic data and images

 Marchenko redatuming and imaging

Velocity analysis using

redatumed data

•

Marchenko redatuming: imaging with MDD and RTM

$$I(x,z) = \sum_{j=1}^{N_S} \sum_t S_j(x,z,t) R_j(x,z,t)$$

Velocity analysis using redatumed data Angle-domain common image gathers (ADCIG)

$$I(x,z) = \sum_{j=1}^{N_S} \sum_t S_j(x,z,t) R_j(x,z,t)$$

Velocity analysis using redatumed data Angle-domain common image gathers (ADCIG)

$$I(x, z, h) = \sum_{j=1}^{N_S} \sum_t S_j(x - h, z, t) R_j(x + h, z, t)$$

Velocity analysis using redatumed data Angle-domain common image gathers (ADCIG)

$$I(x, z, h) = \sum_{j=1}^{N_s} \sum_{t} S_j(x - h, z, t) R_j(x + h, z, t)$$

slant stacking
$$I(x, \overline{z}, p) = \int dh \int dz \, \delta(z - \overline{z} - ph) \, I(x, z, h)$$

Velocity analysis using redatumed data Angle-domain common image gathers (ADCIG)

$$I(x, z, h) = \sum_{j=1}^{N_S} \sum_{t} S_j(x - h, z, t) R_j(x + h, z, t)$$

slant stacking
$$I(x, \overline{z}, p) = \int dh \int dz \, \delta(z - \overline{z} - ph) \, I(x, z, h)$$

$$p = -\tan \theta = \frac{\partial z}{\partial h}$$

Angle-domain common image gather $I(x, \overline{z}, \theta)$

Velocity analysis using redatumed data ADCIG using true velocities

 \rightarrow Flat reflections

Velocity analysis using redatumed data ADCIG using incorrect velocities for RTM

 \rightarrow Residual moveout

Velocity analysis using redatumed data Residual moveout for velocity correction

Residual moveout in ADCIG's (Biondi and Symes, 2004):

 $\Delta \boldsymbol{n}_{RMO} = (\rho - 1)tan^2(\theta)z_0\boldsymbol{n}$

 z_0 : depth of reflector at $\theta = 0$

Slowness ratio
$$\rho = \frac{p_{wrong}}{p_{true}} \approx 0.95$$

Slowness $p = \frac{1}{v}$

Velocity analysis using redatumed data Residual moveout for velocity correction: semblance based analysis

Semblance: Quantitative measure of the coherence of seismic data

 $\Delta \boldsymbol{n}_{RMO} = (\rho - 1)tan^2(\theta)z_0\boldsymbol{n}$

Velocity analysis using redatumed data Residual moveout for velocity correction: semblance based analysis

Semblance: Quantitative measure of the coherence of seismic data

 $\Delta \boldsymbol{n}_{RMO} = (\rho - 1)tan^2(\theta)z_0\boldsymbol{n}$

- 1. Correct moveout in ADCIG for different trial slowness ratios ρ
- 2. Calculate semblance $S(z, \rho)$ for each event in the ADCIG (z_0)
- 3. Obtain slowness ratio ρ by picking $\rho(semblance = max)$

Velocity analysis using redatumed data Residual moveout for velocity correction: semblance based analysis

Semblance: Quantitative measure of the coherence of seismic data

 $\Delta \boldsymbol{n}_{RMO} = (\rho - 1)tan^2(\theta)z_0\boldsymbol{n}$

- 1. Correct moveout in ADCIG for different trial slowness ratios ρ
- 2. Calculate semblance $S(z, \rho)$ for each event in the ADCIG (z_0)
- 3. Obtain slowness ratio ρ by picking $\rho(semblance = max)$

Velocity analysis using redatumed data Incorrect velocities for redatuming and RTM

Incorrect velocity model used for redatuming and migration

Velocity analysis using redatumed data Incorrect velocities for redatuming and RTM

Residual moveout equation:

Velocity analysis using redatumed data Incorrect velocities for redatuming and RTM

Extended residual moveout equation:

Velocity analysis using redatumed data Incorrect velocities for redatuming and RTM: 2D semblance analysis

 $\Delta \boldsymbol{n}_{RMO} = [(\rho_{Marchenko} - 1)z_{datum} + (\rho_{SSF} - 1)(z_0 - z_{datum})]tan^2(\theta)\boldsymbol{n}$

Second reflection

Velocity analysis using redatumed data Incorrect velocities for redatuming and RTM: 2D semblance analysis

 $\Delta \boldsymbol{n}_{RMO} = [(\rho_{Marchenko} - 1)z_{datum} + (\rho_{SSF} - 1)(z_0 - z_{datum})]tan^2(\theta)\boldsymbol{n}$

Velocity analysis using redatumed data Incorrect velocities for redatuming and RTM: 2D semblance analysis

 $\Delta \boldsymbol{n}_{RMO} = [(0.95 - 1)z_{datum} + (\rho_{SSF} - 1)(z_0 - z_{datum})]tan^2(\theta)\boldsymbol{n}$

$$vel_{SSF}^{updated} = \rho \cdot vel_{SSF}$$

Comparison of surface and redatumed data

Comparison of surface and redatumed data

Comparison of surface and redatumed data

True velocity Starting/updated velocity

More complex velocity model

(Yang, et al., 2014)

Image of complex model

⁽Yang, et al., 2014)

- Marchenko redatumed data can be used to create images free of internal multiples
- First application of Marchenko redatumed data for velocity analysis using ADCIG's
- Redatuming is sensitive to incorrect velocities
- Velocity errors can be referred by combining different reflections in ADCIG's leading to correct velocity updates
- → Marchenko redatuming enables more accurate imaging and analysis of target zone