

Black and brown carbon: small particles with big issues

Jinfeng Yuan 20170425

Outline

- General introduction of Black carbon and Brown carbon
- Black carbon research—Introduction and my ongoing projects
- Brown carbon absorption an report of previous work

Atmospheric aerosols

Black carbon and brown carbon are mainly in fine particles.

FIGURE 2.16 Idealized schematic of the distribution of particle surface area of an atmospheric aerosol (Whitby and Cantrell, 1976). Principal modes, sources, and particle formation and removal mechanisms are indicated.

Classification of carbonaceous aerosol

	Thermochemical Classification	Molecular Structures	Optical Classification	
Chem. Refractiveness	Elemental Carbon (EC)	Graphene Layers (graphitic or turbostratic)	Black Carbon (BC)	\sum
	Refractory Organic Carbon	Polycyclic Aromatics, Humic-Like Substances, Biopolymers, etc.	Colored Organic Carbon	bsorption
	(Nonrefractory) Organic Carbon (OC)	Low-Molecular-Mass Hydrocarbons and Derivatives	(Colorless) Organic Carbon (OC)	Optical A

(Ulrich Poschl, AC, 2005)

Black carbon

Source and formation of BC

(google images)

(black formation from combustion-google image)

Optical properties

(*Watson et al., 2002*)

- **BC** can absorption light at all wavelengths.
- Black carbon is the dominant absorbing component since it has the strongest mass absorption cross-section

Atmospheric aging- properties change

Complicated Optical properties through aging: coating and morphology effect

Lensing effect

(Sedlacek and Subramanianv's slide)

Uncertainty regarding the contribution of soot to aerosol radiative forcing is large due to complicated optical properties of BC!

Complicated Optical properties through aging: size effect

- Size distribution shift to larger size during aging;
- There is limit of enhancement due to size.
- Theoretically, the smaller core with bigger coating has the largest absorption 10

Influence-air quality and visibility

(visibility comparison of Beijing, google image)

Influence-air quality and visibility

(example from a Chinese campaign, 2012)

Particle absorption is not negligible

Black carbon is the dominant absorbing component

Influence on Climate

Direct effect:

Scattering and absorption of incoming sunlight by aerosol particles

Indirect effect:

The number concentration of cloud condensation nuclei (CCN) influences the cloud droplet size and thereby changes the cloud albedo and lifetime

Large droplets → Weak reflection

Small droplets → Strong reflection

Influence on polar climate: direct

Figure 4: Predicted Arctic-mean temperature response [°C] to snowpack heating by black carbon and dust during Pre-Industrial, Present Day, and 2050 IPCC A2 climates. (*Zender and Flanner*, Manuscript in Preparation)

Radiative forcing and uncertainty

- **BC** has been the second contributor for climate warming after CO2.
- Reducing BC is promising for the mitigation of climate warming since the life time of BC is much shorter than CO2.
- Big uncertainties remains due to complicated optical properties of BC and measurement.

Other influence: health

(Pope, 2006)

- Small particles can go through alveoli and into flood;
- BC adsorb unhealthy component due to its large surface to volume ratio.

Research of black carbon in terms of optical properties

- Ambient measurement: real atmospheric condition, constraining the model;
- Lab experiment: explore the mechanism
- Model: large scale estimation combing emission inventory and BC mass absorption cross section

Cutting edge: How much is the absorption enhancement by BC?

Theoretical core-shell modelling study (Jacobson, Nature, 2001) shows significant increase (50%) of absorption due to coating. However, some ambient studies show only 6-7% enhancement as below

Cappa et al,2014 (Nature)

Lan et al,2013 (AE)

My ongoing projects: big picture

Explore through lab and ambient experiment

On going Projects and goals

- 1. Testing the performance of an laser induced incandescent instrument measuring BC mass concentration---- technical work;
- 2. Lab experiment: exploring the influencing factors of BC absorption enhancement---scientific study
- 3. Ambient campaign: combing with lab experiments to study the BC absorption enhancement factors.

Data analysis is under process and the results will be showed in EAC (2017) conference in ETHZ

Brown carbon

Light absorption by brown carbon aerosol in the PRD region of China

Jin-Feng Yuan, Xiao-Feng Huang, Ling-Yan He

Peking University, China 2015-12-18

Classification of carbonaceous aerosol

	Thermochemical Classification	Molecular Structures	Optical Classification
Chem. Refractiveness	Elemental Carbon (EC)	Graphene Layers (graphitic or turbostratic)	Black Carbon (BC)
	Refractory Organic Carbon	Polycyclic Aromatics, Humic-Like Substances, Biopolymers, etc.	Colored Organic Carbon
	(Nonrefractory) Organic Carbon (OC)	Low-Molecular-Mass Hydrocarbons and Derivatives	(Colorless) Organic Carbon (OC) (OC)

(Ulrich Poschl, AC, 2005)

Definition of Brown Carbon (BrC): light absorbing organic carbon

Chemical and optical properties of BrC

- Complexity and variety of molecular composition
- Strong wavelength-dependence of light absorption

Source, distribution and climate effect

The modeled anthropogenic AAOD, to which BrC contributed significantly

Identification of BrC's role in light absorption

Absorption Angstrom Exponent (AAE) method

$$AAE \ (\lambda_1, \lambda_2) = \left(\frac{\ln(Abs_{\lambda_1}/Abs_{\lambda_2})}{\ln(\lambda_1/\lambda_2)}\right)$$

> BC's AAE is 1.0 in theory

Total aerosol's AAE would be

higher due to BrC existing

Is it reliable to use AAE_bc =1.0 in real atmosphere?

(D.A. Lack et al, ACP, 2013)

More realistic AAE_bc with less uncertainty should be explored

Highlights of this study

Light extinction of $PM_{2.5}$ in the PRD region of China.

Finding real AAE_bc based on local ambient measurement.

Quantitative calculation of light absorption of brown carbon with uncertainty evaluation at short-wave wavelengths.

Sampling sites

Shenzhen (22.60 ° N, 113.97 ° E), Heshan (22.71 ° N, 112.93 ° E)

Sampling periods

2014- Fall

2014-Winter

Seasonal average surface extinction coefficient in PRD (Dry) (1/km)

Shenzhen (2014/01.15-02.19, 2014/09.12-10.09) : SZ_winter & SZ_fall Heshan (2014/11.01-11.21): HS_fall

Instrumentation

Light absorption of PM_{2.5}

PASS-3 (@405, 532, 781 nm)

Mass concentration of Org

AMS

Advantages of PASS-3 & AMS: online, in situ, high time resolution

Principle of PASS-3: photo-acoustic method

Time series of AAE of ambient aerosols

eg: Shenzhen (winter) campaign

Determination of AAE baseline (AAE_bc)

eg: Shenzhen (winter) campaign

BrC absorption total uncertainty

Wavelength-dependence and BrC absorption

Validation of AAE_bc by Roadway Tunnel Experiments in Shenzhen

nt 898	BC (µg/m ³)	ave	max	min
	TL-1	16.7	35.4	5.6
	TL-2	19.7	122.6	42.3
	JWL	8.9	42.3	2.3

Vehicular emissions are dominant

Fresh vehicular emissions

■More close to "pure BC".

2 tunnels were measured

Extrapolation of AAE_bc in Tunnels

The AAE_bc obtained are in good accordance with the Shenzhen ambient air measurements.

Validation of BrC source by Biomass burning Simulation Experiments

Biomass type	Burning modes	AAE _{405_781}	AAE _{532_781}	AAE _{405_532}
Ficus microcarpa leaf Lychee leaf Corn stalk Peanut stalk Litchi wood Eucalyptus wood	Stove burning	4.46 ± 1.20 3.48 ± 1.20 2.97 ± 1.16 1.99 ± 0.50 2.61 ± 1.00 1.71 ± 0.50 1.70 ± 0.05	3.46 ± 0.96 2.52 ± 1.07 2.39 ± 1.06 2.08 ± 0.86 1.95 ± 0.85 1.30 ± 0.53 1.00 ± 0.47	5.85 ± 1.69 4.90 ± 1.61 3.83 ± 1.49 2.13 ± 1.01 3.55 ± 1.50 2.34 ± 0.85
Short straw		1.70±0.25	1.39 ± 0.47	2.32 ± 0.05
Short straw	Open burning	6.20 ± 1.33	4.96 ± 1.15	8.27 ± 1.34

The higher absorption spectral dependence between 405~532nm is in good accordance with the Heshan observation influenced by biomass burning.

Summary of brown carbon study in China

BC absorption still dominates the total absorption, while BrC absorption cannot be neglected, contributing ~10% (@ 405 &532nm) in the PRD region of China.

The tunnel experiments further supported the effectiveness of AAE_bc values extrapolated from ambient measurements.

The biomass burning simulation experiments further proved the higher absorption spectral dependence between 405 and 532nm as a result of biomass burning in rural site of PRD region

Thank you !