

Spheric Under Water Energy Reservoirs

Source: 5)

Introduction:

The Role of Energy Storage

Ongoing Research:

The StEnSea Project

Outlook:

Offshore Energy Storage

Conclusion

Source: http://www.eqmagpro.com/trudeau-walks-a-thin-tightrope-between-fossil-fuels-renewables/ (2017)

Electrical generation from renewables in Germany

Source: http://www.erneuerbare-energien.de (2016)

Fluctuations from Solar & Wind Energy:

- Season
- Daytime
- Weather

Demand for Stabilization:

- Grid Expansion
- Computational Grid Optimization
- Energy Storage

Worldwide Installed Electrical Grid Power Storages

Source: DOE Global Energy Storage Database (2017)

Source: http://www.powerelectronicsnews.com/uncategorized/the-searchfor-large-scale-energy-storage-solutions

E_{el}(surplus)

 $\mathbf{E}_{\mathbf{pot}} = \mathbf{V} \cdot \mathbf{p} \cdot \Delta \mathbf{h} \cdot \mathbf{g}$

E_{el}(required)

Efficiency:

 $\frac{E_{el}(required)}{E_{el}(surplus)} = 80-85\%$

The StEnSea (Stored Energy in the Sea) Project

Source: 1)

Prof. Schmidt-Böcking (Frankfurt, Germany)

Dr. Gerhard Luther (Saarbrücken, Germany)

DOI: 10.1002/pluz.201301330

Speicherung elektrischer Energie am Meeresboden

Das Meer-Ei

HORST SCHMIDT-BÖCKING | GERHARD LUTHER | CHRISTOPH LAY | JOCHEN BARD

Der wachsende Anteil schwankender erneuerbarer Eneraiequellen im Netz erfordert mehr Stromspeicherkapazitöt. Ausgereift sind bislang nur Pumpspeicherkraftwerke. Eine neue Speichertechnologie wäre für Offshore-Windparks besonders Wasser als "Reservoir". Erste Pilotprojekte sind in Vorberei-

Source: 2)

concrete structure specialist

ocean energy and storage specialist from Kassel

Assuming a sphere with a diameter of 30m lying at an ocean-depth of 700m

	€/unit	€/kW
Building materials (Concrete, framework and strengthener)	2,065 Mio	413
Installation	1,5 Mio	300
Pump turbine with electro mechanics	2,625 Mio	525
Target costs per installed kW		1238

Costs for common pumped hydro power stations:

1300-1600 €/kW

Source: 3)

Optimizations

Operation Depth (700m):

- suitable for present pumping technologies
- comparable to conventional pumped hydro

Turbine (5MW):

comparable with typical offshore wind turbine

Design (Spherical):

optimal pressure distribution

Sphere Size / Shell Thickness (30m/3m):

- weight always higher than uplift
- volume suitable for daytime energy storage

Double cladding construction design. Inner cladding with composite fabric

Source: 1)

Big scale spherical construction technologies do already exist

Source: https://solidbau.at/a/rsb-baut-welt-kugelgebaeude-insaudi-arabien (2013)

Source: 4)

© HOCHTIEF Solutions AG

08.11.2016:

Model sphere was set into the water at the harbor of Konstanz

09.11.2016:

Model was sunk to 100m water depth - 200m away from the lakeshore of Überlingen

03.03.2017:

Model got retrieved

First results from the model experiment:

- Transport, installation and construction
- The impact of different pressure conditions on the turbine pump
- "proof of concept"

Further Analysis:

Improve theoretical sphere simulations with gained data

Outlook: Offshore Energy Storage

What's happening next?

- Geographic information system of seas in Europe (inclination, sediment,...)
- Infrastructure (distance to coast, grid connection)
- Construction scaling

Most Promising:

- Norwegian trench
- Spanish Sea

Goal: Realizing a 30m pilot project in Europe in 3-5 years

Outlook: Offshore Energy Storage

Source: 6)

Conclusion

- The concept of pumped hydro is efficient, scalable and economical.
- The demand for energy storage will progressively increase.
- Energy production from offshore wind parks will strongly increase.

"80% of the people live closer than 100km to a sea" (2010, United Nations Environment Program)

That means: Energy storage close to a sea can be beneficial.

- In contrast to conventional pumped hydro, StEnSea has big advantages in terms of: "Impact to people and environment."
- Global potential for 30m StEnSea spheres in 700m water depth: 893GWh
- Bigger spheres and deeper ocean depth are in principle possible.

FIH zürich

Sources

- 1) STENSEA Stored energy in the Sea, Jochen Bard, 7th International Renewable Energy Storage Conference and Exhibition, Poster (2012).
- 2) Das Meer Ei, H. Schmidt-Böcking, G. Luther, C. Lay, J. Bard, Phys. Unserer Zeit (2013).
- 3) STENSEA Stored energy in the Sea, Jochen Bard, Wissensforum VDI, Presentation (2013).
- 4) Development and testing of a novel offshore pumped storage concept for storing energy at sea, M. Puchta, et al., OSES 2016, Presentation (2016).
- 5) https://www.energiesystemtechnik.iwes.fraunhofer.de/de/projekte/suche/laufende/stensea-storing-energyat-sea.html (2017).
- 6) STENSEA Stored energy in the Sea, Dr. Andreas Garg, Christoph Lay, and Robert Füllmann, 7th International Renewable Energy Storage Conference and Exhibition, Presentation (2012.