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Electric Energy Supply

[BFE, Schweizerische Gesamtenergiestatistik 2015]

Swiss energy consumption by carrier (2015)
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Fact 1:

Capacity 6= Flexibility

signs of inflexibility:
• price volatility, negative market prices
• significant renewable energy curtailment
• balancing violations, frequency

excursions, etc.

increasing flexibility:
• interconnected systems
• fast generators, flexible loads, storage
• market design, communication

infrastructure

Assumption 1

Enough capacity & flexibility such that demand can be met at all times.

[NREL, "Flexibility in 21st Century Power Systems," 2014]
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Fact 2:

supply 6= demand→ frequency deviation

50Hz 51Hz49
Hz

Assumption 2

The power system is stabilized and operates in steady-state, i.e., at 50Hz.
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Terminology

congestion→ cascading line failures
(overloaded transmission lines)

under-/overvoltage→ voltage collapse

undervoltage

power demand

overvoltage

 generation
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Primer in Control Engineering

Feedback actuate

observe

[Longchamp, 1995]

open-loop system (feedforward control):

Controller System
r

u

y

closed-loop system (feedback control) :

Controller System
r +

u

y

−

Feedback control can achieve:
• no steady-state error, i.e., r(t) = y(t) for t→∞
• stability: output y remains bounded (for bounded input r)
• robustness: reduce influence of model uncertainties

r reference value
u control signal
y output signal
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Example: Frequency Control in Power Systems

supply 6= demand→ freq deviation

50Hz 51Hz49
Hz

Frequency
Control

Power
System

50Hz +
u

y

frequency measurement

−

49.935 Hz

50 Hz

50.065 Hz

1200MW

Power plant output Balancing service

15min5min0.5min

[swissgrid, 2010]
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Steady-state AC power flow model

2
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nodal voltage
current injection
power injections

line impedance
line current
power flow

Ohm’s Law Current Law

AC power

AC power flow equations

(all variables and parameters are    -valued)
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Power system optimization

minimize φ(x)
subject to x ∈ X

φ : Rn → R objective function
X ⊂ Rn constraint set
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[Cludius et al., 2014]

(simple) Optimal Power Flow (OPF) problem

• minimize cost of generation

• respect generation capacity

• satisfy AC power flow laws

• no over-/under-voltage

• no congestion

minimize
∑

k∈N
costk(P G

k )

subject to P G + jQG = P L + jQL + diag(V )Y ∗V ∗

p
k
≤ P G

k ≤ pk, q
k
≤ QG

k ≤ qk ∀k ∈ N

vk ≤ Vk ≤ vk ∀k ∈ N
|Pkl + jQkl| ≤ skl ∀{k, l} ∈ E

Y admittance matrix, P G
k , QG

k power generation,P L
k , QL

k load, {v
k

, vk, . . .} nodal limits, skl line flow limit
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Optimization and control in power system operations

Optimization Controller System
r +

u

y

−

short-term
planning

D-14 . . . D-2
(SC-OPF)

day-ahead
scheduling

D-1
(SC-OPF)

manual
redispatch

low-level,
automatic
controllers
droop, AGC
AVR, PSS

Dynamic Power
System Model
ẋ = f(x, u, δ)

δ

u

x

Steady-state model
h(x, δ) = 0 (AC power flow)Optimization stage

generation
setpoints

state
estimation

prediction (load, generation, downtimes)

schedule
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National & international redispatch

• in case of unforseen congestion or
voltage problems

• (manually) dispatched on a
15-minute timescale

1 588

2010

5 030

2011

7 160

2012

7 965

2013

8 453

2014

15 811

2015

Redispatch actions in  the German 
transmission grid
in hours

[Bundesnetzagentur, Monitoringbericht 2016]
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tertiary frequency
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27.0
68.3
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411.9

national & internat.
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Cost of ancillary services of German TSOs
in mio. Euros
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[Bundesnetzagentur, Monitoringbericht 2016]
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Traditional distribution grids

short-term
planning

day-ahead
scheduling

manual
redispatch

low-level
control

Transmission
System

Distribution
Systems

Steady-state model
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Distribution grids with high renewable penetration

Challenges

• congestion (in urban grids)
• under-/over-voltage (in rural grids)
• hard to predict individual load/generation profiles

single PV plant

po
w

er

time of day time of day

single residential
load profile

po
w

er

Opportunities

• new degrees of freedom (flexibility!)
• fast, inverter-based actuation
• inexpensive, reliable communication

[IEEE 123 bus test feeder]
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The future of active distribution systems

short-term
planning

day-ahead
scheduling

manual
redispatch

low-level
control

Transmission
System

optimization?
smart charging,

load management
etc.

??
local,

heuristic
control

Distribution
Systems

Steady-state model

δ
prediction (load, distributed generation)
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Research: “feedback optimization”

Optimization problem

minimize f(u, y)
subject to h(u, y) = 0

u ∈ U
y ∈ Y

feedback
optimizer

static
system

h(u, y) = 0

actuate
u

y
measure

• no need to solve optimization problem numerically
• algebraic system constraint enforced automatically
• relies static system (or asymptotically stability with fast settling time)
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The intuition behind feedback optimization

Update control variables

uk+1 = uk + ∆u ,

measurements adapt to

yk+1 ≈ yk + ∆y

where
[
∆u ∆y

]
∈ kerDh(uk, yk).

Main Idea: Choose ∆u such that
[
∆u ∆y

]
is a

descent direction that is feasible w.r.t. U and Y .

Optimization Problem

minimize f(u, y)
subject to h(u, y) = 0

u ∈ U
y ∈ Y

feedback
optimizer

static
system

h(u, y) = 0

actuate
u

y
measure
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Related work

Dynamical systems that solve optimization problems:

• Isospectral flows on matrices
Applications: sorting lists, computing eigenvalues, solve LPs
[Brockett 1988], [Bloch 1990], [Helmke and Moore 1994]

• Arrow-Hurwicz-Uzawa flows for “soft-constrained” strongly-convex optimization problems
Applications: distributed consensus-based optimization
[Arrow et al. 1958], [Kose 1956], [Feijer and Paganini 2010], [Cherukuri et al. 2016], [Simpson 2016]

• Projected dynamical systems for “hard-constrained” convex optimization problems
Applications: variational inequalities
[Nagurney and Zhang 1996], [Heemels et al. 2000], [Cojocaru 2006]
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Projected dynamical systems for feedback optimization

Feedback optimization with saturation:
minimize f(u, y)

subject to h(u, y) = 0
u ∈ U
y ∈ Y

feedback
optimizer

static system
h(u, y) = 0

u

y

U

Projected dynamical systems:

Initial value problem:

ẋ = ΠK (x, F (x)) , x(0) = x0

where ΠK(x, v) ∈ arg min
w∈TxK

||v − w||.

F : Rn → Rn vector field, K ⊂ Rn closed domain, TxK tangent cone at x
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Projected gradient descent
To find minimum on φ on a nonconvex K follow negative gradient vector field:

ẋ = ΠK (x,−gradφ(x)) , x(0) = x0 .

• Does a solution trajectory exist? Is it unique? (yes, if K is convex, otherwise unknown)
• Are solution trajectories (asymptotically) stable?
• Do solution trajectories converge to a minimizer of φ?

Corollary [AH et al. 2016] (simplified)

Let x : [0,∞)→ K be a (Carathéodory-)solution of

ẋ = ΠK (x,−gradφ(x)) x(0) = x0 .

Then, if φ has compact level sets on K sets x(t) will converge to a critical point x∗ of φ on K.
Furthermore, if x∗ is asymptotically stable then it is a local minimizer of φ on K.
A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Projected gradient descent on Riemannian manifolds with applications to online power system optimization,” Allerton Conference, 2016
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Tracking OPF solution despite intermittency
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A. Hauswirth, S. Bolognani, F. Dörfler and G. Hug, “Online Optimization in Closed Loop on
the Power Flow Manifold,” Powertech Conference, 2017, accepted
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Further topics

• Distributed control/optimization: reduce information exchange to neighbor-to-neighbor
communication
[Bolognani et al. 2013], [Dall’Annese and Simmonetto 2016], [Li et al. 2014], [Gan and Low 2016], ...

Further desirable properties:

• plug-and-play: no tuning required, distributed performance certificates

• privacy-preserving: no need to share private information

• incentive-compatible: individual, rational choices lead to social optimum
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Summary

• Energy transition opens up new challenges in the operation of power systems at all grid
levels.

• Optimization and control theory are essential for a safe and reliable power supply.

• New methods are required to robustly stabilize & optimize power grids under large
uncertainty and in real-time.

• Feedback optimization is a new paradigm that tries to combine the advantages of both
worlds.

• Simulations look promising, but the math behind is still active research.
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