ETHzürich

Real-time Optimization for Power Distribution Systems

Adrian Hauswirth

Agenda

Introduction

Facts and terminology everyone should know about

Tutorial in control & optimization

Transmission system operations

Active distribution grids

Research: combining control and optimization in a novel way

Conclusion

Electric Energy Supply

Swiss energy consumption by carrier (2015)

[BFE, Schweizerische Gesamtenergiestatistik 2015]

Electric Energy Supply

Swiss energy consumption by carrier (2015)

[BFE, Schweizerische Gesamtenergiestatistik 2015]

PSL 🔚 / /// 🚝

PL Ma

Electric Energy Supply

Swiss energy consumption by carrier (2015)

[BFE, Schweizerische Gesamtenergiestatistik 2015]

Power consumption P(t) = V(t)I(t)

Electric energy consumption $E = \int^{t_1} P(t) dt$

Agenda

Introduction

Facts and terminology everyone should know about

Tutorial in control & optimization

Transmission system operations

Active distribution grids

Research: combining control and optimization in a novel way

Conclusion

ETHzürich

Fact 1:

Capacity \neq **Flexibility**

signs of inflexibility:

- price volatility, negative market prices
- significant renewable energy curtailment
- balancing violations, frequency excursions, etc.

increasing flexibility:

- interconnected systems
- fast generators, flexible loads, storage
- market design, communication infrastructure

Assumption 1

Enough capacity & flexibility such that demand can be met at all times.

[NREL, "Flexibility in 21st Century Power Systems," 2014]

supply \neq demand \rightarrow frequency deviation

Assumption 2

The power system is stabilized and operates in steady-state, i.e., at 50Hz.

Terminology

$\begin{array}{l} \text{congestion} \rightarrow \text{cascading line failures} \\ (\text{overloaded transmission lines}) \end{array}$

Agenda

Introduction

Facts and terminology everyone should know about

Tutorial in control & optimization

Transmission system operations

Active distribution grids

Research: combining control and optimization in a novel way

Conclusion

Primer in Control Engineering

open-loop system (feedforward control):

 \xrightarrow{r} Controller \xrightarrow{u} System \xrightarrow{y}

closed-loop system (feedback control) :

Feedback control can achieve:

- no steady-state error, i.e., r(t) = y(t) for $t \to \infty$
- **stability**: output *y* remains bounded (for bounded input *r*)
- robustness: reduce influence of model uncertainties

r reference value u control signal y output signal

Example: Frequency Control in Power Systems

supply \neq demand \rightarrow freq deviation

Steady-state AC power flow model

(all variables and parameters are \mathbb{C} -valued)

Power system optimization

- $\begin{array}{ll} \text{minimize} & \phi(x) \\ \text{subject to} & x \in \mathcal{X} \end{array}$
- $\begin{array}{ll} \phi: \mathbb{R}^n \to \mathbb{R} & \text{ objective function} \\ \mathcal{X} \subset \mathbb{R}^n & \text{ constraint set} \end{array}$

Power system optimization

 $\begin{array}{ll} \text{minimize} & \phi(x) \\ \text{subject to} & x \in \mathcal{X} \end{array}$

 $\begin{array}{ll} \phi: \mathbb{R}^n \to \mathbb{R} & \text{ objective function} \\ \mathcal{X} \subset \mathbb{R}^n & \text{ constraint set} \end{array}$

(simple) Optimal Power Flow (OPF) problem

- minimize cost of generation
- respect generation capacity
- satisfy AC power flow laws
- no over-/under-voltage
- no congestion

$$\begin{array}{ll} \text{nimize} & \displaystyle\sum_{k \in \mathcal{N}} \text{cost}_k(P_k^G) \\ \text{ject to} & P^G + jQ^G = P^L + jQ^L + \text{diag}(V)Y^*V^* \\ & \displaystyle \underline{p}_k \leq P_k^G \leq \overline{p}_k, \ \underline{q}_k \leq Q_k^G \leq \overline{q}_k & \forall k \in \mathcal{N} \\ & \displaystyle \underline{v}_k \leq V_k \leq \overline{v}_k & \forall k \in \mathcal{N} \\ & |P_{kl} + jQ_{kl}| \leq \overline{s}_{kl} & \forall \{k,l\} \in \mathcal{E} \end{array}$$

Y admittance matrix, P_k^G, Q_k^G power generation, P_k^L, Q_k^L load, $\{\underline{v}_k, \overline{v}_k, \ldots\}$ nodal limits, \overline{s}_{kl} line flow limit

mii

sub

Agenda

Introduction

Facts and terminology everyone should know about

Tutorial in control & optimization

Transmission system operations

Active distribution grids

Research: combining control and optimization in a novel way

Conclusion

Optimization and control in power system operations

Optimization and control in power system operations

National & international redispatch

- in case of unforseen congestion or voltage problems
- (manually) dispatched on a 15-minute timescale

Cost of ancillary services of German TSOs

Agenda

Introduction

Facts and terminology everyone should know about

Tutorial in control & optimization

Transmission system operations

Active distribution grids

Research: combining control and optimization in a novel way

Conclusion

F&L 🔚 / 🛲

Traditional distribution grids

Distribution grids with high renewable penetration

Challenges

- congestion (in urban grids)
- under-/over-voltage (in rural grids)
- hard to predict individual load/generation profiles

Opportunities

- new degrees of freedom (flexibility!)
- fast, inverter-based actuation
- inexpensive, reliable communication

[IEEE 123 bus test feeder

The future of active distribution systems

The future of active distribution systems

Agenda

Introduction

Facts and terminology everyone should know about

Tutorial in control & optimization

Transmission system operations

Active distribution grids

Research: combining control and optimization in a novel way

Conclusion

Research: "feedback optimization"

- no need to solve optimization problem numerically
- · algebraic system constraint enforced automatically
- relies static system (or asymptotically stability with fast settling time)

The intuition behind feedback optimization

Update control variables

$$u^{k+1} = u^k + \Delta u \,,$$

measurements adapt to

 $y^{k+1} \approx y^k + \Delta y$

where $\begin{bmatrix} \Delta u & \Delta y \end{bmatrix} \in \mathrm{ker} Dh(u^k,y^k).$

Main Idea: Choose Δu such that $\begin{bmatrix} \Delta u & \Delta y \end{bmatrix}$ is a *descent direction* that is feasible w.r.t. \mathcal{U} and \mathcal{Y} .

Optimization Problem

$$\begin{array}{ll} \mbox{minimize} & f(u,y) \\ \mbox{subject to} & h(u,y) = 0 \\ & u \in \mathcal{U} \\ & y \in \mathcal{Y} \end{array}$$

Related work

Dynamical systems that solve optimization problems:

- Isospectral flows on matrices *Applications:* sorting lists, computing eigenvalues, solve LPs [Brockett 1988], [Bloch 1990], [Helmke and Moore 1994]
- Arrow-Hurwicz-Uzawa flows for "soft-constrained" strongly-convex optimization problems *Applications:* distributed consensus-based optimization [Arrow et al. 1958], [Kose 1956], [Feijer and Paganini 2010], [Cherukuri et al. 2016], [Simpson 2016]
- **Projected dynamical systems** for "hard-constrained" convex optimization problems *Applications:* variational inequalities [Nagurney and Zhang 1996], [Heemels et al. 2000], [Cojocaru 2006]

Projected dynamical systems for feedback optimization

Feedback optimization with saturation:

Projected dynamical systems:

Initial value problem:

$$\dot{x} = \Pi_{\mathcal{K}} \left(x, F(x) \right), \quad x(0) = x_0$$

where
$$\Pi_{\mathcal{K}}(x,v) \in \arg \min_{w \in T_x \mathcal{K}} ||v-w||.$$

 $F:\mathbb{R}^n\to\mathbb{R}^n$ vector field, $\mathcal{K}\subset\mathbb{R}^n$ closed domain, $T_x\mathcal{K}$ tangent cone at x

Projected gradient descent

To find minimum on ϕ on a nonconvex \mathcal{K} follow negative gradient vector field:

 $\dot{x} = \Pi_{\mathcal{K}} \left(x, -\operatorname{grad} \phi(x) \right), \quad x(0) = x_0.$

- Does a solution trajectory exist? Is it unique? (yes, if *K* is convex, otherwise unknown)
- Are solution trajectories (asymptotically) stable?
- Do solution trajectories converge to a minimizer of ϕ ?

Corollary [AH et al. 2016] (simplified)

Let $x: [0,\infty) \to \mathcal{K}$ be a (Carathéodory-)solution of

$$\dot{x} = \Pi_{\mathcal{K}} \left(x, -\operatorname{grad} \phi(x) \right) \qquad x(0) = x_0 \ .$$

Then, if ϕ has compact level sets on \mathcal{K} sets x(t) will converge to a critical point x^* of ϕ on \mathcal{K} . Furthermore, if x^* is asymptotically stable then it is a local minimizer of ϕ on \mathcal{K} .

A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, "Projected gradient descent on Riemannian manifolds with applications to online power system optimization," Allerton Conference, 2016

Tracking OPF solution despite intermittency

Controller: Penalty + Saturation

A. Hauswirth, S. Bolognani, F. Dörfler and G. Hug, "Online Optimization in Closed Loop on the Power Flow Manifold," Powertech Conference, 2017, *accepted*

Further topics

• Distributed control/optimization: reduce information exchange to neighbor-to-neighbor communication [Bolognani et al. 2013], [Dall'Annese and Simmonetto 2016], [Li et al. 2014], [Gan and Low 2016], ...

Further desirable properties:

- plug-and-play: no tuning required, distributed performance certificates
- privacy-preserving: no need to share private information
- incentive-compatible: individual, rational choices lead to social optimum

Agenda

Introduction

Facts and terminology everyone should know about

Tutorial in control & optimization

Transmission system operations

Active distribution grids

Research: combining control and optimization in a novel way

Conclusion

Summary

- Energy transition opens up new challenges in the operation of power systems at all grid levels.
- Optimization and control theory are essential for a safe and reliable power supply.
- New methods are required to robustly **stabilize & optimize** power grids under large uncertainty and **in real-time**.
- Feedback optimization is a new paradigm that tries to combine the advantages of both worlds.
- Simulations look promising, but the math behind is still active research.

Thanks

Supervisors: Prof. Dr. Florian Dörfler Prof. Dr. Gabriela Hug Dr. Saverio Bolognani

Project students: Alessandro Zanardi József Pázmány

Questions

Adrian Hauswirth PhD student

ETH Zurich Automatic Control Laboratory Power Systems Laboratory

Phone +41 44 632 6145 hadrian@control.ethz.ch