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... to decentralized energy generation
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" What is a multi-energy system (MES)
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" Main goal: design and analysis of MES with novel
conversion technologies and seasonal storage

* Current approaches perform the design of
integrated MES with a quite simplified
description of the conversion technologies

* We want to provide more realistic models
for such technologies within the design of
MES
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multi-energy systems

 Current approaches do not allow to
consider the seasonal operation of complex

* We want to enable the design and analysis
of complex MES including seasonal storage
with low computational complexity
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Agenda

1. Modeling of fuel cell and electrolyzer devices
a. Thermodynamic models
b. Linear approximation methods

2. Formulation of the optimization problem

a. Proposed methods for designing long-term storage systems
b. Methods validation

3. Application of the proposed framework to design and
analysis of integrated MES
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Agenda

1. Modeling of fuel cell and electrolyzer devices
a. Thermodynamic models
b. Linear approximation methods
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Modeling electrochemical conversion devices
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Electrochemical conversion devices: Fuel cells
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PEM fuel cell, external methane reforming

Fuel cells (FCs) are electrochemical devices that simultaneously generate electricity
and heat through the electrochemical reaction of a fuel (e.g. H, or natural gas) with
an oxidant (e.g. O, or air).

Various types of FCs are considered: NG-SOFC, NG-PEMFC, H,-PEMFC
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Electrochemical conversion devices: Electrolyzers
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Electrolyzers are electrochemical devices that generate hydrogen and oxygen by
absorbing electricity through the splitting of deionized water.

High pressure PEM electrolyzers are considered, generating H, and O, at 40 bar.
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g Why first-principle models and how to use them
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Thermodynamic first-principle models are used to describe the nonlinear conversion
performance and the dynamic features of the conversion technologies

« Computationally efficient approximations suitable for optimization framework
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g Modeling methodology
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g Modeling methodology

CELL STACK
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Modeling methodology

CELL STACK ENTIRE PRODUCT ENTIRE PRODUCT

Electrochemical model to Energy and mass balances
describe cell performance to describe the overall

dynamic modeling to
describe the overall

conversion performance transient behavior

MATLAB ASPEN SIMULINK
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Electrical output power, P [kW]
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« Steady-state behavior of conversion
performance

» Conversion performance at reference
conditions

* The thermodynamic model needs to be
linearized to be used in an optimization
framework
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. [ ] [ ] o [ ]
Linear approximation: conversion performance
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« Steady-state behavior of conversion
performance

» Conversion performance at reference
conditions

* The thermodynamic model needs to be
linearized to be used in an optimization
framework
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Linear approximation: conversion performance
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« Steady-state behavior of conversion
performance

» Conversion performance at reference
conditions

* The thermodynamic model needs to be
linearized to be used in an optimization
framework

Affine approximation

P=aF +pS+y
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" Linear approximation: dynamic behavior
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» Dynamic behavior of the conversion

performance
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" Linear approximation: dynamic behavior

1
O Thermodynamic model

First order approximation
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» Dynamic behavior of the conversion
performance

* First order approximation of the
generated power:

d
20 = o)+
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" Linear approximation: dynamic behavior
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» Dynamic behavior of the conversion
performance

* First order approximation of the
generated power:
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" Linear approximation: dynamic behavior

O Thermodynamic model

=== First order approximation . . .
s 08t No dynamics * Dynamic behavior of the conversion
= performance
2 0s / o .
5 * First order approximation of the
3 oa generated power:
£
TE 0.2 dQ(t)

= aQ((t) +
= aQ®) + B
]{.)900 2100 2300 2500

Time, t [s]

o
)

<
~

Thermal output power, Q [kW]
(=]
(o)}

o
~o

Time, t [hr]

D-MAVT - Institute of Process Engineering, Separation Process Laboratory

Literature data:

» Start-up and shut-down times
« Ramp-up and ramp-down limitations

In the form of constraints suitable for an
optimization framework
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" Linear approximation: dynamic behavior
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Literature data:

» Start-up and shut-down times
« Ramp-up and ramp-down limitations

In the form of constraints suitable for an
optimization framework
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Agenda

2. Formulation of the optimization problem

a. Proposed methods for designing long-term storage systems
b. Methods validation
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y Optimal design of the multi-energy system
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Optimization prob: mixed integer linear program
rgcl,iyn (cTx +dTy)

subject to

Ax+By=D>b

x=>0,y€{01}
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Optimization prob: mixed integer linear program

min (ch + dTy) objective function
X,y
decision variables input data

subject to

Ax+By=D>b
constraints

x=>0,y€{01}
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Optimal design problem: input data

Environmental

conditions: solar
irradiance and air
temperature

solar
radiation ‘

D-MAVT - Institute of Process Engineering, Separation Process Laboratory Paolo Gabrielli | 30.05.2017 | 27



y Optimal design problem: input data
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y Optimal design problem: input data

n B
Enqunmgntal Energy prices: Load demands:
conditions: solar = ..
o : electricity and gas electricity and heat
irradiance and air .
prices demands
temperature

End Users

% electricity

electrical grid

solar
radiation

heat

(% natural gas

natural gas
grid

D-MAVT - Institute of Process Engineering, Separation Process Laboratory Paolo Gabrielli | 30.05.2017 | 29



y Optimal design problem: input data

2 3

Environmental
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Optimal design problem: input data

Environmental

conditions: solar
irradiance and air
temperature

Energy prices:

electricity and gas
prices

Load demands:
electricity and heat
demands

Set of available
technologies: cost
and performance
coefficients

Assumptions

Input data 1-3 are assumed to be known without uncertainty at every time instant ¢
of the time horizon, based on past realizations.

Therefore, the following hypotheses are implied:

I. No evolution of input data occurs during following years
ii. All the possible realizations of the uncertainty are included in historical data.
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y Optimal design problem: in
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Optimal design problem: decision variables

. Selection and size of the installed (" MES: Conversion and Storage "\
technologies
battery
II. Scheduling (ON/OFF status) of the
conversion technologies edHP
PV panels PtG +§/}+

III. Input and output power of the g PgF;P;E
conversion technologies
X

thermal
solar

IV. Energy stored, charged/discharged by g -
the storage technologies gas-based conversion L
PEMFC SOFC MGT

V. Imported/exported power from the grid N El

Operation variables II-V are determined at }
every hour of the year. \_ ~ )
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Optimal design problem: constraints

. Performance of conversion technologies:
affine or piecewise affine (PWA) approximations

Original curve

Output power, P [kW]

Affine approximation

[

F

max

Input power, F [kW]
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Pt = CZFt +ﬁ5xt +]/xt, Vt = {1,,T}

Fpinyg, < F, < FP®y, , vt ={1,...,T}
Binary variable x € {0,1} to model ON/OFF status.

Additional binary variables y, z € {0,1}T to model
start-up/shut-down dynamics.
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Optimal design problem: constraints

. Performance of conversion technologies:

affine or piecewise affine (PWA) approximations

II. Performance of storage technologies:
simple linear dynamics

Input
power, P
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Storage system

Stored energy, E

Output
power, P

E, = E,_,(1 — 2At) + nP,At, vt ={1,..., T}
EO S ET
0<E <S,vt={1,..T}

S S
—=<P<2,vt={1..T}
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Optimal design problem: constraints

. Performance of conversion technologies:
affine or piecewise affine (PWA) approximations

II. Performance of storage technologies:
simple linear dynamics

III. Hub energy balances: the sum of imported and
generated power must equal the sum of
exported and used power
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Optimal design problem: objective function

I. Total annual cost of the system: ( MES: Conversion and Storage "\
I. Capital cost, modeled through a PWA battery
function of the unit size
II. Operation cost, function of the overall edHP

imported/exported energy along the year PV panels PtG éf},,

[Il. Maintenance cost, fraction of the capital o PEMFC  PEME

cost 0 — @

thermal

solar \ HS
W "0

~—~ |

II. Annual CO, emissions, function of the
overall imported energy

gas-based conversion
PEMFC SOFC MGT

K

heat

The multi-objective optimization is |
performed through the e-constraint boiler

method. \_ il u Y,
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Modeling challenge: time horizon

« The possibility of seasonal operation cycles translates in a long time horizon, with
high resolution, which implies very large optimization problems

» Based on input data 1-3, the overall year is modeled through a set of D typical
design days determined through a clustering procedure

« Traditionally, the design problem is solved for the design days, significantly
reducing the computational complexity

01 Jan 02 Jan 31 Jan

01 Feb 02 Feb 28 Feb Typical design day I
Typical design day II
Typical design day III

01 Dec 31 Dec
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g Modeling the time horizon: novel methods
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Typical input data
Daily periodicity constraints
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Same stored energy variation at
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Unit scheduling through design
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Time [hr]

Traditional method (MO) Coupling design days (M1) Detailed input data (M2)
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g Modeling the time horizon: novel methods

* Typical input data
+ Daily periodicity constraints

« Same stored energy for each
design day

« Same stored energy variation at
each design day

* Unit scheduling through design
days
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g Modeling the time horizon: novel methods

* Typical input data
+ Daily periodicity constraints

« Same stored energy for each
design day

« Same stored energy variation at
each design day

* Unit scheduling through design
days
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" Model validation: simple MES
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" Model validation: computational time

1

L L T T T T I/i}
FSO: ~ 23 hours vt
7

MIP gap = 0.01% s

CPU time [hr]
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Typical design days, D [d]

* The full scale optimization (FSO) requires about 23 hours to complete

* All the proposed methods require less than 1 hour for D = 3-72
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" Model validation: long-ter

HS stored energy [kWh]
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10.01.16 - 20.01.16

m operation (D = 48)

« MO determines a daily policy for
storage operation, different for
different design days

* M1 and M2 determine a long-
term operation similar to that
provided by the full scale
optimization (FSO)
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" Model validation: system size

HS size [kWh]
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» MO significantly underestimates
the size of the storage system
and overestimates the size of
the conversion technologies,
independently of the number of
design days

* M1 and M2 provide a more
accurate system design when
increasing the number of
design days (D > 25)
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" Model validation: total annual cost of the system
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Full scale optimizations featuring
approximate system design:

* The design provided by MO
translates into significantly
higher costs (~9%).

 The design provided by M1 and
M2 translate into a lower cost
(closer to the optimal value)
when increasing the number of
design days.

* M2 approaches the FSO value
faster than M1 (~1% for D = 25-
72).
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Agenda

3. Application of the proposed framework to design and
analysis of integrated MES
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" Model application to a MES of interest

/ MES: Conversion and Storage \
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. Cost-emission Pareto front
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* The full scale optimizations did
not complete in 5 days, whereas
M2 with D = 48 was solved in
less than 12 hours

* Tradeoff between capital and
operational cost

* A reduction in both cost and
emissions can be achieved with
respect to a conventional
scenario where electricity is
bought from the grid and heat is
generated with a boiler
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. Cost-emission Pareto front
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The reduction in both cost and emissions is mainly achieved through photovoltaic
installation, replacement of boilers with heat pumps and utilization of thermal
storage.
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y Sensitivity of Pareto fronts: solar installation
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Sensitivity analysis on the area
available for solar installation:

* The level of minimum emissions
depends on the amount of
renewable energy installed

 All the Pareto sets coincide at
low annual cost and then are
separated at low emissions (high
renewable and storage
installations)
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y Sensitivity of Pareto fronts: solar installation

12000

Photovoltaic area [m?]

Battery size [kWh]
w
~
[€)]
o

1 0.8 0.6 0.4 0.2 0
Annual 002 emission reduction

D-MAVT - Institute of Process Engineering, Separation Process Laboratory
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y Sensitivity of Pareto fronts: solar installation
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Take-home message
« We studied the optimal design of integrated MES including:

- Detailed description of electrochemical conversion technologies.
Reduced order models were derived from first-principle models of fuel
cells and electrolyzers and included within an optimization framework

- Seasonal operation cycles for the storage technologies. Two MILP
approaches, based on design days, were proposed to enable the
optimal design of complex MES including seasonal storage with
limited computational complexity

* The optimal behavior of the system was investigated in terms of total
annual cost and CO, emissions

 Seasonal operation cycles become convenient at low CO, emissions and

are performed through power-to-gas technology, where hydrogen is
generated through the excess of renewable energy
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BACKUP SLIDES
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ETH:zurich
Work in progress: tool development
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. [ ] [ ] o [ ]
Linear approximation: conversion performance
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« Steady-state behavior of conversion
performance

« Conversion performance at a reference
temperature (neglecting temperature
dependency at design phase)

* The thermodynamic model needs to be

linearized to be used in an optimization
framework
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Linear approximation: conversion performance
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- * Steady-state behavior of conversion
P performance

« Conversion performance at a reference
temperature (neglecting temperature
dependency at design phase)

1 The thermodynamic model needs to be
linearized to be used in an optimization
framework

Linear approximation 2

P = aF
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g Impact of modeling approximations: size
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g Impact of modeling approximations: cost

Annual cost [M€]
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+2.1% PtG

Linear conversion  No dynamics Simplest description
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g Modeling the time horizon: novel methods

Et = (){Et_l + nPt)At , vVt = {1, ey 8760}

Ey = Eg760

Traditional method (MO):
» Typical demand profiles
+ Daily periodicity constraint
Methods « Same stored energy for each
design day
* Unit commitment through design
days

Definition of D design days which
are considered independently.

Ed,k = (AEd,k—l + nPd,k)Ak , Vd,k

Ed,O = Ed,K ) Vd, k

Description

d ={1, ..., D} is the d-th design day

k ={1,...,K} is the k-th daily time
step

D-MAVT - Institute of Process Engineering, Separation Process Laboratory
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g Modeling the time horizon: novel methods

Et = (){Et_l + nPt)At , vVt = {1, ey 8760}

Ey = Eg760

Traditional method (MO):
 Typical demand profiles
+ Daily periodicity constraint

Method 1 (M1):
+ Typical demand profiles

* Yearly periodicity constraint

Methods « Same stored energy for each * Free stored energy
design day * Unit commitment through design
* Unit commitment through design days
days
Definition of D design days which Sequence of design days o.
are considered independently.
Eqx = (AEqje-1 + nPaj)Ak ,Vd, k| B, = (AE, 4 q + NP4 ) Ak, Vy, k
Eqo=Eu k,vVd k _
Description 40 = dk Eyy = (AEy_1k +1MPoy)1)Ak, Vy

d ={1, ..., D} is the d-th design day

k ={1,...,K} is the k-th daily time
step

Eox = Eyk

o(y) <D, Vy

y =1{1,...,Y} is the y-th day of the
year
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g Modeling the time horizon: novel methods

Et = (AEt_l + nPt)At , vVt = {1, ey 8760}

Ey = Eg760

Traditional method (MO):
 Typical demand profiles
+ Daily periodicity constraint
Methods « Same stored energy for each
design day
* Unit commitment through design
days

Method 1 (M1):
* Typical demand profiles
* Yearly periodicity constraint
* Free stored energy

* Unit commitment through design
days

Method 2 (M2):

* Detailed demand profiles

* Yearly periodicity constraint

* Free stored energy variation

* Unit commitment through
design days for some
technologies

Definition of D design days which
are considered independently.

Ed,k = (AEd,k—l + nPd,k)Ak , Vd,k

Ed,O = Ed,K ) Vd, k

Sequence of design days o.

Ey,k = (AEy’k_1 + nPa(y),k)Ak ) Vy, k

Ey,1 = (AEy—l,K + npa(y),l)Ak ) Vy

Distinction between different
decision variables.

Ey,k = (AEy,k—l + nPy,k)Ak ’ Vy, k

Ey,l = (AEy—l,K + nPy,l)Ak ) Vy

Description
d ={1, ..., D} is the d-th design day Eox =Eyxk Eox = Eyx
k ={1,..,K} is the k-th daily time o(y) <D, Vy
step
y =1{1,...,Y} is the y-th day of the
year
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Sensitivity of Pareto fronts: user demand
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Sensitivity analysis on ratio

between thermal and electrical
demands:

* The level of minimum emissions
depends on the ratio between
thermal and electrical demand
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g Sensitivity of Pareto fronts: user demand
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